JPH10298646A - Production of stainless steel plate - Google Patents

Production of stainless steel plate

Info

Publication number
JPH10298646A
JPH10298646A JP11070197A JP11070197A JPH10298646A JP H10298646 A JPH10298646 A JP H10298646A JP 11070197 A JP11070197 A JP 11070197A JP 11070197 A JP11070197 A JP 11070197A JP H10298646 A JPH10298646 A JP H10298646A
Authority
JP
Japan
Prior art keywords
steel sheet
quenching
stainless steel
less
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11070197A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujimura
浩志 藤村
Shinji Tsuge
信二 柘植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11070197A priority Critical patent/JPH10298646A/en
Publication of JPH10298646A publication Critical patent/JPH10298646A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a stainless steel plate having high impact value, free from the occurrence of porous scale at the time of hardening, increased in hardening velocity, and suitable as material for cutting tool, etc. SOLUTION: A stainless steel, which has a composition consisting of, by weight, 0.25-0.34% C, 0.4-1.0% Si, 0.1-1.0% Mn, <=0.04% P, <=0.01% S, 12.6-14.0% Cr, 0-0.5% Ni, <=0.2% V, and the balance Fe with inevitable impurities and satisfying inequality C(%)<=0.04286×Cr(%)+0.88 (the part under the line connecting the points C, D in the figure), is used. This stainless steel is hot-rolled at <=950 deg.C finishing temp. and then annealed at 750 to 950 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、刃物等の材料とし
て好適なステンレス鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a stainless steel sheet suitable as a material for a knife or the like.

【0002】[0002]

【従来の技術】SUS420等のステンレス鋼は、焼入
れを施すことにより鋼が硬化し耐摩耗性が付与され、さ
らに耐食性にも優れているので、ナイフ等の刃物用材料
として用いられている。通常、ステンレス鋼製の刃物
は、熱間圧延により厚さ1〜3mmに加工されたステン
レス鋼板に750〜950℃で1〜10時間保持する焼
鈍を施し、その後冷間圧延を施して刃物の厚さに加工し
た後に製品の形状に打ち抜き、加熱炉の中で約1050
℃で10〜20分保持した後に空気焼入れまたは油焼入
れを施し、さらにその後、加熱時に生成した表面のスケ
ールを研磨により除去して作られる。
2. Description of the Related Art Stainless steel, such as SUS420, is used as a material for blades such as knives because it is hardened by quenching to impart abrasion resistance and has excellent corrosion resistance. Normally, a stainless steel cutting tool is subjected to annealing at a temperature of 750 to 950 ° C. for 1 to 10 hours on a stainless steel plate processed to a thickness of 1 to 3 mm by hot rolling, and then to cold rolling. After processing into the shape, it is punched into the shape of the product, and about 1050
After being kept at 10 ° C. for 10 to 20 minutes, air quenching or oil quenching is performed, and thereafter, the scale on the surface generated during heating is removed by polishing.

【0003】刃物を製造する工程では、ステンレス鋼の
特性に起因する問題がたびたび発生する。第1の問題点
は、冷間圧延や型打ち抜きを行う際に鋼板が割れること
である。冷延時の割れは、鋼板の両幅端に発生し、幅中
央へ向かって伝播する、いわゆる耳割れである。この割
れが発生すると、製品歩留まりが低下するとともに、耳
割れが大きくなり鋼板を破断させる場合があり、作業の
安全性が著しく損なわれる。耳割れを防止するには、冷
間圧延前の鋼板の衝撃値(靱性)を十分高めておく必要
がある。
[0003] In the process of manufacturing a blade, problems arising from the characteristics of stainless steel frequently occur. The first problem is that the steel sheet cracks during cold rolling or die punching. Cracks during cold rolling are so-called edge cracks that occur at both width ends of the steel sheet and propagate toward the center of the width. When this crack occurs, the product yield decreases, and the edge crack increases, which may cause the steel sheet to break, which significantly impairs the safety of work. In order to prevent edge cracks, it is necessary to sufficiently increase the impact value (toughness) of the steel sheet before cold rolling.

【0004】第2の問題点は、焼入れの際に鋼板の表面
に厚さ数十μmのポーラスなスケール(もしくはノジュ
ール状スケールともいう。)が局部的に生成することで
ある。このスケールが発生すると、研磨工程での工数が
増えるばかりか、ポーラスなスケールの発生箇所と通常
のスケールの発生箇所とで脱炭反応の程度の差によるマ
ルテンサイト変態量の格子歪み差が生じることにより鋼
板の反りが発生し、製品歩留まりを低下させる場合があ
る。またポーラスなスケールの発生箇所では脱炭反応が
起きることによる焼き入れ硬化不足が起こることもあ
る。
A second problem is that a porous scale (or nodule-like scale) having a thickness of several tens μm is locally formed on the surface of a steel sheet during quenching. When this scale occurs, not only does the man-hour in the polishing process increase, but also the difference in the degree of decarburization reaction between the point where the porous scale occurs and the point where the normal scale occurs causes a lattice distortion difference in the amount of martensite transformation. This may cause the steel sheet to warp, thereby lowering the product yield. In addition, insufficient quenching and hardening may occur due to a decarburization reaction at a location where a porous scale is generated.

【0005】第3の問題点は、通常の焼入れのための加
熱条件である約1050℃で10〜20分間保持する条
件を、焼き入れ工程のラインスピードを上げるために、
保持時間を3〜5分に短くすると、鋼板が硬化不足とな
ることである。
[0005] The third problem is that the condition of holding at about 1050 ° C. for 10 to 20 minutes, which is a heating condition for ordinary quenching, is to increase the line speed of the quenching step.
When the holding time is shortened to 3 to 5 minutes, the steel sheet becomes insufficiently hardened.

【0006】上記の問題点を解決する技術手段として次
のような技術が既に提案されている。
The following techniques have already been proposed as technical means for solving the above problems.

【0007】第1の問題点を防止するための技術手段と
して、熱間圧延後の鋼板に長時間のバッチ焼鈍を施して
鋼板を軟化させることにより衝撃値を向上させる方法が
ある。しかし、この技術は衝撃値を向上させるためには
有効な手段であるが、第2,3の問題点を同時に解決す
ることはできない。また他の技術手段として、冷間圧延
を施す際の鋼板の温度を通常の常温ではなく、50〜1
50℃とすることにより、耳割れ発生を防ぐ方法もあ
る。しかし、これらの技術手段は、長時間の処理および
加熱のための付帯設備が必要であり、製造コストを上昇
させてしまう。
[0007] As a technical means for preventing the first problem, there is a method of improving the impact value by subjecting a steel sheet after hot rolling to a long-time batch annealing to soften the steel sheet. However, although this technique is an effective means for improving the impact value, it cannot solve the second and third problems at the same time. Further, as another technical means, the temperature of the steel sheet at the time of performing the cold rolling is not normal room temperature, but 50 to 1 mm.
There is also a method of preventing the occurrence of ear cracks by setting the temperature to 50 ° C. However, these technical means require additional equipment for long-time processing and heating, and increase the manufacturing cost.

【0008】第2の問題点を防止するための技術手段と
して、特開昭57−19362号公報には、鋼中のSi
含有量を0.5重量%以上1.5重量%以下、N含有量
を0.035重量%以下に規定することにより、ノジュ
ール状スケールの発生を防止した鋼板が開示されてい
る。また、特開昭57−19329号公報には、特定の
組成の鋼に熱間圧延を施し、特定の雰囲気および温度で
焼鈍を施し、鋼板の表面粗さをHmaxで11μm以下
に研磨した後に焼入れ処理を施すことによりノジュール
状スケールを防止する方法が開示されている。しかし、
特開昭57−19362号公報に記載の鋼板は、ノジュ
ール状スケールの防止が十分になされていものではな
く、しかも耳割れ発生の問題や焼入れライン速度を上げ
た場合の硬化不足の問題も解決できていない。また、特
開昭57−19329号公報に記載の方法では、焼鈍の
雰囲気制御が複雑で、しかも特殊な研磨を行うので製造
コストの上昇が避けらない。
As a technical measure for preventing the second problem, Japanese Patent Application Laid-Open No. 57-19362 discloses a technique for preventing the presence of Si in steel.
A steel sheet in which the generation of nodule-like scale is prevented by regulating the content to 0.5% by weight or more and 1.5% by weight or less and the N content to 0.035% by weight or less is disclosed. JP-A-57-19329 discloses that a steel having a specific composition is hot-rolled, annealed in a specific atmosphere and temperature, and quenched after polishing the surface roughness of the steel sheet to 11 μm or less with Hmax. A method for preventing nodule-like scale by performing a treatment is disclosed. But,
The steel sheet described in Japanese Patent Application Laid-Open No. 57-19362 does not sufficiently prevent the nodule-like scale, and can also solve the problem of occurrence of edge cracks and insufficient hardening when the quenching line speed is increased. Not. Further, in the method described in Japanese Patent Application Laid-Open No. 57-19329, the control of the atmosphere for annealing is complicated, and special polishing is performed.

【0009】第3の問題点を防止するための技術手段と
して、特開平5−39547号公報には、炭化物密度を
140〜600個/100μm2 としたステンレスかみ
そり用鋼が開示されており、冷間圧延中にAc1変態点以
上の温度で焼鈍を行うことにより、鋼中のクロム炭化物
の分散密度を規定し、焼入れ硬化速度を増加させる方法
が示されている。しかしこの方法は、冷間圧延の途中で
一旦、焼鈍のために加熱炉に鋼板を搬入し、焼鈍後再び
冷間圧延装置に鋼板を戻す必要があるので、製造工程が
複雑になり、製造コストを上昇させてしまう。
As a technical measure for preventing the third problem, Japanese Unexamined Patent Publication No. 5-39547 discloses a stainless steel razor steel having a carbide density of 140 to 600 particles / 100 μm 2. A method is disclosed in which annealing is performed at a temperature equal to or higher than the A c1 transformation point during hot rolling to define the dispersion density of chromium carbide in steel and increase the quench hardening rate. However, this method requires that the steel sheet be once brought into a heating furnace for annealing during the cold rolling, and then returned to the cold rolling device after the annealing, so that the manufacturing process becomes complicated and the manufacturing cost increases. Will rise.

【0010】[0010]

【発明が解決しようとする課題】本発明の課題は、衝撃
値が高く、焼入れ時にポーラスなスケールを発生させ
ず、かつ焼入れ硬化速度が大きな刃物等の材料として好
適なステンレス鋼板を、製造コストを上昇させることな
く製造する方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a stainless steel sheet which has a high impact value, does not generate a porous scale at the time of quenching, and has a high quench hardening speed, and is suitable as a material for cutting tools. It is to provide a method of manufacturing without raising.

【0011】[0011]

【課題を解決するための手段】本発明の要旨は、次のス
テンレス鋼板の製造方法にある。
The gist of the present invention resides in the following method for manufacturing a stainless steel plate.

【0012】『重量%で、C:0.25〜0.34%、
Si:0.4〜1.0%、Mn:0.1〜1.0%、
P:0.04%以下、S:0.01%以下、Cr:1
2.6〜14.0%、Ni:0〜0.5%、V:0.2
%以下でかつ、下記式を満たし、残部がFeおよび不
可避不純物からなるステンレス鋼に仕上げ温度が950
℃以下の熱間圧延を施し、その後750〜950℃で焼
鈍を施す工程を含むステンレス鋼板の製造方法。
"% By weight, C: 0.25 to 0.34%,
Si: 0.4 to 1.0%, Mn: 0.1 to 1.0%,
P: 0.04% or less, S: 0.01% or less, Cr: 1
2.6 to 14.0%, Ni: 0 to 0.5%, V: 0.2
% Or less and the following formula is satisfied, with the balance being stainless steel consisting of Fe and unavoidable impurities having a finishing temperature of 950.
A method for producing a stainless steel sheet, comprising a step of performing hot rolling at a temperature of at most ℃ and then annealing at 750 to 950 ° C.

【0013】 C(%)≦−0.04286×Cr(%)+0.88・・・』 本発明の方法は、前記3つの問題点を下記のように解決
するものである。
C (%) ≦ −0.04286 × Cr (%) + 0.88... The method of the present invention solves the above three problems as follows.

【0014】第1の耳割れの発生は、鋼板の衝撃値がV
ノッチのシャルピー衝撃試験で75J/cm2 以下の場
合に起こる。衝撃値を向上させるには、鋼板内に生成す
るCr73等のクロム炭化物を直径3μm以下の大きさ
で分散して析出させることが有効となる。直径3μmを
超える粗大なクロム炭化物は、熱間圧延後にコイルに巻
き取られて徐冷される段階で生成する。この直径3μm
を超える粗大なクロム炭化物を生成させないために、本
発明方法では、熱間圧延の仕上げ温度を950℃以下に
規定している。仕上げ温度をこの温度以下にすることに
より、鋼板の結晶粒径が小さくなり粒界面積が増加する
と同時に結晶粒内に転位が多数導入される。それらの粒
界や転位がクロム炭化物の核生成サイトとなり、個々の
クロム炭化物は多数の核生成サイトから分散して析出し
始めるので、直径3μm以下の微細なものとなる。
[0014] The first occurrence of ear cracks occurs when the impact value of the steel plate is V
Occurs when the notch is less than 75 J / cm 2 in the Charpy impact test. In order to improve the impact value, it is effective to disperse and precipitate chromium carbide such as Cr 7 C 3 generated in the steel sheet with a diameter of 3 μm or less. Coarse chromium carbide having a diameter of more than 3 μm is formed at a stage of being wound around a coil and gradually cooled after hot rolling. This diameter 3μm
In order to prevent the formation of coarse chromium carbides exceeding, the finishing temperature of hot rolling is specified to be 950 ° C. or lower in the method of the present invention. By setting the finishing temperature below this temperature, the crystal grain size of the steel sheet becomes smaller and the grain boundary area increases, and at the same time, many dislocations are introduced into the crystal grains. These grain boundaries and dislocations become chromium carbide nucleation sites, and the individual chromium carbides start to be dispersed and precipitated from a large number of nucleation sites, resulting in fine particles having a diameter of 3 μm or less.

【0015】第2の鋼板の表面にポーラスなスケールが
発生するという問題は、焼入れのための加熱の際に鋼板
内に固溶するCr量が少ない場合に起こる。ポーラスな
スケールは、鋼板の表面付近の基地に固溶しているCr
(炭化物を形成しているCrではない)が少ない場合
に、Crに代わりFeが酸化されてFe23やFe34
になったものであって、鋼板の表面に局部的に盛り上が
るようにできるものである。一方、焼入れ時に生成する
のが望ましいスケールは、Crが酸化されてCr23
なったものであって、鋼板の表面全体に均一に緻密にで
きるものである。焼入れ加熱時に鋼板内に固溶している
Cr量が多ければ、ポーラスなスケールの生成を防止で
き、正常なスケールを発生させることができる。固溶す
るCrを多くするためには、鋼板内にクロム炭化物とし
て析出しているCrをより多く焼入れ加熱時に固溶させ
ればよい。本発明方法では、CとCrの含有量を特定の
関係式(前記式)を満たすように調整すること、およ
び熱間圧延の仕上げ温度を950℃以下に規定すること
により、コイル巻き取り時に直径3μm以下の微細なク
ロム炭化物を析出させる。微細なクロム炭化物は、粗大
なものよりも焼入れ加熱時に溶解する速度が大きい。溶
解するクロム炭化物が多ければ、鋼板内に固溶するCr
量も多くなるので、焼入れの際の加熱でもポーラスなス
ケールは発生せず、Cr23等の正常なスケールが生成
し鋼板の表面を覆う。
The problem of the formation of porous scale on the surface of the second steel sheet occurs when the amount of Cr dissolved in the steel sheet during heating for quenching is small. The porous scale is composed of Cr dissolved in a matrix near the surface of the steel sheet.
(Not Cr forming carbides), Fe is oxidized instead of Cr, and Fe 2 O 3 or Fe 3 O 4
Which can be raised locally on the surface of the steel sheet. On the other hand, the scale that is desirably formed at the time of quenching is one in which Cr is oxidized to Cr 2 O 3 and can be uniformly and densely formed on the entire surface of the steel sheet. If the amount of Cr dissolved in the steel sheet during quenching and heating is large, formation of a porous scale can be prevented and a normal scale can be generated. In order to increase the amount of Cr that forms a solid solution, the amount of Cr that precipitates as chromium carbide in the steel sheet may be increased to form a solid solution during quenching and heating. In the method of the present invention, by adjusting the contents of C and Cr so as to satisfy a specific relational expression (the above expression), and by setting the finishing temperature of hot rolling to 950 ° C. or less, the diameter at the time of coil winding can be improved. Fine chromium carbide of 3 μm or less is precipitated. Fine chromium carbides dissolve at a higher rate during quenching and heating than coarse ones. If there is much chromium carbide to dissolve, Cr
Since the amount increases, a porous scale is not generated even by heating during quenching, and a normal scale such as Cr 2 O 3 is generated to cover the surface of the steel sheet.

【0016】第3の焼入れのための加熱時間を3〜5分
程度に短くすると鋼板が硬化不足となる問題は、焼入れ
のための加熱の際に固溶するC量が少ない場合に起こ
る。鋼板の焼入れ硬さは、鋼中のC含有量ではなく、焼
入れ前の加熱時に固溶したC量に比例し、固溶したC量
が多いほど鋼板の焼入れ硬さが増す。焼入れのための加
熱の際、鋼は面心立方晶のオーステナイト相となり格子
間にCを固溶させる。焼入れによるマルテンサイトへの
変態は、無拡散せん断変形を伴うものであり、格子間の
C量が多いほど歪み量が大きくなり硬くなる。本発明方
法では、焼入れのための加熱の際に固溶するC量を多く
するために、鋼板のC含有量を特定している。前記のよ
うに熱間圧延の仕上げ温度を950℃以下に規定して、
コイル巻き取り時にクロム炭化物を微細に分散析出さ
せ、クロム炭化物の溶解速度を高めることも、この固溶
Cを増すのに寄与する。クロム炭化物の溶解速度が高け
れば、従来よりも短時間の焼入れのための加熱でも鋼板
内に固溶するC量が多くなるので、焼入れ不足による鋼
板の硬度不足の問題は起きない。
If the heating time for the third quenching is shortened to about 3 to 5 minutes, the problem of insufficient hardening of the steel sheet occurs when the amount of C dissolved in the quenching heating is small. The quenching hardness of the steel sheet is not the C content in the steel, but is proportional to the amount of C dissolved during heating before quenching, and the quenching hardness of the steel sheet increases as the amount of dissolved C increases. Upon heating for quenching, the steel becomes a face-centered cubic austenitic phase and forms a solid solution of C between lattices. Transformation to martensite by quenching is accompanied by non-diffusion shear deformation, and the greater the amount of C between lattices, the greater the amount of strain and the greater the hardness. In the method of the present invention, the C content of the steel sheet is specified in order to increase the amount of C that forms a solid solution during heating for quenching. As described above, the finishing temperature of the hot rolling is specified to be 950 ° C. or less,
Increasing the dissolution rate of chromium carbide by finely dispersing and depositing chromium carbide during coil winding also contributes to increasing the solid solution C. If the dissolution rate of chromium carbide is high, even if heating for quenching is performed in a shorter time than before, the amount of C dissolved in the steel sheet increases, so that the problem of insufficient hardness of the steel sheet due to insufficient quenching does not occur.

【0017】[0017]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(1)本発明方法を適用できる鋼の化学組成 なお、化学組成の説明で使用する%表示は、重量%を意
味している。
(1) Chemical composition of steel to which the method of the present invention can be applied The percentages used in the description of the chemical composition mean weight%.

【0018】C:0.25〜0.34% Cは、鋼板の衝撃値、スケールの種類および焼入れ硬さ
を決める重要な元素の一つである。Cは、0.25%以
上含有させる必要がある。これを下回ると焼入れによる
硬化が不足し、JIS Z 2245に準ずるロックウ
ェル硬さでHRC55以下となってしまう。HRC55
という値は、刃物としての切れ味と耐久性維持のために
必要な最低硬さである。一方、0.34%を超えると粗
大なクロム炭化物を生成させて、ポーラスなスケールを
発生させるとともに、鋼板の衝撃値を低下させる。
C: 0.25 to 0.34% C is one of the important elements that determine the impact value, scale type and quenching hardness of the steel sheet. C must be contained at 0.25% or more. If it is less than this, hardening by quenching becomes insufficient, and the Rockwell hardness according to JIS Z 2245 becomes HRC 55 or less. HRC55
Is the minimum hardness necessary for maintaining sharpness and durability as a blade. On the other hand, when the content exceeds 0.34%, coarse chromium carbides are generated, a porous scale is generated, and the impact value of the steel sheet is reduced.

【0019】Si:0.4〜1.0% Siは、鋼の脱酸ために必要な元素である。またSi
は、ポーラスなスケールの発生防止に寄与する元素でも
ある。これらの効果を得るためには、0.4%以上含有
させる必要がある。一方、Siの含有量が1.0%を超
えると、鋼板の衝撃値が悪化する。
Si: 0.4 to 1.0% Si is an element necessary for deoxidizing steel. Also Si
Is also an element that contributes to preventing the generation of porous scale. In order to obtain these effects, it is necessary to contain 0.4% or more. On the other hand, if the content of Si exceeds 1.0%, the impact value of the steel sheet deteriorates.

【0020】Mn:0.1〜1.0% Mnは、鋼の脱酸のために必要な元素である。その効果
を得るためには、0.1%以上含有させる必要がある。
しかし、Mnの含有量を1.0%以上にすると鋼の相バ
ランスが変わり、焼入れ後にγ相を残留させ、鋼板の硬
度を低下させてしまう。
Mn: 0.1 to 1.0% Mn is an element necessary for deoxidizing steel. In order to obtain the effect, it is necessary to contain 0.1% or more.
However, when the Mn content is 1.0% or more, the phase balance of the steel changes, and after the quenching, the γ phase remains, thereby lowering the hardness of the steel sheet.

【0021】P:0.04%以下 Pは、鋼の精錬工程において不可避的に混入する元素で
あるが、できるだけ少ない方がよい。0.04%を超え
ると、鋼板の衝撃値と耐食性を悪化させる。
P: 0.04% or less P is an element that is inevitably mixed in the steel refining process, but it is preferable that P is as small as possible. If it exceeds 0.04%, the impact value and corrosion resistance of the steel sheet are deteriorated.

【0022】S:0.01%以下 Sも、鋼の精錬工程において不可避的に混入する元素で
ある。0.01%を超えると、鋼板の衝撃値と耐食性を
悪化させる。したがって、含有量は0.01%以下で、
しかもできるだけ少ない方がよい。
S: 0.01% or less S is an element that is inevitably mixed in the steel refining process. If it exceeds 0.01%, the impact value and corrosion resistance of the steel sheet are deteriorated. Therefore, the content is 0.01% or less,
And it is better to have as little as possible.

【0023】Cr:12.6〜14.0% Crは、ステンレス鋼としての基本となる特性(耐食
性,耐酸化性)を確保するために必須の成分である。ま
た、鋼板の衝撃値、スケールの種類および焼入れ硬さを
決める重要な元素の一つである。Crは12.6%以上
含有させる必要がある。これを下回ると焼入れの際にポ
ーラスなスケールを生成させてしまう。一方、14.0
%を超えると、本発明のC含有範囲では鋼板の衝撃値お
よび焼入れ硬さが不足する。
Cr: 12.6 to 14.0% Cr is an essential component for securing the basic characteristics (corrosion resistance and oxidation resistance) of stainless steel. Further, it is one of the important elements that determine the impact value, scale type and quenching hardness of the steel sheet. Cr must be contained at 12.6% or more. If it is less than this, a porous scale is generated during quenching. On the other hand, 14.0
%, The impact value and quenching hardness of the steel sheet are insufficient in the C content range of the present invention.

【0024】Ni:0〜0.5% Niは、添加しなくてもよい。添加すれば、γを生成さ
せて鋼の相バランスを調整し、焼き入れ硬さを向上させ
る。焼き入れ硬さのばらつきを少なくするためには、
0.2%以上添加するのが好ましい。ただし、0.5%
を超えると他のα生成元素を添加せねばならなくなり、
成分コストを上昇させる。
Ni: 0 to 0.5% Ni may not be added. If added, γ is generated to adjust the phase balance of the steel and improve the quench hardness. In order to reduce the variation in quenching hardness,
It is preferable to add 0.2% or more. However, 0.5%
If it exceeds, other α-forming elements must be added,
Increases component costs.

【0025】V:0.2%以下 Vは、Crの原材料に付随して混入する不純物元素であ
る。Vの含有量が0.2%を超えると、クロム炭化物が
焼入れの加熱時に分解しにくくなり、鋼板の焼入れ硬化
速度の低下とポーラスなスケールを生成させる要因とな
る。Vが炭化物を分解しにくくするのは、炭化物がVや
Crと結びついて複合炭化物となり、これらの複合炭化
物は焼き入れ加熱の温度では分解されにくいからであ
る。Vの悪影響をより少なくするためには、含有量を
0.1%以下とするのが望ましい。
V: 0.2% or less V is an impurity element mixed in with the Cr raw material. If the V content exceeds 0.2%, the chromium carbide is less likely to be decomposed during quenching, which causes a reduction in the quench hardening rate of the steel sheet and the formation of a porous scale. V makes the carbide hard to decompose because the carbide is combined with V or Cr to form a composite carbide, and these composite carbides are not easily decomposed at the temperature of quenching and heating. In order to further reduce the adverse effect of V, the content is desirably 0.1% or less.

【0026】上記のように各成分の含有量を所定の範囲
に調整するとともに、CとCrの含有量は、前記式を
満たす必要がある。この式を満たさなければ、鋼組成、
熱間圧延の仕上げ温度および焼鈍の条件を適正化して
も、冷間圧延時の耳割れや焼入れの際のポーラスなスケ
ールが発生し、焼入れ後の硬度も低くなる場合がある。
図1は、本発明方法を適用できる鋼のCrとCの含有量
の関係を示す図である。図中の斜線で囲まれた範囲がC
とCrの適切な含有量である。Crの最低含有量である
12.6%は、図中では境界線ADとして表される。C
rの最高含有量である14.0%は、図中では境界線B
Cとして表される。Cの最低含有量である0.25%
は、図中では境界線ABとして表される。境界線DC
は、前記式で表される直線である。
As described above, the content of each component must be adjusted to a predetermined range, and the content of C and Cr must satisfy the above formula. If this formula is not satisfied, the steel composition,
Even if the finishing temperature and annealing conditions of hot rolling are optimized, ear cracks during cold rolling and porous scale during quenching may occur, and the hardness after quenching may also be low.
FIG. 1 is a diagram showing the relationship between the contents of Cr and C in steel to which the method of the present invention can be applied. The area surrounded by oblique lines in the figure is C
And an appropriate content of Cr. The minimum Cr content of 12.6% is represented as a boundary line AD in the figure. C
14.0%, which is the maximum content of r,
Expressed as C. 0.25% which is the minimum content of C
Is represented as a boundary line AB in the figure. Boundary line DC
Is a straight line represented by the above equation.

【0027】(2)本発明方法の熱間圧延と焼鈍 熱間圧延:連続鋳造機や分塊ミルによってスラブにした
ステンレス鋼に熱間圧延を施す。本発明方法で規定する
熱間圧延の条件は、仕上げ温度を除いては、通常の条件
でよい。例えば、粗圧延機と仕上げ圧延機からなる熱間
圧延装置を用いて、厚さ1〜3mm程度の鋼板に仕上げ
る。熱間圧延の仕上げ温度は、950℃以下とする。そ
の理由は、以下の通りである。熱間圧延時(1100℃
程度)において、ステンレス鋼はオーステナイト単相で
あり、鋼中のクロム炭化物は全て固溶している。熱間圧
延後、鋼板の温度が1000℃以下になるとクロム炭化
物の析出が始まる。一方、熱間圧延温度の低下によって
鋼の結晶粒径は小さくなると共に多数の転位が導入され
る。前述のように結晶粒界や転位は、クロム炭化物の生
成の際の核生成サイトとなる。したがって、熱間圧延温
度が低いほど、クロム炭化物の析出サイトが多く、炭化
物は微細に分散して析出する。クロム炭化物の析出の際
に粒界や転位が少なければ、析出サイトが少なく、クロ
ム炭化物は粗大なものに成長してしまう。
(2) Hot Rolling and Annealing of the Method of the Present Invention Hot rolling: Hot rolling is performed on stainless steel slab formed by a continuous casting machine or a lump mill. The hot rolling conditions specified by the method of the present invention may be ordinary conditions except for the finishing temperature. For example, using a hot rolling device including a rough rolling mill and a finishing rolling mill, the steel sheet is finished to a thickness of about 1 to 3 mm. The finishing temperature of the hot rolling is 950 ° C. or less. The reason is as follows. During hot rolling (1100 ° C
Stainless steel is an austenitic single phase, and all chromium carbides in the steel are in solid solution. After hot rolling, precipitation of chromium carbide starts when the temperature of the steel sheet becomes 1000 ° C. or less. On the other hand, the reduction in hot rolling temperature reduces the crystal grain size of the steel and introduces many dislocations. As described above, the crystal grain boundaries and dislocations serve as nucleation sites when chromium carbide is generated. Therefore, as the hot rolling temperature is lower, the number of chromium carbide precipitation sites increases, and the carbides are finely dispersed and precipitated. If there are few grain boundaries and dislocations during the precipitation of chromium carbide, the number of precipitation sites is small, and the chromium carbide grows coarsely.

【0028】熱間圧延の仕上げ温度が950℃を超えて
いると、コイル巻き取り後の徐冷によって結晶が回復お
よび粒成長し、多くの転位が消滅すると共に結晶粒が粗
大化してしまう。その状況では析出サイトが少なくな
り、クロム炭化物は、粗に分散析出し、成長して粗大化
する。したがって、本発明方法では、熱間圧延の仕上げ
温度を950℃以下とした。なお、仕上げ温度の下限
は、700℃程度が望ましい。
If the finishing temperature of the hot rolling exceeds 950 ° C., the crystals recover and grow by slow cooling after coil winding, so that many dislocations disappear and the crystal grains become coarse. In that situation, the number of precipitation sites is reduced, and the chromium carbide is coarsely dispersed and precipitated, grows, and becomes coarse. Therefore, in the method of the present invention, the finishing temperature of the hot rolling is set to 950 ° C. or less. Note that the lower limit of the finishing temperature is desirably about 700 ° C.

【0029】熱間圧延後の焼鈍:熱間圧延のままでは、
巻き取ったコイルが硬すぎるので、展開して後の工程に
供することができない。焼鈍は、鋼板の固溶C量を低下
させコイルを軟化させ、鋼板の靱性および加工性を向上
させる目的で行う。本発明方法における焼鈍の条件は、
加熱温度以外は通常の条件でよい。例えば、大気中、水
素ガス中、水素と窒素の混合ガス中または不活性ガス中
において、750〜950℃で焼鈍を行う。750℃未
満での焼鈍では、鋼板の靱性を向上させることができな
い。950℃を超える焼鈍では、炉の耐火物の寿命が著
しく短くなる。焼鈍時間は、1〜20時間程度にするの
が好ましく、燃料コストの低減、炉寿命延長の観点から
できるだけ短い方が好ましい。
Annealing after hot rolling:
Since the wound coil is too hard, it cannot be developed and provided for a subsequent process. Annealing is performed for the purpose of reducing the amount of solute C in the steel sheet, softening the coil, and improving the toughness and workability of the steel sheet. The annealing conditions in the method of the present invention are as follows:
Normal conditions other than the heating temperature may be used. For example, annealing is performed at 750 to 950 ° C. in the air, in a hydrogen gas, in a mixed gas of hydrogen and nitrogen, or in an inert gas. Annealing at less than 750 ° C. cannot improve the toughness of the steel sheet. Annealing above 950 ° C. significantly shortens the life of the furnace refractory. The annealing time is preferably about 1 to 20 hours, and is preferably as short as possible from the viewpoint of reducing fuel cost and extending furnace life.

【0030】本発明方法によって製造されたステンレス
鋼板の主な用途は刃物である。例えば、酸洗、冷間圧
延、製品形状への打ち抜きが施され、さらに1050℃
程度に加熱した後焼入れを行う。この時の加熱時間は、
従来のものに較べはるかに短くすることができる。焼入
れの後は、表面研磨が施されて刃物となる。
The main use of the stainless steel sheet produced by the method of the present invention is as a cutting tool. For example, pickling, cold rolling, and punching into a product shape are performed.
After heating to the extent, quenching is performed. The heating time at this time is
It can be much shorter than conventional ones. After quenching, the surface is polished to form a blade.

【0031】[0031]

【実施例】本発明方法および本発明方法で規定する条件
から外れる方法を実施して、ステンレス鋼板を製造し、
その鋼板に刃物等を製造する工程である、冷間圧延およ
び焼入れを施して、鋼板の衝撃値、冷間圧延時の耳割
れ、焼入れ硬化速度および鋼板の表面に生成したスケー
ルを調査した。
EXAMPLE A stainless steel plate was manufactured by carrying out the method of the present invention and a method deviating from the conditions specified in the method of the present invention.
The steel plate was subjected to cold rolling and quenching, which is a process for manufacturing a blade or the like, and the impact value of the steel plate, edge cracking during cold rolling, quench hardening speed, and scale formed on the surface of the steel plate were investigated.

【0032】表1に示した化学組成のステンレス鋼を真
空溶解炉にて25kg溶製し、熱間圧延を施し、表2に
示す様々な仕上げ温度で仕上げて厚さ3mmの熱延板を
作製した。これらの鋼板を様々な温度で4時間保持する
焼鈍を施した後、酸洗し、冷間圧延を施して厚さ1mm
の冷延板を作製した。
In a vacuum melting furnace, 25 kg of stainless steel having the chemical composition shown in Table 1 was melted, hot-rolled, and finished at various finishing temperatures shown in Table 2 to produce a hot-rolled sheet having a thickness of 3 mm. did. After annealing these steel sheets at various temperatures for 4 hours, they were pickled, cold rolled, and 1 mm thick.
Was prepared.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】(1)衝撃値と耳割れの調査 熱延板の衝撃値を測るために、厚さ3mmの熱延板の一
部から幅3mm、深さ2mmのVノッチのシャルピー衝
撃試験片を採取し、25℃にて衝撃値を測定した。衝撃
値が70J/cm2 未満の熱延板は、打抜き性不良と評
価した。
(1) Investigation of Impact Value and Edge Crack In order to measure the impact value of the hot-rolled sheet, a Charpy impact test specimen of 3 mm wide and 2 mm deep V-notch was measured from a part of the hot-rolled sheet having a thickness of 3 mm. The sample was collected and the impact value was measured at 25 ° C. Hot rolled sheets having an impact value of less than 70 J / cm 2 were evaluated as having poor punchability.

【0036】また、厚さ1mmの冷延板を製造する際に
発生した耳割れの最大長さを測定し、長さが2mm以上
の耳割れが発生した冷延板を不良とした。
Further, the maximum length of a crack generated when manufacturing a cold-rolled sheet having a thickness of 1 mm was measured, and a cold-rolled sheet having a crack having a length of 2 mm or more was determined to be defective.

【0037】調査結果および製造条件を表2に示した。Table 2 shows the results of the investigation and the manufacturing conditions.

【0038】本発明方法で製造したステンレス鋼板の衝
撃値は、全て70J/cm2 を超える良好なものであ
り、2mm以上の耳割れは発生しなかった。鋼の組成、
熱間圧延仕上げ温度または焼鈍温度が本発明方法で規定
する条件から外れる方法で製造した鋼板は、衝撃値が、
70J/cm2 を下回るものや2mmを超える耳割れが
発生しているものがあった。
The impact values of the stainless steel sheets produced by the method of the present invention all exceeded 70 J / cm 2 , and no ear cracks of 2 mm or more occurred. Steel composition,
A steel sheet manufactured by a method in which the hot rolling finish temperature or the annealing temperature deviates from the conditions specified in the method of the present invention has an impact value of:
Some were less than 70 J / cm 2 and some had ear cracks exceeding 2 mm.

【0039】(2)焼入れの際に発生するスケールと焼
入れ硬化速度の調査 鋼1〜11の厚さ1mmの冷延板の一部から25mm×
35mmの大きさの焼入れ試験片を採取し、試験片上部
に3mm径の孔を空け、焼入れ処理を施した。鋼線で試
験片を吊り下げて、大気中、1050℃で5分または1
0分間保持した後、大気中に取り出して空気焼入れを実
施した。スケール発生調査には、スケールの発生の状況
が明確となるように10分間加熱した試験片を使用し
た。焼入れ硬化速度の調査には、より短い加熱時間での
焼入れ硬化速度の向上の本発明方法の効果を確かめるた
めに、5分間加熱した試験片を使用し、スケール研磨除
去後に荷重150kgfの条件でHRC硬さを調査する
ことにより、焼入れ硬化速度を評価した。
(2) Investigation of scale generated during quenching and quench hardening rate 25 mm × 1 mm from a part of a 1 mm thick cold rolled steel sheet
A quenched test piece having a size of 35 mm was collected, a hole having a diameter of 3 mm was formed in the upper part of the test piece, and quenching treatment was performed. Hang the test piece with a steel wire and in air at 1050 ° C for 5 minutes or 1
After holding for 0 minutes, the sample was taken out into the atmosphere and air-quenched. In the scale generation investigation, a test piece heated for 10 minutes was used so as to clarify the state of scale generation. In order to investigate the effect of the method of the present invention for improving the quench hardening rate in a shorter heating time, a test piece heated for 5 minutes was used. The quench hardening rate was evaluated by examining the hardness.

【0040】焼入れによりポーラスなスケールが発生し
たものを不良とした。また、硬さが、HRCで54以下
のものを焼入れ硬化速度が不足するものと評価した。
A sample having a porous scale generated by quenching was regarded as defective. Further, those having a hardness of 54 or less by HRC were evaluated as having insufficient quench hardening speed.

【0041】調査結果を表2に示す。表2から明らかな
ように、本発明方法で製造した鋼板には、ポーラスなス
ケールの発生はない。これらは、正常なCrのスケール
で緻密に覆われていた。硬さもHRC56以上であり、
5分間の加熱後の焼入れでも十分硬化していた。一方、
鋼の組成、熱間圧延仕上げ温度または焼鈍温度が本発明
方法で規定する条件から外れる方法で製造したステンレ
ス鋼板の冷延板は、ポーラス状のスケールの発生してい
るものや硬さがHRC54以下のものがあった。
Table 2 shows the results of the investigation. As is clear from Table 2, the steel sheet produced by the method of the present invention has no porous scale. These were densely covered with a normal Cr scale. Hardness is also HRC56 or more,
Hardening was sufficient after quenching after heating for 5 minutes. on the other hand,
Cold rolled stainless steel sheets produced by a method in which the steel composition, hot rolling finish temperature or annealing temperature deviates from the conditions specified in the method of the present invention are those having a porous scale and hardness of HRC54 or less. There was one.

【0042】[0042]

【発明の効果】本発明方法により、焼き入れ硬化速度が
大きく、ポーラスなスケールや耳割れが発生しないステ
ンレス鋼板を製造することができる。したがって、刃物
等の焼入れ工程の生産性が高まるとともに研磨工数を削
減することができる。
According to the method of the present invention, it is possible to produce a stainless steel sheet which has a high quench hardening rate and does not generate porous scales or edge cracks. Therefore, the productivity of the quenching step of the blade and the like can be increased, and the number of polishing steps can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を適用できる鋼のCrとCの含有量
の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the contents of Cr and C in steel to which the method of the present invention can be applied.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.25〜0.34%、S
i:0.4〜1.0%、Mn:0.1〜1.0%、P:
0.04%以下、S:0.01%以下、Cr:12.6
〜14.0%、Ni:0〜0.5%、V:0.2%以下
でかつ、下記式を満たし、残部がFeおよび不可避不
純物からなるステンレス鋼に仕上げ温度が950℃以下
の熱間圧延を施し、その後750〜950℃で焼鈍を施
す工程を含むことを特徴とするステンレス鋼板の製造方
法。 C(%)≦−0.04286×Cr(%)+0.88・・・
(1) C: 0.25 to 0.34% by weight, S
i: 0.4 to 1.0%, Mn: 0.1 to 1.0%, P:
0.04% or less, S: 0.01% or less, Cr: 12.6
To 14.0%, Ni: 0 to 0.5%, V: 0.2% or less, and hot stainless steel which satisfies the following formula and the balance is Fe and unavoidable impurities and the finishing temperature is 950 ° C or less. A method for producing a stainless steel sheet, comprising a step of rolling and then annealing at 750 to 950 ° C. C (%) ≦ −0.04286 × Cr (%) + 0.88...
JP11070197A 1997-04-28 1997-04-28 Production of stainless steel plate Pending JPH10298646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11070197A JPH10298646A (en) 1997-04-28 1997-04-28 Production of stainless steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11070197A JPH10298646A (en) 1997-04-28 1997-04-28 Production of stainless steel plate

Publications (1)

Publication Number Publication Date
JPH10298646A true JPH10298646A (en) 1998-11-10

Family

ID=14542271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11070197A Pending JPH10298646A (en) 1997-04-28 1997-04-28 Production of stainless steel plate

Country Status (1)

Country Link
JP (1) JPH10298646A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005732A1 (en) * 2002-07-04 2004-01-15 Shinjo Mfg. Co., Ltd. Heat resistant drill screw
JP2010059899A (en) * 2008-09-05 2010-03-18 Hitachi Automotive Systems Ltd Fuel injection valve and method of machining nozzle
JP2020045511A (en) * 2018-09-17 2020-03-26 愛知製鋼株式会社 Martensitic stainless steel for cutting tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005732A1 (en) * 2002-07-04 2004-01-15 Shinjo Mfg. Co., Ltd. Heat resistant drill screw
CN100348875C (en) * 2002-07-04 2007-11-14 有限会社新城制作所 Heat resistant drill screw
JP2010059899A (en) * 2008-09-05 2010-03-18 Hitachi Automotive Systems Ltd Fuel injection valve and method of machining nozzle
JP2020045511A (en) * 2018-09-17 2020-03-26 愛知製鋼株式会社 Martensitic stainless steel for cutting tool

Similar Documents

Publication Publication Date Title
JP5050433B2 (en) Method for producing extremely soft high carbon hot-rolled steel sheet
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP4600196B2 (en) High carbon cold-rolled steel sheet with excellent workability and manufacturing method thereof
JP3879446B2 (en) Method for producing high carbon hot-rolled steel sheet with excellent stretch flangeability
JP3879459B2 (en) Manufacturing method of high hardenability high carbon hot rolled steel sheet
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP3879447B2 (en) Method for producing high carbon cold-rolled steel sheet with excellent stretch flangeability
JPH09157758A (en) Production of high carbon steel strip excellent in workability
JP2001131635A (en) Method for producing non-oriented silicon steel sheet excellent in workability and magnetic property after annealing
JPH09202919A (en) Production of high tensile strength steel material excellent in toughness at low temperature
CN113366136A (en) High carbon hot-rolled steel sheet and method for producing same
JP2710941B2 (en) Rolling die steel
JPH10298646A (en) Production of stainless steel plate
KR102218435B1 (en) Hot rolled steel sheet having excellent surface qualities and low mechanical properties deviation and method of manufacturing the same
JPH09324212A (en) Production of hot rolled high carbon steel strip excellent in hardenability and cold workability
JPH0860239A (en) Production of thick steel plate excellent in low temperature toughness
JP2001293504A (en) Mandrel bar and its producing method
JP3137754B2 (en) Efficient production method of cold rolled steel sheet with excellent deep drawability
JP2781325B2 (en) Method for producing medium and high carbon martensitic stainless steel strip having fine carbides
JP3418928B2 (en) Ferritic stainless steel sheet for cold forging and its manufacturing method
JP2807592B2 (en) Method for producing structural steel sheet with good brittle fracture resistance
CN113490756B (en) Steel sheet, member, and method for producing same
JP2004315947A (en) Method for manufacturing maraging steel strip for continuously variable transmission
JPH1060540A (en) Production of high carbon cold rolled steel strip
JPH11181549A (en) Cold tool made of casting excellent in weldability and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Effective date: 20050215

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050412

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621