JPH10296019A - Method for pretreating raw water - Google Patents

Method for pretreating raw water

Info

Publication number
JPH10296019A
JPH10296019A JP9140831A JP14083197A JPH10296019A JP H10296019 A JPH10296019 A JP H10296019A JP 9140831 A JP9140831 A JP 9140831A JP 14083197 A JP14083197 A JP 14083197A JP H10296019 A JPH10296019 A JP H10296019A
Authority
JP
Japan
Prior art keywords
filtration
water
filter
raw water
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9140831A
Other languages
Japanese (ja)
Inventor
Shigeki Inoue
繁樹 井上
Genichi Kawabe
元一 河部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKOU KAISUI KK
Original Assignee
AKOU KAISUI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKOU KAISUI KK filed Critical AKOU KAISUI KK
Priority to JP9140831A priority Critical patent/JPH10296019A/en
Publication of JPH10296019A publication Critical patent/JPH10296019A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for making raw water containing a suspension limpid more efficiently than by a conventional method, as a pretreating method. SOLUTION: This method for pretreating raw water is to add an acid to the raw water containing a suspension to set the pH value within the range of 3-8.5 and further add chitosan as a natural polymer flocculant so that the concentration of the flocculant falls within the range of 0.02-0.5 in terms of mg/l as a unit, and further, filter the raw water. Consequently, it is possible to make the filtrate highly lim. The pretreatment is made more efficient by carrying out the filtration process using a particulate filter medium with an effective diameter of 200-1000 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、懸濁物質を含む原料用
水を清澄化するための前処理方法であり、例えば、電気
透析法や逆浸透法等による濃縮、脱塩、分離、精製等の
分野、および工業用水、上水、排水等の処理分野に利用
できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pretreatment method for clarifying raw material water containing suspended substances, for example, concentration, desalination, separation, purification by electrodialysis, reverse osmosis, or the like. And the fields of treatment of industrial water, clean water, waste water, etc.

【0002】[0002]

【従来の技術】電気透析や逆浸透法の分野における問題
の一つは、膜の汚染である。原料用水中には、有機質や
無機質のコロイド状物質および懸濁物質(以下懸濁物質
と言う)が含まれている。この原料用水中の懸濁物質が
膜の汚染を引き起こしていると考えられ、これを可及的
に除去できるような前処理方法が望まれている。従来よ
り原料用水中の懸濁物質を除去する方法として各種の方
法が採用されてきた。例えば、濾過材として砂、アンス
ラサイト等の粒状濾材、セラミック製や合成樹脂製のフ
ィルター等を用いて濾過する方法、凝集剤を添加して懸
濁物質のフロックを形成させて濾過、沈降分離または浮
上分離する方法、活性炭等の吸着能を持つ濾過材で濾過
する方法等がある。
BACKGROUND OF THE INVENTION One of the problems in the field of electrodialysis and reverse osmosis is membrane fouling. The raw material water contains organic or inorganic colloidal substances and suspended substances (hereinafter referred to as suspended substances). It is considered that the suspended matter in the raw material water causes contamination of the membrane, and a pretreatment method capable of removing as much as possible is desired. Conventionally, various methods have been adopted as a method for removing suspended substances in raw water. For example, as a filtering material, sand, a particulate filtering material such as anthracite, a method of filtering using a ceramic or synthetic resin filter, a flocculant is added to form a floc of a suspended substance, and the filtration, sedimentation separation or There are a method of flotation separation, a method of filtering with a filtering material having an adsorption ability such as activated carbon, and the like.

【0003】以下に具体的に幾つかの例を上げて説明す
る。電気透析法を利用する分野には、イオン交換膜電気
透析法による食塩の製造(以下製塩と言う)がある。製
塩に用いられるイオン交換膜電気透析装置は、アニオン
交換膜とカチオン交換膜が交互に並び、この間に網目の
形状をした1mm以下と薄いプラスチツク製のスペーサ
ーが挿入され、薄い隙間の保持とこの中での原料用水の
均一な流れを維持できる構造になつている。このような
特殊な構造のため、イオン交換膜の汚染および膜間の通
路の閉塞を可及的に押さえるためには、海水の清澄化が
重要となる。現在製塩分野に用いられている前処理方法
は、有効径が200μm〜1000μmのサイズの砂等
の粒状濾材を用いた重力式や加圧式の濾過方式である場
合が多い。
[0003] The following is a description of some specific examples. In the field where the electrodialysis method is used, there is production of salt by ion exchange membrane electrodialysis (hereinafter referred to as salt production). In the ion exchange membrane electrodialysis apparatus used for salt production, an anion exchange membrane and a cation exchange membrane are alternately arranged, and a plastic spacer having a mesh shape as thin as 1 mm or less is inserted between the membranes to maintain a thin gap. The structure is such that a uniform flow of raw material water can be maintained. Due to such a special structure, clarification of seawater is important in order to minimize contamination of the ion exchange membrane and blockage of the passage between the membranes. The pretreatment method currently used in the field of salt production is often a gravity or pressure filtration method using a particulate filter medium such as sand having an effective diameter of 200 μm to 1000 μm.

【0004】しかし、最近の製塩に用いられるイオン交
換膜電気透析装置は、イオン交換膜間の間隙をより一層
薄くして、電気抵抗を低減させて製造コストを削減する
こと、およびイオン交換膜透析装置を長期連続運転させ
て省力化をはかること等を強く求められるようになって
きた。しかし従来の方法による前処理方法では、この要
求を満足できるような原料用水を得ることが難しい。懸
濁物質を一層減らして、より清澄な水質の原料用水を得
ることが必要となってきた。次に、逆浸透法を利用する
分野として海水の淡水化がある。海水中の無機塩および
有機物質を除去して淡水を得るための逆浸透膜の淡水化
装置に、スパイラル型と中空糸型の2つのモジュールが
広く用いられている。スパイラルエレメントは逆浸透膜
とスペーサーを中心に集水管の周りに巻き込んだもので
あり、中空糸型エレメントは中空糸を束ねたものを編み
込んで末端を接着したものである。いずれのモジュール
でも、逆浸透膜の表面は緻密構造をしており、一種の濾
過とも言え、原料用水中に懸濁物質があると、膜に沈着
して水の透過性を低下させることから、前処理により清
澄で安定した水質の原料用水を供給することが不可欠で
ある。その他、工業用水分野でも工業の種類、使用する
用途により要求される水質も大きく異なるが、原料用水
中に含まれる懸濁物質は、配管、製造装置、ボイラーな
どに沈着して効率の低下等を引き起こし、また製品の処
理用として用いる場合にも各種ぼ障害となることから、
工業用水の分野でも原料用水の清澄化が必要とされてい
る。以上のように、本発明の利用分野は、効率的に、し
かも高度に清澄化できる前処理方法が必要とされてい
る。
However, a recent ion exchange membrane electrodialysis apparatus used for salt production is to make the gap between the ion exchange membranes thinner, reduce the electric resistance, and reduce the production cost. There has been a strong demand for saving energy by operating the apparatus continuously for a long period of time. However, it is difficult to obtain raw material water that satisfies this requirement by the conventional pretreatment method. It has become necessary to further reduce suspended materials to obtain clearer raw water. Next, there is desalination of seawater as a field using the reverse osmosis method. Two modules of a spiral type and a hollow fiber type are widely used in a reverse osmosis membrane desalination apparatus for removing fresh water by removing inorganic salts and organic substances in seawater. The spiral element is wound around a water collecting tube around a reverse osmosis membrane and a spacer, and the hollow fiber type element is formed by weaving a bundle of hollow fibers and bonding the ends. In any module, the surface of the reverse osmosis membrane has a dense structure, which can be called a kind of filtration.If there is a suspended substance in the raw water, it is deposited on the membrane and reduces the permeability of the water. It is indispensable to supply raw material water of clear and stable quality by pretreatment. In addition, in the industrial water field, the required water quality varies greatly depending on the type of industry and the intended use.However, suspended solids contained in raw material water are deposited on pipes, manufacturing equipment, boilers, etc. Cause various obstacles when used for product processing.
In the field of industrial water, clarification of raw water is also required. As described above, the field of use of the present invention requires a pretreatment method that can efficiently and highly clarify.

【0005】以下に提案されている幾つかの方法を記載
する。日本特許1042319に記載されている方法
は、懸濁物質を含むSS濃度が5ppm以下の塩水にフ
ロックの形成が認められる以下の量の凝集剤の存在下
で、凝集剤としては無機系凝集剤、有機系高分子凝集剤
いずれでも特に特定せずに添加して、砂濾過する方法で
ある。しかし、本発明に記載するように、原料用水を清
澄化するためには、凝集剤の種類と濃度が濾過水の水質
と濾過機の安定運転を大きく左右すると言う知見から、
単に凝集剤の濃度を規定して砂濾過を行うだけでは、本
発明の目的とする分野が必要とする原料用水を得ること
は極めて難しいと言える。合成樹脂フィルター、膜濾過
等を用いれば処理水を清澄化することはできるが、大規
模な処理を効率的に行うような用途には向かない。また
沈降分離、浮上分離した後、濾過により清澄化する方法
もあるが、設備が大きくなる問題がある。
[0005] Some of the proposed methods are described below. In the method described in Japanese Patent No. 1042319, an inorganic flocculant is used as a flocculant in the presence of the following amount of flocculant in which floc formation is observed in salt water having an SS concentration of 5 ppm or less including suspended substances. In this method, any of the organic polymer flocculants is added without any particular limitation, followed by sand filtration. However, as described in the present invention, in order to clarify the raw material water, from the knowledge that the type and concentration of the coagulant greatly affects the quality of the filtered water and the stable operation of the filter,
It can be said that it is extremely difficult to obtain raw material water required by the field targeted by the present invention simply by performing sand filtration with the concentration of the flocculant specified. If a synthetic resin filter, membrane filtration, etc. are used, the treated water can be clarified, but it is not suitable for applications in which large-scale treatment is performed efficiently. There is also a method of clarifying by filtration after sedimentation separation and floating separation, but there is a problem that the equipment becomes large.

【0006】[0006]

【発明が解決しようとする課題】本発明は、電気透析
法、逆浸透法および用水処理等の前処理のために、原料
用水中の懸濁物質を効率的に除去して清澄化する方法を
提供する。
SUMMARY OF THE INVENTION The present invention provides a method for efficiently removing and clarifying suspended substances in raw water for pretreatment such as electrodialysis, reverse osmosis, and water treatment. provide.

【0007】[0007]

【課題を解決するための手段】原料用水を前処理するに
は、原料溶液のPHを調整してから、キトサンを該濃度
範囲になるように添加した後濾過することによつて、濾
過水の水質は、従来の方法に比較して格段に清澄化する
とともに、濾過層を一層体積的に利用できるようにする
ことによつて、濾過層の圧損失も押さえることができる
ことを見いだした。さらに粒状濾材を用いた濾過を用い
れば、このような特徴を一層活かすことができると言う
のが本発明の大きな特徴である。原料用水中には、懸濁
物質がμm単位の粒径で広く含まれる。通常の濾過、例
えば砂濾過を用いれば、数十μmの粒径のものの除去は
可能と言われるが、逆浸透法や電気透析法で要求される
原料用水は、このような方法で得られる水質では十分で
なく、上記の従来の技術の中で記述した理由から、さら
に厳しい水質が要求されるようになつてきている。この
様な条件を満足できる濾過水の水質はどの程度のものな
のか、例えば、産業上の利用分野の一つであるイオン交
換膜電気透析法を例に示す。イオン交換膜電気透析法の
海水の前処理方法の一つの砂濾過で2段濾過した後、さ
らに10μmのポリプロピレン製糸巻き型カートリッジ
フィルターで濾過し、イオン交換膜電気透析装置に供給
して、透析装置入口の圧力損失の経時的な変化を評価す
ると、従来の前処理方法で濾過した場合より、イオン交
換膜間の閉塞が数倍小さく、長期間安定した運転が可能
であることがわかつた。そこで、この水質を実施例で示
したHach社製の濁度計とコールターカウンター社製
のマルチサイザー、8μm孔径のメンブランフイルター
で濾過して閉塞性を評価するFI値の3つの測定方法で
評価した結果、濁度は0.12(NTU)以下、粒子数
では500(個/ml)以下、FI値では2.5以下と
言う水質であつた。この水質は、従来の前処理方法によ
り得られる水質より数倍低い値である。
In order to pre-treat raw material water, the pH of the raw material solution is adjusted, and then chitosan is added so as to have a concentration within the above range, followed by filtration. It has been found that the water quality is remarkably clarified as compared with the conventional method, and the pressure loss of the filtration layer can be suppressed by making the filtration layer more available in volume. It is a major feature of the present invention that such characteristics can be further utilized by using filtration using a granular filter medium. Suspended substances are widely contained in raw material water with a particle size of μm. It is said that ordinary filtration, for example, sand filtration, can remove particles having a particle size of several tens of μm, but the raw material water required by the reverse osmosis method or the electrodialysis method is water quality obtained by such a method. However, it is not enough, and for the reasons described in the above-mentioned conventional technology, more severe water quality is required. What is the quality of filtered water that can satisfy such conditions, for example, an ion exchange membrane electrodialysis method, which is one of industrial applications, will be described. After two-stage filtration using sand filtration, one of the pretreatment methods for seawater in the ion-exchange membrane electrodialysis method, the solution was further filtered through a 10 μm polypropylene thread-wound cartridge filter, and supplied to the ion-exchange membrane electrodialysis device. When the change with time of the pressure loss at the inlet was evaluated, it was found that the clogging between the ion exchange membranes was several times smaller than that in the case where the filtration was performed by the conventional pretreatment method, and stable operation was possible for a long period of time. Therefore, the water quality was evaluated by three methods of measuring the FI value, which was evaluated by the turbidity meter manufactured by Hach Co. and the multisizer manufactured by Coulter Counter Co., Ltd., and the membrane filter having a pore diameter of 8 μm, and evaluated for the obstructiveness. As a result, the water quality was 0.12 (NTU) or less, the number of particles was 500 (particles / ml) or less, and the FI value was 2.5 or less. This water quality is several times lower than the water quality obtained by the conventional pretreatment method.

【0008】従来の前処理方法では、この水準の水質ま
で到底清澄化できず、しかも多量の濾過処理を行うこと
は難しい。本発明の前処理方法を用いれば、このような
厳しい水質を満足でき、しかも大規模で効率的な処理も
可能となる。以下に本発明について詳細に述べる。凝集
剤に要求される機能は、本来フロックの巨大化と強度を
高めることであつた。しかし、本発明の利用分野にこの
機能をそのまま適応すると、濾層の過度な閉塞のため、
濾過処理そのものが不安定となり、濾過水の清澄化と効
率的な濾過と言う二つの要求を同時に満たす事は難しく
なる。そこで、本発明で見いだした凝集剤の種類と凝集
剤の添加濃度範囲にすれば、該原料用水中の懸濁物質の
フロックを適したサイズと強度に保ちながら濾過を行う
ことができ、従来のような表層の濾過ではなく、濾層の
内部まで体積的に有効に利用でき、濾過水の清澄化と濾
過層の圧損失の軽減を同時に達成することができる。本
発明は、このような考え方をもとにした前処理方法であ
る。
In the conventional pretreatment method, water cannot be clarified to this level of water quality at all, and it is difficult to perform a large amount of filtration. By using the pretreatment method of the present invention, such severe water quality can be satisfied, and a large-scale and efficient treatment can be performed. Hereinafter, the present invention will be described in detail. The function required of the flocculant was originally to increase the floc size and strength. However, if this function is directly applied to the field of use of the present invention, due to excessive occlusion of the filter layer,
The filtration process itself becomes unstable, and it is difficult to simultaneously satisfy the two requirements of clarification of filtered water and efficient filtration. Therefore, if the type of the flocculant and the concentration range of the flocculant found in the present invention are set to the range, the floc of the suspended substance in the raw material water can be filtered while maintaining the appropriate size and strength, and the conventional method can be used. Instead of such filtration of the surface layer, it can be effectively used volumetrically up to the inside of the filtration layer, and clarification of filtered water and reduction of pressure loss of the filtration layer can be achieved at the same time. The present invention is a preprocessing method based on such a concept.

【0009】凝集剤には、無機系凝集剤、有機系高分子
凝集剤、天然系高分子凝集剤がある。本発明では、原料
用水中の懸濁物質の凝集性や各種濾過方式との適合性等
から評価した結果、かに等の甲殻中に含まれるキチンを
処理して得られた天然系高分子凝集剤であるキトサンを
用いた。キトサンは、酸性溶液中では高分子中に含まれ
るアミノ基が解離して正に荷電され、カチオン性の凝集
剤としての作用を示す。本発明では、原料用水のPHを
3から8.5に調整することにより、このようなキトサ
ンの凝集剤としての機能を有効に利用するとともに、原
料用水のPHを調整してキトサンのカチオン性を変化さ
せることで、原料用水の水質の変化にも対応することが
できると言う大きな特徴を持っている。本発明で用いる
キトサンは、カチオン性有機系高分子凝集剤、アニオン
性有機系高分子凝集剤、ノニオン性有機系高分子凝集
剤、その他の天然系高分子凝集剤または無機系凝集剤と
組み合わせて用いても、また原料用水の送水管の生物付
着防止等の目的で用いられる次亜塩素酸ナトリウムのよ
うな酸化性物質と組み合わせて用いても特に差し支えな
い。
The coagulant includes an inorganic coagulant, an organic polymer coagulant and a natural polymer coagulant. In the present invention, natural polymer agglomerates obtained by treating chitin contained in crustaceans such as crabs were evaluated based on the cohesiveness of suspended substances in raw material water and compatibility with various filtration methods. Chitosan, an agent, was used. In an acidic solution, chitosan is positively charged by dissociation of an amino group contained in a polymer, and exhibits an action as a cationic flocculant. In the present invention, by adjusting the pH of the raw material water from 3 to 8.5, such a function of the chitosan as a coagulant is effectively used, and the pH of the raw material water is adjusted to reduce the cationicity of chitosan. It has a major feature that it can respond to changes in the quality of raw water by changing it. Chitosan used in the present invention is a combination of a cationic organic polymer flocculant, an anionic organic polymer flocculant, a nonionic organic polymer flocculant, and other natural polymer flocculants or inorganic flocculants. It may be used, or used in combination with an oxidizing substance such as sodium hypochlorite used for the purpose of preventing biological adhesion of a water pipe for raw material water.

【0010】原料用水に添加するキトサンは、濾過方
式、粒状濾過材の場合は濾過材の有効径、原料用水中の
懸濁物質の性状、濃度等により調整する必要があるが、
本発明で指摘している濃度範囲内で適切な濃度を選択す
ればよい。この濃度範囲を越えると、本発明の大きな特
徴である体積濾過ではなく表面濾過となり、濾層の経時
的な圧損失の上昇が大きくなつて濾過が不安定になる場
合や、時には原料用水中の懸濁物質の電荷の変化や再安
定化等によつて濾過水の水質が十分に向上しない場合も
ある。逆に凝集剤の濃度が低過ぎると、十分な凝集能が
発揮できず水質の悪化を招く。したがってキトサンの添
加濃度は重要な意味を持つ。原料用水は、海水のように
多種類の塩類を含んだものでも、淡水でも構わない。原
料用水中に懸濁物質を含んでいれば、処理の対象にする
ことができる。原料用水の温度は、0℃から100℃ま
で広い温度範囲で処理を行うことができる。キトサン
は、先に塩酸、酢酸等の酸を加えた水に攪拌機等の通常
の溶解方法で均一に溶解して用いる。添加時の攪拌は、
凝集剤溶液を該原料用水へ速やかに均一に分散させるこ
とができる方法であれば通常の攪拌機による攪拌からポ
ンプによる攪拌程度まで特に問題なく利用できる。
The chitosan to be added to the raw material water needs to be adjusted according to the filtration method, in the case of a granular filter material, the effective diameter of the filter material, the nature and concentration of the suspended substance in the raw material water, and the like.
An appropriate concentration may be selected within the concentration range specified in the present invention. If the concentration exceeds this range, surface filtration is performed instead of volume filtration, which is a major feature of the present invention, and the filtration loss becomes unstable due to a large increase in pressure loss over time of the filtration layer. In some cases, the quality of the filtered water may not be sufficiently improved due to a change in the charge of the suspended substance or re-stabilization. Conversely, if the concentration of the coagulant is too low, sufficient coagulation ability cannot be exhibited, resulting in deterioration of water quality. Therefore, the concentration of added chitosan is important. The raw material water may contain various kinds of salts, such as seawater, or may be fresh water. If the raw material water contains a suspended substance, it can be treated. The processing can be performed in a wide temperature range from 0 ° C. to 100 ° C. for the raw water. Chitosan is used by dissolving it uniformly in water to which an acid such as hydrochloric acid or acetic acid has been previously added by a usual dissolving method such as a stirrer. Stirring at the time of addition
Any method capable of promptly and uniformly dispersing the coagulant solution in the raw material water can be used without any particular problem from the stirring by a usual stirrer to the stirring by a pump.

【0011】濾過に用いる濾材は、砂、ガーネット、軽
石、アンスラサイト等を単一層または多層にした粒状濾
材、マンガン砂、粒状活性炭等の濾材に吸着能を持つた
粒状濾材、繊維、プラスチック等の織物や不織布濾材、
膜濾材等、深層濾過と言われている濾過現象を示す濾材
を、制限無く利用することができる。ここで、深層濾過
とは、地人書館の「濾過 メカニズムと濾材・濾過助
剤」の105〜127ページに記載されているように、
主として清澄濾過を目的とした濾過で、固形分を濾材の
空隙にひつかけて除去するストレイン濾過、濾層の表面
にケークを形成しこれによつて濾過するケーク濾過とは
異なつて、濾層の空隙内を流れる間に空隙より小さい粒
径のものまで除去できるような濾過現象を利用した濾過
である。このため、濾層は原料用水中の懸濁物質の粒子
の大きさの数百倍の厚みを形成することが必要であり、
本発明はこの様な厚みを形成することができる濾材であ
ればよい。本発明の体積濾過は、このような濾材を用い
ることによつて、ストレイン濾過やケーク濾過の現象も
ないとは言えないが、むしろ深層濾過を主として利用す
ることによつて、濾層を体積的に有効に利用する濾過方
法である。この体積濾過の代表例である粒状濾材、例え
ば砂の場合は、有効径が200μm〜1000μmのも
のを用いることができるが、特に300μm〜800μ
mの有効径の濾材が好ましい。この条件であれば、濾層
の経時的な圧損失の上昇が小さく、しかも濾過水の水質
も良好で、凝集剤と濾層は非常に良く適合して、濾過機
は安定した運転ができる。濾材の有効径が200μmよ
り小さければ、濾層の経時的な圧損失の上昇が極度に大
きくなり、逆に濾材の有効径が1000μmより大きけ
れば圧損失の上昇は小さくなるが、濾過水の水質が低下
することから、どちらの条件でも濾過機の安定運転は難
しくなる。ここで、有効径とは、重量基準で10%通過
の篩の目開き寸法を言う。また均等係数とは、重量基準
で60%通過の篩の目開き寸法/有効径を言い、ふるい
分け操作は、JISK0069の乾式ふるい分け試験方
法を用いる。懸濁物質の濃度とは、JISK0101工
業用水試験方法の懸濁物質の測定方法を用いて測定した
値である。
Filter media used for filtration include granular filter media having a single layer or multilayer of sand, garnet, pumice, anthracite, manganese sand, granular activated carbon, etc. Woven and non-woven filter media,
A filter medium exhibiting a filtration phenomenon called deep-layer filtration, such as a membrane filter medium, can be used without limitation. Here, deep-filtration means, as described on pages 105-127 of "Filtration Mechanism and Filter Media / Filter Aid" at Jinjinshokan,
This filtration is mainly for clarifying filtration, and is different from the strain filtration in which solids are removed through the pores of a filter medium by removing the solids, and the cake filtration in which a cake is formed on the surface of the filter layer and filtered. This is a filtration utilizing a filtration phenomenon such that particles having a particle size smaller than the gap can be removed while flowing through the gap. For this reason, the filter layer needs to form a thickness several hundred times the size of the particles of the suspended substance in the raw water,
The present invention only needs to be a filter medium capable of forming such a thickness. In the volume filtration of the present invention, the use of such a filter medium does not mean that there is no phenomenon of strain filtration or cake filtration, but rather the volume of the filter layer is increased by mainly using depth filtration. This is a filtration method used effectively for In the case of a granular filter medium which is a typical example of this volume filtration, for example, in the case of sand, those having an effective diameter of 200 μm to 1000 μm can be used, and particularly 300 μm to 800 μm.
Filter media having an effective diameter of m are preferred. Under these conditions, the rise in pressure loss over time of the filter layer is small, and the quality of the filtered water is good. The coagulant and the filter layer are very well matched, and the filter can be operated stably. If the effective diameter of the filter medium is smaller than 200 μm, the increase in pressure loss over time of the filter layer becomes extremely large. Conversely, if the effective diameter of the filter medium is larger than 1000 μm, the increase in pressure loss is small, but the quality of the filtered water is low. , The stable operation of the filter becomes difficult under both conditions. Here, the effective diameter refers to the size of the opening of the sieve that passes by 10% on a weight basis. In addition, the uniformity coefficient means an opening size / effective diameter of a sieve that passes through 60% on a weight basis, and a sieving operation uses a dry sieving test method of JISK0069. The concentration of a suspended substance is a value measured using the method for measuring a suspended substance in JIS K0101 Industrial Water Test Method.

【0012】[0012]

【作用】酸でPHを3.0〜8.5に調整した原料用水
に、キトサンをmg/lの単位に表して0.02〜0.
5の範囲で添加して濾過すれば、濾過層を体積的に有効
に活用でき、しかも得られる濾過水は、濁度、粒子数等
いずれも従来の濾過方法に比較して高度に清澄化したも
のが得られる。また、粒状濾材を用いて濾過する場合
は、有効径200μm〜1000μmの濾材を選択すれ
ば、濾過は一層安定したものになる。
The chitosan is expressed in the unit of mg / l in the water for raw material whose pH is adjusted to 3.0 to 8.5 with an acid, and the pH is adjusted to 0.02 to 0.
By adding and filtering in the range of 5, the filtration layer can be effectively used in volume, and the obtained filtered water has a higher degree of clarification in terms of turbidity, number of particles, etc. as compared with the conventional filtration method. Things are obtained. In the case of filtering using a particulate filter medium, if a filter medium having an effective diameter of 200 μm to 1000 μm is selected, the filtration becomes more stable.

【0013】[0013]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明するが,本発明はこれらの例により限定されるもの
ではない。 実施例1 500mmφの塩化ビニル製のパイプに有効径380μ
m、均等係数1.4の砂を600mmの厚みで充填した
1次濾過塔に、懸濁物質として6mg/lを含む海水
を、塩酸でPHを7に調整して、7.5m/hrで下方
に流して濾過する。次に、栗田工業製のプレスエイド1
01を、1次濾過水に対して0.1mg/l添加してポ
ンプ攪拌した後、1次と同じ仕様の2次濾過塔に、下方
に15m/hrで流して濾過した。1次濾過塔は6時間
置きに清澄な海水を40m/hrで4分、2次濾過塔は
8時間置きに同様の海水、流速、時間で上方に流して逆
洗を行う。2次濾過塔の経時的な圧損失と、2次濾過水
の水質としてHach社製の濁度計2100Nで濁度、
コールターカウンター社製のマルチサイザーで粒子数を
測定した。結果を表1に示す。なお、コールターカウン
ター社製のマルチサイザーの測定条件は、アパチャー1
00μm、採取液量2μl、サイフォンモードで行っ
た。またHach社製濁度計は、ホルマジンを濁度の標
準液としてキャリブレーションに使用し、NTUつまり
比濁度単位で表した。FI値は、8μmのポリカーボネ
ートのメンブランフィルターで、2.1Kg/cm↑2
で加圧しながら原料用水を濾過する。まず濾過始めから
500ml採取する時間T↓0を求め、15分後に50
0ml採取する時間T↓1とすると、FI=(1−T↓
0/T↓1)×100/15より求める。 実施例2 実施例1と同様の海水、装置、方法、凝集剤の種類、凝
集剤の濃度の下で、さらに2次濾過の前に次亜塩素酸ナ
トリウムを0.7mg/l添加して濾過し、実施例1と
同様の項目と方法で測定を行つた。結果を表1に示す。
次亜塩素酸ナトリウムのような酸化性物質を凝集剤と共
に添加しても、この例のように濾過水の水質は良好であ
る。 比較例1 実施例1と同様の海水、装置、方法で、凝集剤の添加な
しで濾過し、2次濾過の経時的な圧損失と濾過水の水質
を実施例1と同じ測定方法を用いて測定した。結果を表
1に示す。 比較例2 実施例1と同様の海水、装置、方法で、同じ種類の凝集
剤を0.01mg/l添加した後濾過し、2次濾過の経
時的な圧損失と濾過水の水質を実施例1と同じ測定方法
を用いて測定した。結果を表1に示す。 比較例3 実施例1と同様の海水、装置、方法で、同じ種類の凝集
剤を1mg/l添加した後濾過し、2次濾過の経時的な
圧損失と濾過水の水質を実施例1と同じ測定方法を用い
て測定した。表1に示す。実施例1と比較例1を比較す
ると、濾過水の水質は濁度、粒子数とも1/2程度向上
していることから、1次濾過水のような懸濁物質の濃度
が低い場合でも濾過水の水質を向上させることができ
る。また、比較例2,3のように凝集剤の濃度を本発明
の範囲より低くても、逆に高くても水質は低下する。
EXAMPLES The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to these examples. Example 1 An effective diameter of 380 μm was applied to a 500 mmφ vinyl chloride pipe.
m, a seawater containing 6 mg / l as a suspended substance was adjusted to pH 7 with hydrochloric acid in a primary filtration tower filled with sand having a uniformity coefficient of 1.4 at a thickness of 600 mm, and the pH was adjusted to 7.5 m / hr at 7.5 m / hr. Run down and filter. Next, press aid 1 made by Kurita Kogyo
0.1 was added to the primary filtered water at 0.1 mg / l, and the mixture was stirred by a pump. After that, the solution was passed downward through a secondary filtration tower having the same specifications as the primary at 15 m / hr, and filtered. The primary filtration tower flows clear seawater at 40 m / hr for 4 minutes every 6 hours for 4 minutes, and the secondary filtration tower flows upward at the same seawater, flow rate and time every 8 hours for backwashing. The pressure loss over time of the secondary filtration tower and the turbidity of the secondary filtered water using a turbidity meter 2100N manufactured by Hach,
The number of particles was measured using a Coulter Counter Multisizer. Table 1 shows the results. The measurement conditions for the Coulter Counter Multisizer were as follows:
The test was carried out in a siphon mode at 00 μm and a sample volume of 2 μl. A turbidimeter manufactured by Hach Co. uses formazine as a turbidity standard solution for calibration, and is expressed in NTU, that is, turbidity unit. FI value was 2.1 kg / cm @ 2 using an 8 μm polycarbonate membrane filter.
The raw water is filtered while applying pressure. First, the time T ↓ 0 for collecting 500 ml from the start of filtration was determined, and 50 minutes after 15 minutes.
Assuming that the time for collecting 0 ml is T ↓ 1, FI = (1-T ↓
0 / T ↓ 1) Calculate from × 100/15. Example 2 Filtration by adding 0.7 mg / l of sodium hypochlorite before secondary filtration under the same seawater, apparatus, method, type of coagulant and concentration of coagulant as in Example 1 Then, the measurement was performed using the same items and methods as in Example 1. Table 1 shows the results.
Even if an oxidizing substance such as sodium hypochlorite is added together with the flocculant, the quality of the filtered water is good as in this example. Comparative Example 1 The same seawater, apparatus, and method as in Example 1 were used for filtration without addition of a coagulant, and the pressure loss over time in secondary filtration and the quality of the filtered water were measured using the same measurement method as in Example 1. It was measured. Table 1 shows the results. Comparative Example 2 In the same seawater, apparatus and method as in Example 1, 0.01 mg / l of the same type of coagulant was added, followed by filtration. It measured using the same measuring method as 1. Table 1 shows the results. Comparative Example 3 In the same seawater, apparatus and method as in Example 1, the same type of coagulant was added at 1 mg / l, followed by filtration. The time-dependent pressure loss of the secondary filtration and the quality of the filtered water were the same as in Example 1. The measurement was performed using the same measurement method. It is shown in Table 1. Comparing Example 1 with Comparative Example 1, the water quality of the filtered water is improved by about 1 / in both the turbidity and the number of particles. The quality of the water can be improved. Further, even if the concentration of the coagulant is lower than the range of the present invention as in Comparative Examples 2 and 3, or conversely, the water quality is lowered.

【0014】実施例3 懸濁物質として6mg/lを含む海水を、塩酸でPHを
7に調整した後、栗田工業製のプレスエイド101を
0.1mg/l添加し、7分間スターラーで攪拌して、
40mmφの塩化ビニル製のパイプに有効径380μm
均等係数1.4の砂を600mmの厚みで充填した濾過
塔に、7.5m/hrで下方に流して濾過した。濾過塔
の経時的な圧損失変化と、濾過水の水質としてHach
社製の濁度計による濁度を測定した。また経時的な圧損
失変化とは、濾過塔へ原料溶液を一定流速で供給した
時、濾過塔への供給口での圧力の変化を水頭の変化で表
し、これを時間で割って単位時間当たりの水頭の変化で
表した値を言う。単位は、cm/hrで表す。(以下、
圧損失勾配と言う。) 比較例4のように該凝集剤を添加しないと、濾過水の水
質は数倍悪くなる。比較例6のように濾過材の有効径を
200μm以下にすると圧損失勾配が高くなるにもかか
わらず水質はあまり良くならない。 実施例4 実施例3と同様の海水、装置、方法で、濾過材を有効径
600μm、均等係数1.5の軽石を用いて濾過し、濾
過層の圧損失勾配と濾過水の水質を実施例3と同じ測定
方法を用いて測定した。結果を表2に示す。実施例3と
比較すると、濾過材の有効径を大きくしたことにより圧
損失勾配が小さくできる。比較例5のように該凝集剤を
添加しないと、濾過水の水質は悪化する。 比較例4 実施例3と同様の海水、装置、濾過材、濾過方法で凝集
剤の添加なしで濾過し、濾過層の圧損失勾配と濾過水の
水質を実施例3と同じ測定方法を用いて測定した。結果
を表2に示す。 比較例5 実施例4と同様の海水、装置、濾過材、濾過方法で凝集
剤の添加なしで濾過し、濾過層の圧損失勾配と濾過水の
水質を実施例3と同じ測定方法を用いて測定した。結果
を表2に示す。 比較例6 実施例3と同じ海水、装置、方法、凝集剤の種類、凝集
剤濃度で、濾材として有効径150μm、均等係数1.
4の砂を用いて濾過し、濾過層の圧損失勾配と濾過水の
水質を実施例3と同じ測定方法を用いて測定した。結果
を表2に示す。
Example 3 After adjusting the pH of seawater containing 6 mg / l as a suspended substance to 7 with hydrochloric acid, 0.1 mg / l of press aid 101 manufactured by Kurita Kogyo was added and stirred with a stirrer for 7 minutes. hand,
Effective diameter 380μm for 40mmφ vinyl chloride pipe
The mixture was filtered at 7.5 m / hr downward through a filtration tower filled with sand having a uniformity coefficient of 1.4 and a thickness of 600 mm. Changes in pressure loss over time of the filtration tower and Hach
Turbidity was measured by a turbidity meter manufactured by the company. The change in pressure loss over time is the change in pressure at the supply port to the filtration tower when the raw material solution is supplied to the filtration tower at a constant flow rate. Means the change in the water head. The unit is expressed in cm / hr. (Less than,
It is called pressure loss gradient. If the flocculant is not added as in Comparative Example 4, the quality of the filtered water will be several times worse. When the effective diameter of the filter is 200 μm or less as in Comparative Example 6, the water quality is not so good despite the high pressure loss gradient. Example 4 In the same seawater, apparatus, and method as in Example 3, the filtration material was filtered using pumice having an effective diameter of 600 μm and a uniformity coefficient of 1.5, and the pressure loss gradient of the filtration layer and the quality of the filtered water were measured. It measured using the same measuring method as 3. Table 2 shows the results. Compared with Example 3, the pressure loss gradient can be reduced by increasing the effective diameter of the filter medium. If the coagulant is not added as in Comparative Example 5, the quality of the filtered water deteriorates. Comparative Example 4 The same seawater, apparatus, filter material and filtration method as in Example 3 were used for filtration without the addition of a coagulant, and the pressure loss gradient of the filtration layer and the quality of the filtered water were measured using the same measurement method as in Example 3. It was measured. Table 2 shows the results. Comparative Example 5 The same seawater, apparatus, filter material, and filtration method as in Example 4 were used for filtration without the addition of a coagulant, and the pressure loss gradient of the filtration layer and the quality of the filtered water were measured using the same measurement method as in Example 3. It was measured. Table 2 shows the results. Comparative Example 6 With the same seawater, apparatus, method, type of flocculant and flocculant concentration as in Example 3, an effective diameter of 150 μm as a filter medium and a uniformity coefficient of 1.
The mixture was filtered using the sand of No. 4, and the pressure drop gradient of the filtration layer and the quality of the filtered water were measured using the same measuring method as in Example 3. Table 2 shows the results.

【0015】実施例5 懸濁物質として6mg/lを含む海水に、塩酸を添加し
てPHを7に調整した後、栗田工業製のプレスエイド1
01を0.1mg/l添加し、ポンプ循環で攪拌して、
1000mmφの内面ゴムライニングした鉄製の濾過容
器にユニチカ製の糸径10デニールのポリエステル製糸
濾材を1000mmの厚みで充填した1次濾過機に、3
8m/hrで下方に流して濾過した。さらに2次濾過と
して500mmφの塩化ビニル製のパイプに実施例1の
砂を600mmの厚みに充填した濾過塔に、15m/h
rで下方に流して濾過した。1次濾過機の圧損失勾配と
2次濾過水の水質を実施例1と同様の測定方法で測定し
た。結果を表3に示す。このように粒状濾材以外の濾材
を用いても、本発明の効果は同様に期待できる。 比較例7 実施例5と同様の海水、装置、方法で凝集剤の添加を止
めて、濾過層の圧損失勾配と濾過水の水質を実施例3と
同じ測定方法を用いて測定した。結果を表3に示す。
Example 5 Hydrochloric acid was added to seawater containing 6 mg / l as a suspended substance to adjust the pH to 7, and then press aid 1 manufactured by Kurita Kogyo was used.
01 was added in an amount of 0.1 mg / l, and the mixture was stirred by a pump circulation.
A primary filter having a 1000 mm diameter inner rubber-lined iron filter container filled with Unitika made of 10 denier polyester thread filter material with a thickness of 1000 mm was placed in a primary filter.
The mixture was filtered by flowing downward at 8 m / hr. Further, as a secondary filtration, a filtration tower filled with sand of Example 1 to a thickness of 600 mm in a pipe made of vinyl chloride of 500 mmφ and having a thickness of 600 mm, was subjected to 15 m / h.
The mixture was filtered by flowing downward at r. The pressure loss gradient of the primary filter and the quality of the secondary filtered water were measured by the same measurement method as in Example 1. Table 3 shows the results. Even if a filter medium other than the granular filter medium is used, the effect of the present invention can be similarly expected. Comparative Example 7 The addition of the flocculant was stopped using the same seawater, apparatus, and method as in Example 5, and the pressure loss gradient of the filtration layer and the quality of the filtered water were measured using the same measurement method as in Example 3. Table 3 shows the results.

【0016】実施例6 実施例1と同様の濾過装置、凝集剤の種類、凝集剤の濃
度、PH、濾過方法で海水を濾過した濾過水を、縦28
cm、横24cmの小型のイオン交換膜電気透析装置
(以下、透析装置と言う)に電流を流さずに、線流速4
cm/秒の一定流量で供給し、透析装置の入口の圧力を
測定して閉塞性を評価した。結果を表4に示した。濾過
水を供給し始めた時の初期の入口圧力は、透析装置の閉
塞、膜の汚染等の進行により、時間の経過とともに次第
に上昇する。入口圧力の変化と時間のの関係を回帰直線
で求め、その傾きを単位時間当たりの圧力上昇とした。
(以下圧力勾配と言う。)透析装置の運転可能な圧力に
は制限があことから、この圧力勾配により透析装置の稼
働可能な時間が決まり、長時間の運転を可能にするため
には、この圧力勾配をできるだけ小さくすることが必要
となる。 比較例8 比較例1と同様の濾過装置、濾過方法で海水を濾過した
濾過水を、実施例6と同様の透析装置に、実施例6と同
様の条件で供給して、透析装置の入口の圧力を測定し
た。結果を表4に示した。実施例6と比較例8を比較す
ると、実施例6の圧力勾配が約1/4程度に小さくなっ
ていることから、透析装置の運転可能な日数は、本発明
の前処理を行えば数倍延長できることがわかる。
Example 6 Filtered water obtained by filtering seawater by the same filtration apparatus, type of coagulant, concentration of coagulant, pH, and filtration method as in Example 1 was used to obtain a filter having a length of 28 cm.
cm, a small ion exchange membrane electrodialyzer of 24 cm in width (hereinafter referred to as a dialysis machine) without flowing an electric current.
The solution was supplied at a constant flow rate of cm / sec, and the pressure at the inlet of the dialyzer was measured to evaluate the obstruction. The results are shown in Table 4. The initial inlet pressure at the start of supplying the filtered water gradually increases over time due to the progress of clogging of the dialyzer, contamination of the membrane, and the like. The relationship between the change in the inlet pressure and the time was determined by a regression line, and the slope was defined as the pressure rise per unit time.
(Hereinafter referred to as a pressure gradient.) Since the operable pressure of the dialysis device is limited, this pressure gradient determines the operable time of the dialysis device. It is necessary to make the pressure gradient as small as possible. Comparative Example 8 Filtration water obtained by filtering seawater by the same filtration device and filtration method as in Comparative Example 1 was supplied to the same dialysis device as in Example 6 under the same conditions as in Example 6, and the inlet of the dialysis device was supplied. The pressure was measured. The results are shown in Table 4. Comparing Example 6 with Comparative Example 8, since the pressure gradient of Example 6 is reduced to about 1/4, the number of days in which the dialysis device can be operated is several times as long as the pretreatment of the present invention is performed. You can see that it can be extended.

【発明の効果】本発明は、該原料用水のPHを調整して
から、凝集剤としてキトサンを適正な濃度で添加して濾
過することにより、濾過水の水質の向上と濾過の安定化
により、効率的な濾過が達成できる。また粒状濾材を用
いた濾過を行う場合、有効径を適切に選定することによ
つて、この効果が一層発揮できる。本発明によつて、電
気透析法、逆浸透法および用水前処理等の厳しい要求に
適した原料用水の効率的な前処理方法を提供することが
できる。
According to the present invention, the pH of the raw material water is adjusted, and then chitosan is added at an appropriate concentration as a coagulant and the mixture is filtered to improve the quality of filtered water and stabilize filtration. Efficient filtration can be achieved. In the case of performing filtration using a particulate filter medium, this effect can be further exhibited by properly selecting the effective diameter. ADVANTAGE OF THE INVENTION According to this invention, the efficient pretreatment method of raw material water suitable for severe requirements, such as an electrodialysis method, a reverse osmosis method, and water pretreatment, can be provided.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】懸濁物質を含む原料用水に、酸を添加して
PHを3から8.5の範囲にした後、キトサンをmg/
lの単位で0.02〜0.5の範囲になるように添加し
て濾過することを特徴とする前処理方法である。
1. An acid is added to raw water containing a suspended substance to adjust the pH to 3 to 8.5, and then chitosan is added in mg / mg.
This is a pretreatment method characterized by adding and filtering in units of 1 so as to fall within a range of 0.02 to 0.5.
【請求項2】請求項1の原料用水を、請求項1のPHと
キトサン濃度にした後、有効径が200μm〜1000
μmの粒状濾材を用いて濾過することを特徴とする前処
理方法である。
2. After the raw material water of claim 1 is adjusted to the pH and chitosan concentration of claim 1, the effective diameter is 200 μm to 1000 μm.
It is a pretreatment method characterized by filtering using a particulate filter medium of μm.
JP9140831A 1997-04-22 1997-04-22 Method for pretreating raw water Pending JPH10296019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9140831A JPH10296019A (en) 1997-04-22 1997-04-22 Method for pretreating raw water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9140831A JPH10296019A (en) 1997-04-22 1997-04-22 Method for pretreating raw water

Publications (1)

Publication Number Publication Date
JPH10296019A true JPH10296019A (en) 1998-11-10

Family

ID=15277742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9140831A Pending JPH10296019A (en) 1997-04-22 1997-04-22 Method for pretreating raw water

Country Status (1)

Country Link
JP (1) JPH10296019A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194520A (en) * 2009-02-27 2010-09-09 Tosoh Corp Salt water refining method
JP2011000565A (en) * 2009-06-22 2011-01-06 Fuso Kensetsu Kogyo Kk Pretreatment method of groundwater
JP5858508B1 (en) * 2015-05-25 2016-02-10 日本施設株式会社 Molded filter medium and filtration device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194520A (en) * 2009-02-27 2010-09-09 Tosoh Corp Salt water refining method
JP2011000565A (en) * 2009-06-22 2011-01-06 Fuso Kensetsu Kogyo Kk Pretreatment method of groundwater
JP5858508B1 (en) * 2015-05-25 2016-02-10 日本施設株式会社 Molded filter medium and filtration device

Similar Documents

Publication Publication Date Title
US4670150A (en) Cross-flow microfiltration lime softener
US5047154A (en) Method and apparatus for enhancing the flux rate of cross-flow filtration systems
JPWO2008096585A1 (en) Filtration apparatus and water treatment method
Ben Aim et al. Recent development of membrane processes for water and waste water treatment
JP4408524B2 (en) Fresh water system
Letterman An overview of filtration
RU2222371C1 (en) The improvements brought in filtration using membranes
JPH10225682A (en) Method of removing boron in reverse osmosis seawater desalination
EP2485981B1 (en) Use of a multi layered particulate filter for reducing the turbidity and sdi of water
WO2017159303A1 (en) Method for treating waste water having high hardness
JP3409322B2 (en) Pure water production method
Wenten et al. Ultrafiltration in water treatment and its evaluation as pre-treatment for reverse osmosis system
EP0131119B1 (en) Cross-flow microfiltration lime softener
JP2003053390A (en) Clear water production system
Ericsson et al. Membrane applications in raw water treatment with and without reverse osmosis desalination
JPH10296019A (en) Method for pretreating raw water
JP2000263063A (en) Method and apparatus for treating fluorine-containing waste liquid
JP7403387B2 (en) Coagulation membrane filtration system and coagulation membrane filtration method
CN114933379A (en) Short-flow reverse osmosis pretreatment system and method
JPH06304559A (en) Method for treating water and device therefor
JP2002346347A (en) Method and apparatus for filtration
Chiemchaisri et al. Particle and microorganism removal in floating plastic media coupled with microfiltration membrane for surface water treatment
JPH1043506A (en) Pre-treatment of raw material water
JPH0966296A (en) Water treatment method and apparatus
JP2016093789A (en) Water treatment method and water treatment system