JPH1043506A - Pre-treatment of raw material water - Google Patents

Pre-treatment of raw material water

Info

Publication number
JPH1043506A
JPH1043506A JP8218123A JP21812396A JPH1043506A JP H1043506 A JPH1043506 A JP H1043506A JP 8218123 A JP8218123 A JP 8218123A JP 21812396 A JP21812396 A JP 21812396A JP H1043506 A JPH1043506 A JP H1043506A
Authority
JP
Japan
Prior art keywords
filtration
flocculant
water
concentration
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8218123A
Other languages
Japanese (ja)
Inventor
Shigeki Inoue
繁樹 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKOU KAISUI KK
Original Assignee
AKOU KAISUI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKOU KAISUI KK filed Critical AKOU KAISUI KK
Priority to JP8218123A priority Critical patent/JPH1043506A/en
Publication of JPH1043506A publication Critical patent/JPH1043506A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtration Of Liquid (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Filtering Materials (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of efficiently clarifying and having large throughput as a method for pretreating a raw material water containing a suspended material. SOLUTION: This pre-treating method of the raw material water is performed by adding a cationic organic high molecular flocculant into the raw material water containing the suspended material in the quantity that the product of the concn. of the suspended material and the concn. of the flocculant in the raw material solution becomes 0.02-0.5 when the concentration unit is expressed by mg/1. In the case of using a granular filter media as the filter media of filtration, the filtration is more stabilized by using the granular filter media having 300-800μm effective diameter and uniformity coefficient of <=1.6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、懸濁物質を含む原
料水を高度に清澄化するための前処理方法に関するもの
であり、例えば、逆浸透法や電気透析法等による濃縮、
脱塩、分離精製等の分野の前処理、および工業用水の処
理などにおける前処理に利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pretreatment method for highly clarifying raw water containing suspended substances, for example, concentration by reverse osmosis, electrodialysis, etc.
It can be used for pretreatment in fields such as desalting and separation and purification, and pretreatment in the treatment of industrial water.

【0002】[0002]

【従来の技術】逆浸透法や電気透析において問題となる
のは、膜の汚染である。原料水には有機物や無機物がコ
ロイド状物質および懸濁物質(以下「懸濁物質」とい
う。)として含まれている場合が多い。この原料水中の
懸濁物質が膜の汚染の原因となることから、これらの汚
染を防止できるような前処理方法が望まれている。そこ
で、従来より原料水中の懸濁物質を除去する方法として
各種の方法が用いられてきた。例えば、濾材として砂等
の粒状濾材、膜、セラミックフィルター、合成樹脂フィ
ルター等を用いて濾過する方法、凝集剤を添加して懸濁
物質のフロックを形成させて濾過する方法、その他に凝
集剤を添加してフロックを形成させた後沈降分離または
浮上分離する方法などが挙げられる。
A problem in reverse osmosis and electrodialysis is contamination of the membrane. The raw material water often contains organic substances and inorganic substances as colloidal substances and suspended substances (hereinafter referred to as “suspended substances”). Since the suspended matter in the raw water causes contamination of the membrane, a pretreatment method capable of preventing such contamination is desired. Therefore, various methods have conventionally been used as a method for removing suspended substances in raw water. For example, a method of filtering using a particulate filter medium such as sand as a filter medium, a membrane, a ceramic filter, a synthetic resin filter, or the like, a method of adding a flocculant to form a floc of a suspended substance, and performing a filter, and the like. A method of forming a floc by adding it, followed by sedimentation separation or flotation separation is exemplified.

【0003】以下に幾つかの例を上げて説明する。ま
ず、電気透析法を利用する分野としては、イオン交換膜
電気透析法による食塩の製造(以下「製塩」という。)
がある。製塩に用いるイオン交換膜電気透析装置は、ア
ニオン交換膜とカチオン交換膜が交互に並び、この間に
網目状でプラスチツク製のスペーサーを挿入し、1mm
以下の狭い通路を保持し、この通路中に原料水の均一な
流れを維持している。このような特殊な装置に原料水で
ある海水を通すことから、イオン交換膜電気透析装置の
安定運転を確保するためには、イオン交換膜の汚染およ
び膜間の通路の閉塞を押さえることが重要な課題とな
る。したがつて、海水の前処理方法として具備すべき要
件は、原料水中の懸濁物質を可及的に速やかに除去で
き、しかも塩を製造するのに多量の海水を使用するの
で、濾過能力が大きく、かつ濾過水を高度に清澄化でき
ることが必要である。現在一般に製塩分野では、有効径
が200μm〜1000μmサイズの砂等の粒状濾材を
用いた重力式や加圧式の濾過方式が採用される場合が多
い。
[0003] Several examples are described below. First, as a field in which the electrodialysis method is used, production of salt by an ion exchange membrane electrodialysis method (hereinafter, referred to as “salt production”).
There is. In the ion exchange membrane electrodialysis apparatus used for salt production, an anion exchange membrane and a cation exchange membrane are alternately arranged, and a mesh-shaped plastic spacer is inserted between the anion exchange membrane and the cation exchange membrane.
The following narrow passage is maintained, and a uniform flow of the raw water is maintained in this passage. Since seawater as raw water is passed through such a special device, it is important to suppress contamination of the ion exchange membrane and blockage of the passage between the membranes in order to ensure stable operation of the ion exchange membrane electrodialysis device. Issues. Therefore, the prerequisite for seawater pretreatment is that the suspended solids in the raw water can be removed as quickly as possible, and since a large amount of seawater is used to produce the salt, the filtration capacity is low. It is necessary to be large and to be able to highly clarify the filtered water. At present, generally in the field of salt production, a gravity type or pressure type filtration method using a particulate filter medium such as sand having an effective diameter of 200 μm to 1000 μm is often used.

【0004】しかし、最近製塩に用いられるイオン交換
膜電気透析装置は、イオン交換膜間の間隙をさらに狭く
して電気抵抗を減らし、製造コストを低減させる傾向に
あること、およびイオン交換膜透析装置の長期連続運転
の実現による省力化の要求が強くなつてきていることな
どから、従来の方法での処理方法では限界に達している
のが現状である。つまり、イオン交換膜間の間隙の狭小
化と、イオン交換膜透析装置の運転の長期化のために
は、膜の汚染と膜間の通路の閉塞を防止することが必要
条件であり、供給する原料水中の懸濁物質をさらに低
減、清澄化しなければこの課題の解決は難しい。
[0004] However, the ion exchange membrane electrodialyzer recently used for salt production tends to reduce the electric resistance by further narrowing the gap between the ion exchange membranes and reduce the production cost. Due to the increasing demand for labor saving by realizing long-term continuous operation, the current state of the art has reached the limit with conventional processing methods. In other words, in order to narrow the gap between the ion exchange membranes and prolong the operation of the ion exchange membrane dialysis device, it is necessary to prevent the contamination of the membranes and block the passages between the membranes, and supply them. This problem is difficult to solve unless the suspended solids in the raw water are further reduced and clarified.

【0005】また、逆浸透法を利用する分野として海水
の淡水化がある。海水中の無機塩および有機物質を除去
して淡水を得るための逆浸透膜として、淡水化装置に広
く用いられているのは、スパイラル型と中空糸型の2つ
のモジュールである。スパイラルエレメントは逆浸透膜
とスペーサーを中心に集水管の周りに巻き込んだもので
あり、中空糸型エレメントは逆浸透膜である中空糸を束
ねたものを組み込んで末端を接着したものである。いず
れのモジュールにおいても、逆浸透膜の表面は緻密構造
をしており、一種の濾過である。したがって原料水中に
懸濁物質があると、これが膜に沈着して、水の透過性を
低下させることから、前処理により清澄で安定した水質
の原料水を供給することが装置の安定運転に必須条件と
なる。
Another field in which the reverse osmosis method is used is desalination of seawater. Two modules of a spiral type and a hollow fiber type are widely used in desalination apparatuses as reverse osmosis membranes for obtaining fresh water by removing inorganic salts and organic substances in seawater. The spiral element is wound around a water collecting pipe around a reverse osmosis membrane and a spacer, and the hollow fiber type element is made by incorporating a bundle of hollow fibers as a reverse osmosis membrane and bonding the ends thereof. In any of the modules, the surface of the reverse osmosis membrane has a dense structure, which is a kind of filtration. Therefore, if there is a suspended substance in the raw water, it is deposited on the membrane and lowers the water permeability. Therefore, it is essential for the stable operation of the apparatus to supply a raw water of clear and stable quality by pretreatment. Condition.

【0006】また、工業用水はそれを用いる工業の種
類、使用用途により要求される水質も大きく異なるが、
懸濁物質は、配管、製造装置、ボイラーなどに沈着して
効率の低下等を引き起こし、製品の処理用として用いる
場合においても障害となることから、工業用水の清澄化
が必要とされている。以上の例のように、本発明の利用
分野では、経済的でしかも高度に清澄化できる原料水の
前処理方法が強く求められている。
[0006] In addition, industrial water greatly varies in required water quality depending on the type of industry in which it is used and the intended use.
Suspended substances are deposited on pipes, manufacturing equipment, boilers, and the like to cause a decrease in efficiency and the like, which hinders the use of the substances for treating products. Therefore, clarification of industrial water is required. As in the above examples, in the field of application of the present invention, there is a strong demand for an economical and highly finable raw water pretreatment method.

【0007】そこで、幾つかの方法が提案されている。
たとえば、日本特許第1042319号には、懸濁物質
を含むSS濃度が5ppm以下の塩水にフロックの形成
が認められる以下の量の凝集剤の存在下で、砂濾過する
方法が開示されている。凝集剤としては無機系凝集剤、
有機系高分子凝集剤のいずれでも使用でき、凝集剤濃度
は実施例に記載されているように0.2ppm〜3pp
m程度である。この方法では凝集剤の添加濃度が0.2
ppm以上と高く、形成されるフロックが大きくなり、
砂濾過の表層で閉塞しやすくなつて経時的な圧損失の上
昇が相当大きくなる。凝集剤の添加濃度は、懸濁物質の
SS濃度と密接な関係があり、濾過水の水質と濾層の経
時的な圧損失の上昇を最適にする条件を見いだすには、
凝集剤濃度と懸濁物質の濃度に関する知見が必要とな
り、単に凝集剤の濃度を明示するだけでは、砂濾過によ
る清澄化を安定的に行うことは極めて難しいことが判明
した。
Therefore, several methods have been proposed.
For example, Japanese Patent No. 1042319 discloses a method of performing sand filtration in the presence of the following amount of flocculant in which floc formation is observed in salt water containing a suspended substance having an SS concentration of 5 ppm or less. As a coagulant, an inorganic coagulant,
Any of the organic polymer flocculants can be used, and the flocculant concentration is 0.2 ppm to 3 pp as described in the Examples.
m. In this method, the coagulant addition concentration is 0.2
ppm or more, the formed floc becomes large,
As the surface layer of the sand filtration is liable to be clogged, the pressure loss over time increases considerably. The concentration of the flocculant added is closely related to the SS concentration of the suspended substance, and to find conditions that optimize the water quality of the filtered water and the pressure loss over time of the filter layer,
Knowledge about the coagulant concentration and the concentration of the suspended substance is required, and it has been found that it is extremely difficult to stably clarify by sand filtration simply by specifying the coagulant concentration.

【0008】また、凝集剤として無機系、有機系と広く
利用できると記述されているが、凝集剤の種類により凝
集能に顕著な差異が見られ、凝集剤の選定が重要である
ことが判明した。その他の方法としては、セラミックフ
ィルター、合成樹脂フィルター、膜濾過などを用いれば
処理水を清澄化することはできるが、安価で、かつ多量
処理を行うような用途には向かない。また沈降分離、浮
上分離した後、濾過により清澄化する方法も提案されて
いるが、設備が大きくなるという問題がある。
Although it is described that inorganic and organic coagulants can be widely used as coagulants, remarkable differences are observed in coagulability depending on the types of coagulants, and it has been found that the selection of coagulants is important. did. As another method, if a ceramic filter, a synthetic resin filter, a membrane filtration, or the like is used, the treated water can be clarified, but it is not suitable for low-cost and large-volume treatment. A method of clarifying by filtration after sedimentation separation and flotation separation has also been proposed, but there is a problem that the equipment becomes large.

【0009】[0009]

【発明が解決しようとする課題】本発明は、逆浸透法、
電気透析法および用水処理等に用いる原料水の前処理方
法として、原料水中の懸濁物質を効率的に除去して清澄
化する前処理方法を提供する。
SUMMARY OF THE INVENTION The present invention relates to a reverse osmosis method,
As a pretreatment method of raw water used in electrodialysis, water treatment, and the like, a pretreatment method of efficiently removing suspended substances in raw water and clarifying the same is provided.

【0010】[0010]

【課題を解決するための手段】本発明者は、逆浸透法、
電気透析法および用水処理等に供給する原料水を前処理
するには、カチオン性の有機系高分子凝集剤を、原料水
中の懸濁物質の濃度と凝集剤の濃度の積がある特定の範
囲になる量を添加した後濾過することによつて、濾過水
の水質は、従来の方法に比較して格段に清澄化できると
ともに、経時的な圧損失の上昇を小さくでき、また濾材
に粒状濾材を用いた濾過を用いた場合には、このような
特徴を一層活かすことができるとの知見の基に本発明を
完成した。
Means for Solving the Problems The present inventors have developed a reverse osmosis method,
To pre-treat raw water to be supplied to electrodialysis, water treatment, etc., use a cationic organic polymer flocculant in a specific range where the product of the concentration of the suspended substance and the flocculant concentration in the raw water is By adding an amount of water and filtering, the water quality of the filtered water can be remarkably clarified as compared with the conventional method, the rise in pressure loss over time can be reduced, and the granular filter medium can be used as a filter medium. The present invention has been completed based on the finding that such characteristics can be further utilized when filtration using is used.

【0011】原料水中には懸濁物質が数百μmから数μ
m以下の粒径で存在する。通常の濾過、例えば砂濾過を
用いれば、20μm〜30μm以上の粒径のものは除去
することができるが、逆浸透法や電気透析法で要求され
る原料水の水質目標は、従来の技術の中で記述したよう
な理由からさらに厳しくなつてきている。そこで、この
ような厳しい条件を達成することのできる濾過水の水質
はどの程度のものなのか、例えば、産業上の利用分野の
一つであるイオン交換膜電気透析法を例として説明す
る。
[0011] In the raw material water, suspended matter is several hundred μm to several μm.
m or less. If normal filtration, for example, sand filtration is used, particles having a particle size of 20 μm to 30 μm or more can be removed. However, the water quality target of the raw water required by the reverse osmosis method or the electrodialysis method is a conventional technology. It is getting more severe for the reasons described in the article. Therefore, the quality of the filtered water that can achieve such severe conditions will be described, for example, using an ion exchange membrane electrodialysis method, which is one of industrial applications.

【0012】イオン交換膜電気透析法で供給する海水に
前処理方法の一つである砂濾過を適用し、2次濾過した
後、さらに10μmのポリプロピレン製糸巻き型カート
リッジフィルターで濾過し、イオン交換膜電気透析装置
に供給して閉塞性を評価した結果、このような前処理を
行えば、イオン交換膜間の閉塞が小さく、長期に安定し
た運転が可能であることがわかつた。そこで、この水質
を実施例で示したHach社製の濁度計とコールターカ
ウンター社製のマルチサイザー、FI測定の3つの測定
方法で評価した結果、濁度は0.1(NTU)以下、粒
子数では200(個/ml)以下、FI値では3(%/
分)以下と言う水質であることが判明した。
Sand filtration, which is one of the pretreatment methods, is applied to seawater supplied by an ion exchange membrane electrodialysis method, followed by secondary filtration, followed by filtration through a 10 μm polypropylene thread-wound cartridge filter. As a result of supplying to an electrodialysis apparatus and evaluating the obstructiveness, it was found that if such pretreatment was performed, the obstruction between ion exchange membranes was small, and stable operation was possible for a long period of time. Then, the water quality was evaluated by three measurement methods, a turbidity meter manufactured by Hach and a multisizer manufactured by Coulter Counter Co., and FI measurement as shown in the examples. As a result, the turbidity was 0.1 (NTU) or less, The number is 200 (pieces / ml) or less, and the FI value is 3 (% /
Minutes) It was found that the water quality was as follows.

【0013】従来の前処理方法では、この目標値まで水
質を向上させ、しかも多量の濾過処理を行うと言う条件
を満足させることは難しい。本発明の前処理方法を用い
れば、このような厳しい水質目標まで達成することがで
き、かつ多量処理も可能となる。以下に本発明について
更に詳細に説明する。本来、凝集剤はフロックの巨大化
と強度を高めることを目的として添加されていたため、
濾過処理を行う場合、濾層表面に懸濁物質の層の形成が
促進され、濾層が閉塞しやすい条件となつていた。この
状態はほぼ表層濾過であり、濾層の圧力損失は経時的に
急激に大きくなつて、濾過→洗浄→濾過のサイクルが短
時間となり、濾過水質、濾過水量等が変動し、濾過機の
運転が不安定となる。
In the conventional pretreatment method, it is difficult to improve the water quality up to the target value and satisfy the condition of performing a large amount of filtration. By using the pretreatment method of the present invention, such a strict water quality target can be achieved, and a large amount of treatment can be performed. Hereinafter, the present invention will be described in more detail. Originally, the flocculant was added for the purpose of increasing the size and strength of the floc,
In the case of performing the filtration treatment, the formation of a suspended substance layer on the surface of the filter layer was promoted, so that the filter layer was easily clogged. This state is almost surface filtration, and the pressure loss of the filtration layer increases rapidly with time, the cycle of filtration → washing → filtration becomes short, the quality of filtered water, the amount of filtered water, etc. fluctuate, and the operation of the filter Becomes unstable.

【0014】そこで、凝集剤の種類を適切に選択するこ
とと、凝集剤の添加量を原料水中の懸濁物質の濃度と凝
集剤の濃度の積が、それらの濃度をmg/l単位で表し
て0.02〜0.5の範囲になる量に設定すれば、該原
料水中の懸濁物質のフロックを制御でき、従来のように
濾層の表面で主として閉塞するのではなく、濾層の内部
まで一層体積的に利用できるようになり、そのため濾過
水の清澄化と濾層の圧損失の軽減を同時に達成すること
ができる。本発明は、このような考え方を利用した前処
理方法である。
Therefore, the type of the flocculant is appropriately selected, and the amount of the flocculant to be added is expressed by the product of the concentration of the suspended substance in the raw water and the concentration of the flocculant. By setting the amount to fall within the range of 0.02 to 0.5, the floc of the suspended substance in the raw water can be controlled. This makes it possible to use the inner volume more volumetrically, so that clarification of the filtrate and reduction of the pressure loss of the filter layer can be achieved at the same time. The present invention is a preprocessing method using such a concept.

【0015】凝集剤には、無機系凝集剤、有機系高分子
凝集剤があり、有機系高分子凝集剤にはカチオン性、ア
ニオン性、ノニオン性があり、分子量については、中重
合度の分子量数千〜数万、高重合度の分子量数十万〜千
万のものがある。本発明では、原料水中の懸濁物質との
凝集性や濾過との適合性等から評価した結果、カチオン
性の有機系高分子凝集剤が最も有効であることがわかつ
た。このカチオン性有機系高分子凝集剤は、好ましくは
分子量が100万〜800万であって、弱カチオン、中
カチオン、強カチオンの何れでもかまわないが、中カチ
オンであるのもが好ましい。
The flocculant includes an inorganic flocculant and an organic polymer flocculant. The organic polymer flocculant has cationic, anionic and nonionic properties. Thousands to tens of thousands, high polymerization degree molecular weights of several hundred thousand to ten million. In the present invention, as a result of evaluating the cohesiveness with the suspended substance in the raw water and the compatibility with the filtration, it was found that the cationic organic polymer coagulant is most effective. The cationic organic polymer flocculant preferably has a molecular weight of 1,000,000 to 8,000,000 and may be any of a weak cation, a medium cation, or a strong cation, but is preferably a medium cation.

【0016】該カチオン性有機系高分子凝集剤として
は、ポリビニルイミダゾリン、ポリアルキルアミノアク
リレート、ポリアルキルアミノメタクリレート、ポリア
クリルアミドのマンニッヒ変性物、キトサン等の天然高
分子系等、公知の種類のものでかまわない。本発明で用
いるカチオン性有機系高分子凝集剤には、アニオン性有
機系高分子凝集剤、ノニオン性有機系高分子凝集剤また
は無機系凝集剤を組み合わせて用いてもよく、また次亜
塩素酸ナトリウムのような酸化性物質の添加と組み合わ
せても特に差し支えない。
The cationic organic polymer flocculant is of a known type such as polyvinylimidazoline, polyalkylaminoacrylate, polyalkylaminomethacrylate, Mannich-modified polyacrylamide, or a natural polymer such as chitosan. I don't care. The cationic organic polymer flocculant used in the present invention may be used in combination with an anionic organic polymer flocculant, a nonionic organic polymer flocculant or an inorganic flocculant. Combination with the addition of an oxidizing substance such as sodium does not matter.

【0017】原料水に対して添加する該凝集剤の濃度に
ついては、濾材の有効径、懸濁物質の性状等による影響
もあるが、原料水中の懸濁物質の濃度との関係が非常に
大きいことが見い出した。この関係は、凝集剤の濃度と
原料水中の懸濁物質の濃度の積で表すことができ、凝集
剤と懸濁物質の濃度を共にmg/l単位で表すと、その
値は0.02〜0.5であることが判明した。凝集剤の
濃度と懸濁物質の濃度の積が0.02未満であると、原
料水中の懸濁物質の量に比べて、凝集剤の存在量が余り
にも少ないために凝集能を発揮できず、濾過水の水質の
向上が期待できなくなる。逆に、0.5を越えると、凝
集剤の存在量が過剰になり、原料水中の懸濁物質を凝集
させて大きなフロックを形成していしまい、本発明の大
きな特徴である体積濾過ではなく、濾層の表面を閉塞し
てしまう表面濾過となり、濾層の経時的な圧損失の上昇
が大きくなつて濾過が不安定になる。
The concentration of the flocculant added to the raw water is affected by the effective diameter of the filter medium, the properties of the suspended substance, and the like, but has a very large relationship with the concentration of the suspended substance in the raw water. I found that. This relationship can be expressed by the product of the concentration of the flocculant and the concentration of the suspended substance in the raw water. When both the concentrations of the flocculant and the suspended substance are expressed in units of mg / l, the value is 0.02 to 0.02. It turned out to be 0.5. If the product of the concentration of the flocculant and the concentration of the suspended substance is less than 0.02, the flocculant cannot be exhibited because the amount of the flocculant is too small compared to the amount of the suspended substance in the raw water. Therefore, improvement in the quality of the filtered water cannot be expected. Conversely, if it exceeds 0.5, the abundance of the coagulant will be excessive, and the suspended solids in the raw water will be coagulated to form large flocs, instead of volume filtration which is a major feature of the present invention, This results in surface filtration that blocks the surface of the filter layer, and the pressure loss of the filter layer over time increases so that the filtration becomes unstable.

【0018】また、このように0.5を越えた濃度を添
加すると、原料水中の懸濁物質の電荷の変化、再安定化
等によつて濾過水の水質が十分に向上しない場合もあ
る。凝集剤が、固形のものである場合には、凝集剤は水
中に撹拌機等の通常の溶解方法を用いて均一に溶解して
用い、液状のものであれば適当な濃度に水で希釈して用
いる。添加時の撹拌は、通常の撹拌機による撹拌からポ
ンプ程度の撹拌まで、凝集剤溶液を該原料水へ速やかに
分散させることができる方法であれば特に問題なく利用
できる。該凝集剤は、該原料水を濾過処理する前である
ば特に制限なく添加できるが、該原料水中の懸濁物質の
濃度が高い工程で添加する方が、凝集剤の添加濃度が低
くても本発明の効果が期待できることから、懸濁物質の
濃度の高い原料水に添加する方が好ましい。本発明の処
理対象となる原料水は、弱酸性から弱アルカリ性である
方が好ましい。
When the concentration exceeding 0.5 is added as described above, the quality of the filtered water may not be sufficiently improved due to a change in the charge of the suspended substance in the raw water and re-stabilization. When the flocculant is a solid, the flocculant is uniformly dissolved in water using a conventional dissolution method such as a stirrer, and if it is a liquid, it is diluted with water to an appropriate concentration. Used. The stirring at the time of addition can be used without any particular problem as long as it is a method capable of promptly dispersing the flocculant solution in the raw water from stirring by a normal stirrer to stirring by a pump. The flocculant can be added without particular limitation before the raw water is filtered, but it is better to add the flocculant in a step where the concentration of the suspended substance in the raw water is high, even if the concentration of the flocculant is low. Since the effects of the present invention can be expected, it is preferable to add to the raw material water having a high concentration of the suspended substance. The raw water to be treated in the present invention is preferably weakly acidic to weakly alkaline.

【0019】濾過に用いる濾材は、砂、ガーネット、軽
石、アンスラサイト、イルメナイト等を単一層または多
層にした粒状濾材、マンガン砂、粒状活性炭等の濾材表
面に吸着能を持たせた粒状濾材、繊維、プラスチック等
の織物や不織布濾材、膜濾材などの深層濾過と言われて
いる濾過現象を示す濾材を、特に制限すること無く利用
できる。ここで、深層濾過とは、主として清澄濾過を目
的とした濾過で、固形分を濾材の空隙にひつかけて除去
するストレイン濾過、濾層の表面にケークを形成しこれ
によつて濾過するケーク濾過とは異なり、濾層の空隙内
を流れている間に、空隙より小さい粒径のものまで除去
できるような濾過現象を利用した濾過である。このた
め、濾層は原料水中の懸濁物質の粒子の大きさの数百倍
の厚みを形成することが必要であり、本発明はこの様な
厚みを形成することができる濾材を用いる。
The filter medium used for filtration is a granular filter medium having a single layer or a multilayer of sand, garnet, pumice, anthracite, ilmenite, etc .; In addition, a filter medium exhibiting a filtration phenomenon called deep filtration, such as a filter medium of a woven fabric, a nonwoven fabric, a membrane filter medium, or the like, such as plastic, can be used without particular limitation. Here, the depth filtration is filtration mainly for the purpose of clarification filtration. Strain filtration is performed to remove solids by hooking the gaps of the filter medium, and cake filtration is performed by forming cake on the surface of the filtration layer and filtering. Unlike this, the filtration is a filtration utilizing a filtration phenomenon such that particles having a smaller particle size than the pores can be removed while flowing in the pores of the filter layer. For this reason, it is necessary that the filter layer has a thickness several hundred times as large as the size of the suspended substance particles in the raw water, and the present invention uses a filter medium capable of forming such a thickness.

【0020】本発明の体積濾過は、このような濾材を用
いることによつて、ストレイン濾過やケーク濾過の現象
を利用していないとは言えないが、むしろ深層濾過の現
象を主として利用することによつて、濾層を体積的に有
効に利用しようとする濾過方法である。この体積濾過の
代表例である粒状濾材、例えば砂の場合は、有効径が1
00μm〜1000μmのものを用いることができる
が、特に300μm〜800μmの有効径の濾材が好ま
しい。この条件であれば、濾層の経時的な圧損失の上昇
が小さく、しかも濾過水の水質も良好で、凝集剤と濾層
は非常に良く適合して、濾過機は安定した運転ができ
る。濾材の有効径が300μmより小さい場合には、濾
層の経時的な圧損失の上昇が極度に大きくなり、逆に濾
材の有効径が800μmより大きい場合には、圧損失の
上昇は小さくなるが、濾過水の水質が低下することか
ら、いずれの条件でも濾過機の安定運転は難しくなる。
Although the volume filtration of the present invention does not use the phenomenon of strain filtration or cake filtration by using such a filter medium, it does not use the phenomenon of deep-layer filtration mainly. Therefore, this is a filtration method in which the filter layer is used effectively in volume. In the case of granular filter media, such as sand, which is a typical example of this volume filtration, the effective diameter is 1
A filter having an effective diameter of 300 μm to 800 μm can be used. Under these conditions, the rise in pressure loss over time of the filter layer is small, and the quality of the filtered water is good. The coagulant and the filter layer are very well matched, and the filter can be operated stably. When the effective diameter of the filter medium is smaller than 300 μm, the increase in pressure loss over time of the filter layer becomes extremely large. Conversely, when the effective diameter of the filter medium is larger than 800 μm, the increase in pressure loss is small. In addition, since the quality of the filtered water decreases, stable operation of the filter becomes difficult under any conditions.

【0021】ここで、有効径とは、重量基準で10%通
過の篩の目開き寸法を言う。また均等係数とは、重量基
準で60%通過の篩の目開き寸法/有効径を言い、ふる
い分け操作は、JIS−K0069の乾式ふるい分け試
験方法を用いる。凝集剤のイオン性の強弱は、全分子中
で電荷を持った分子をモル%で表わし、50モル%以上
を強カチオン性、20モル%〜50モル%を中カチオン
性、20モル%以下を弱カチオン性という。懸濁物質の
濃度とは、JIS−K0101の工業用水試験方法の懸
濁物質の測定方法を用いて測定した値である。
Here, the effective diameter refers to the size of the opening of the sieve that passes by 10% on a weight basis. In addition, the uniformity coefficient refers to the size / effective diameter of the sieve that passes through 60% on a weight basis, and the sieving operation uses a dry sieving test method according to JIS-K0069. The degree of ionicity of the flocculant is expressed by mol% of charged molecules in all molecules, 50 mol% or more is strongly cationic, 20 mol% to 50 mol% is medium cationic, and 20 mol% or less is strong cationic. It is called weakly cationic. The concentration of the suspended substance is a value measured using the method for measuring a suspended substance in the industrial water test method of JIS-K0101.

【0022】[0022]

【作用】該原料水に、カチオン性の有機系高分子凝集剤
を、原料水中の懸濁物質の濃度と凝集剤の濃度の積が、
それらの濃度をmg/lの単位に表して0.02〜0.
5の範囲となる量で添加して濾過すれば、濾過層を体積
的に有効に活用でき、しかも得られる濾過水は、濁度、
粒子数、FI値いずれも高度に向上させることができ
る。また、粒状濾材を用いて濾過する場合は、有効径3
00μm〜800μmで均等係数1.6以下の濾材を選
択すれば、濾過は一層安定する。
A cationic organic polymer flocculant is added to the raw water, and the product of the concentration of the suspended substance in the raw water and the flocculant concentration is:
Their concentrations are expressed in units of mg / l, from 0.02 to 0.
By adding and filtering in an amount that falls within the range of 5, the filtration layer can be effectively used in volume, and the obtained filtered water has turbidity,
Both the number of particles and the FI value can be improved to a high degree. When filtering using a granular filter medium, the effective diameter is 3
If a filter medium having a uniformity coefficient of 1.6 or less with a size of from 00 μm to 800 μm is selected, the filtration is further stabilized.

【0023】[0023]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明するが,本発明はこれらの例により何ら限定される
ものではない。 (実施例1)500mmφの塩化ビニル製のパイプに有
効径380μm、均等係数1.4の砂を600mmの厚
みで充填した1次濾過塔に、懸濁物質を7mg/lを含
む海水を7.5m/hrで流して濾過し、次に得られた
一次濾過水に第一工業製薬社製のカチオン性有機系高分
子凝集剤ハイセットC−341(商品名)を、1次濾過
水に対して0.2mg/l添加してポンプ撹拌した後、
1次と同じ仕様の2次濾過塔に、15m/hrで流して
濾過した。2次濾過塔の経時的な圧損失勾配と、2次濾
過水の水質としてHach社製の濁度計2100Nで濁
度、コールターカウンター社製のマルチサイザーで粒子
数、FI測定でFI値を測定した。結果を表1に示す。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. (Example 1) A primary filtration tower in which a 500 mmφ vinyl chloride pipe was filled with sand having an effective diameter of 380 μm and a uniformity coefficient of 1.4 to a thickness of 600 mm was filled with seawater containing 7 mg / l of a suspended substance. The mixture was filtered at a flow rate of 5 m / hr, and then the obtained primary filtered water was treated with a cationic organic polymer coagulant Hi-Set C-341 (trade name) manufactured by Daiichi Kogyo Seiyaku Co., Ltd. After adding 0.2 mg / l and stirring with a pump,
Filtration was performed at 15 m / hr through a secondary filtration tower having the same specifications as the primary. Measure the pressure drop gradient with time of the secondary filtration tower, the turbidity of the secondary filtered water using a turbidimeter 2100N manufactured by Hach, the number of particles using a multisizer manufactured by Coulter Counter, and the FI value by FI measurement. did. Table 1 shows the results.

【0024】この場合の凝集剤の濃度と原料水中の懸濁
物質の濃度の積(以下「濃度積」という。)は1次濾過
水の懸濁物質の濃度が0.3mg/lであったので、
0.06となる。この実施例は、比較例1と比較する
と、濾過層の経時的な圧損失の上昇は同程度で、濾過水
の水質は濁度、FI値、粒子数とも1/2程度向上して
いることから、1次濾過水のような懸濁物質の濃度が低
い場合でも濾過水の水質を向上させることができる。な
お、コールターカウンター社製のマルチサイザーの測定
条件は、アパチャー100μm、採取液量2μl、撹拌
目盛3で行った。またHach社製濁度計は、ホルマジ
ンを濁度の標準液としてキャリブレーションに使用し、
NTUつまり比濁度単位で表した。FI測定は、2.1
(kg/cm2 )の一定圧力の元で、アドバンテック社
製の8μmの孔径のポリカーボネート製メンブランフィ
ルターで濾過し、濾過開始直後の500mlを濾過する
時間をT0 、更に連続で15分間流し続けた後、500
mlを濾過する時間をT1 とすると、FI=(T1 −T
0 )×100/(T1 ×15)の式で求めた値を言う。
また経時的な圧損失勾配とは、濾過塔へ原料水を一定流
速で供給した時、濾過塔への供給口での圧力の変化を時
間で割つて、単位時間当たりの圧力変化で表した値を言
う。単位は、kg/cm2 ・hrで表す。
In this case, the product of the concentration of the flocculant and the concentration of the suspended substance in the raw water (hereinafter referred to as "concentration product") was 0.3 mg / l of the suspended substance in the primary filtered water. So
0.06. In this example, as compared with Comparative Example 1, the increase in pressure loss over time of the filtration layer was almost the same, and the water quality of the filtered water was improved by about 1/2 in all of the turbidity, FI value, and number of particles. Therefore, even when the concentration of the suspended substance such as the primary filtered water is low, the quality of the filtered water can be improved. The measurement was carried out using a Coulter Counter Multisizer with an aperture of 100 μm, a sample volume of 2 μl, and a stirring scale of 3. The Hach turbidimeter uses formazine as a turbidity standard solution for calibration,
Expressed in NTU or turbidity units. FI measurement is 2.1
Under a constant pressure of (kg / cm 2 ), the solution was filtered with a polycarbonate membrane filter having a pore size of 8 μm manufactured by Advantech Co., Ltd., and the time for filtering 500 ml immediately after the start of the filtration was T 0 , and further continuously flowed for 15 minutes. Later, 500
When the time of filtering the ml and T 1, FI = (T 1 -T
0 ) × 100 / (T 1 × 15).
The pressure drop gradient over time is the value expressed as the pressure change per unit time, when the raw water is supplied to the filtration tower at a constant flow rate, and the pressure change at the supply port to the filtration tower is divided by the time. Say The unit is expressed in kg / cm 2 · hr.

【0025】(実施例2)実施例1と同様の海水、装
置、方法、凝集剤の種類、凝集剤の濃度の条件下で、さ
らに2次濾過の前に次亜塩素酸ナトリウムを0.7mg
/l添加して濾過し、実施例1と同様の項目と方法で測
定を行つた。結果を表1に示す。次亜塩素酸ナトリウム
のような酸化性物質を凝集剤と共に添加しても、この例
のように濾過水の水質を向上させることができる。
(Example 2) Under the same conditions of seawater, apparatus, method, type of coagulant and concentration of coagulant as in Example 1, 0.7 mg of sodium hypochlorite was added before secondary filtration.
/ L was added and filtered, and the measurement was performed by the same items and methods as in Example 1. Table 1 shows the results. Even if an oxidizing substance such as sodium hypochlorite is added together with the flocculant, the quality of the filtered water can be improved as in this example.

【0026】(比較例1)実施例1と同様の海水、装
置、方法で、凝集剤の添加なしで濾過し、2次濾過の経
時的な圧損失勾配と濾過水の水質を実施例1と同じ測定
方法を用いて測定した。結果を表1に示す。 (比較例2)実施例1と同様の海水、装置、方法で、同
じ種類の凝集剤を0.05mg/l添加した後濾過し、
2次濾過の経時的な圧損失勾配と濾過水の水質を実施例
1と同じ測定方法を用いて測定した。この場合の濃度積
は0.015であった。結果を表1に示す。
(Comparative Example 1) The same seawater, apparatus and method as in Example 1 were used, and filtration was performed without adding a coagulant. The measurement was performed using the same measurement method. Table 1 shows the results. (Comparative Example 2) In the same seawater, apparatus and method as in Example 1, the same type of coagulant was added at 0.05 mg / l, followed by filtration.
The pressure loss gradient over time of the secondary filtration and the quality of the filtered water were measured using the same measurement method as in Example 1. The concentration product in this case was 0.015. Table 1 shows the results.

【0027】[0027]

【表1】 [Table 1]

【0028】(実施例3)懸濁物質を6mg/lを含む
海水に、第一工業製薬社製のカチオン性有機系高分子凝
集剤ハイセットC−341を0.025mg/l添加
し、7分間スターラーで撹拌した後、40mmφの塩化
ビニル製のパイプに有効径380μm均等係数1.4の
砂を600mmの厚みで充填した濾過塔に、7.5m/
hrで流して濾過した。濾過塔の経時的な圧損失勾配
と、濾過水の水質としてHach社製の濁度計による濁
度とコールターカウンター社製のマルチサイザーによる
粒子数を測定した。また経時的な圧損失勾配とは、濾過
塔へ原料水を一定流速で供給した時、濾過塔への供給口
での圧力の変化を水頭の変化で表し、これを時間で割っ
て単位時間当たりの水頭の変化で表した値であり、単位
は、cm/hrで表す。(以下「圧損失勾配」とい
う。)
Example 3 0.025 mg / l of a cationic organic polymer flocculant Hi-Set C-341 manufactured by Daiichi Kogyo Seiyaku Co., Ltd. was added to seawater containing 6 mg / l of a suspended substance, and 7 After stirring with a stirrer for minutes, a filtration tower filled with sand having an effective diameter of 380 μm and a uniformity coefficient of 1.4 at a thickness of 600 mm was filled into a 40 mmφ vinyl chloride pipe at a rate of 7.5 m / m.
Flowed through for hr and filtered. The pressure drop gradient with time of the filtration tower, the turbidity measured by a turbidity meter manufactured by Hach and the number of particles measured by a multisizer manufactured by Coulter Counter were measured as the quality of filtered water. The pressure drop gradient with time is the change in pressure at the supply port to the filtration tower when the raw water is supplied to the filtration tower at a constant flow rate. And the unit is cm / hr. (Hereinafter referred to as “pressure loss gradient”)

【0029】この場合の濃度積は0.15である。結果
を表2に示す。比較例3のように該凝集剤を添加しない
と、濾過水の水質は数倍悪くなる。比較例5,6のよう
に凝集剤として、ノニオン性有機系高分子凝集剤、アニ
オン性有機系高分子凝集剤では、該凝集剤ほど濾過水の
水質の向上は期待できない。比較例7のように該凝集剤
を、本発明の濃度の範囲以下の低い濃度で添加すると、
濾過水の水質が悪化する。比較例8のように濾過材の有
効径を300μm以下にすると圧損失勾配が極めて高く
なり、濾過機の安定運転が阻害される。比較例9のよう
に濾過材の有効径を800μm以上にすると濾過水の水
質が悪化する。
The density product in this case is 0.15. Table 2 shows the results. If the coagulant is not added as in Comparative Example 3, the quality of the filtered water will be several times worse. In the case of the nonionic organic polymer flocculant and the anionic organic polymer flocculant as the flocculants as in Comparative Examples 5 and 6, improvement in the quality of the filtered water cannot be expected as much as the flocculants. When the flocculant is added at a low concentration below the concentration range of the present invention as in Comparative Example 7,
The quality of the filtered water deteriorates. When the effective diameter of the filter is 300 μm or less as in Comparative Example 8, the pressure loss gradient becomes extremely high, and the stable operation of the filter is hindered. When the effective diameter of the filter medium is 800 μm or more as in Comparative Example 9, the quality of the filtered water deteriorates.

【0030】(実施例4)実施例3と同様の海水、装
置、方法で、濾過材を有効径600μm、均等係数1.
5の軽石を用いて濾過し、濾過層の圧損失勾配と濾過水
の水質を実施例3と同じ測定方法を用いて測定した。結
果を表2に示す。実施例3と比較すると、濾過材の有効
径を大きくしたことにより圧損失勾配が小さくできる。
比較例4のように該凝集剤を添加しないと、濾過水の水
質は極めて悪くなる。 (比較例3)実施例3と同様の海水、装置、方法で凝集
剤の添加なしで濾過し、濾過層の圧損失勾配と濾過水の
水質を実施例3と同じ測定方法を用いて測定した。結果
を表2に示す。
(Embodiment 4) In the same seawater, apparatus and method as those in Embodiment 3, a filter material is used with an effective diameter of 600 μm and a uniformity coefficient of 1.
The mixture was filtered using pumice of No. 5, and the pressure loss gradient of the filtration layer and the quality of the filtered water were measured using the same measurement method as in Example 3. Table 2 shows the results. Compared with Example 3, the pressure loss gradient can be reduced by increasing the effective diameter of the filter medium.
If the coagulant is not added as in Comparative Example 4, the quality of the filtered water will be extremely poor. (Comparative Example 3) Filtration was performed using the same seawater, apparatus and method as in Example 3 without adding a coagulant, and the pressure loss gradient of the filtration layer and the quality of the filtered water were measured using the same measurement method as in Example 3. . Table 2 shows the results.

【0031】(比較例4)実施例4と同様の海水、装
置、方法で凝集剤の添加なしで濾過し、濾過層の圧損失
勾配と濾過水の水質を実施例3と同じ測定方法を用いて
測定した。結果を表2に示す。 (比較例5)実施例3と同様の海水、装置、方法で凝集
剤として第一工業製薬製のノニオン性有機系高分子凝集
剤ハイセットP−700(商品名)を0.1mg/l添
加してから濾過し、濾過層の圧損失勾配と濾過水の水質
を実施例3と同じ測定方法を用いて測定した。結果を表
2に示す。
(Comparative Example 4) Filtration was carried out using the same seawater, apparatus and method as in Example 4 without the addition of a flocculant, and the pressure loss gradient of the filtration layer and the quality of the filtered water were measured in the same manner as in Example 3. Measured. Table 2 shows the results. (Comparative Example 5) Nonionic organic polymer flocculant Hi-Set P-700 (trade name) manufactured by Daiichi Kogyo Seiyaku Co., Ltd. was added in an amount of 0.1 mg / l as a flocculant using the same seawater, apparatus and method as in Example 3. After filtration, the pressure loss gradient of the filtration layer and the quality of the filtered water were measured using the same measurement method as in Example 3. Table 2 shows the results.

【0032】(比較例6)実施例3と同様の海水、装
置、方法で凝集剤として第一工業製薬製のアニオン性有
機系高分子凝集剤ハイセットP−710(商品名)を
0.1mg/l添加してから濾過し、濾過層の圧損失勾
配と濾過水の水質を実施例3と同じ測定方法を用いて測
定した。結果を表2に示す。 (比較例7)実施例3と同様の海水、装置、方法で同じ
種類の凝集剤を0.0025mg/l添加した後濾過
し、濾過層の圧損失勾配と濾過水の水質を実施例3と同
じ測定方法を用いて測定した。この場合の濃度積は0.
015である。結果を表2に示す。
Comparative Example 6 0.1 mg of an anionic organic polymer flocculant Hi-Set P-710 (trade name) manufactured by Daiichi Kogyo Seiyaku Co., Ltd. was used as a flocculant in the same manner as in Example 3 using the same seawater, apparatus and method. / L, followed by filtration, and the pressure loss gradient of the filtration layer and the quality of the filtered water were measured using the same measurement method as in Example 3. Table 2 shows the results. (Comparative Example 7) The same type of coagulant was added in the same manner as in Example 3 by adding seawater, the same coagulant at 0.0025 mg / l, and filtration was performed. The measurement was performed using the same measurement method. The concentration product in this case is 0.
015. Table 2 shows the results.

【0033】(比較例8)実施例3と同じ海水、装置、
方法、凝集剤の種類、凝集剤濃度で、濾材として有効径
250μm、均等係数1.4の砂を用いて濾過し、濾過
層の圧損失勾配と濾過水の水質を実施例3と同じ測定方
法を用いて測定した。得られた結果を表2に示す。 (比較例9)実施例8と同じ海水、装置、方法、凝集剤
の種類、凝集剤濃度で、濾材として有効径1000μ
m、均等係数1.5の砂を用いて濾過し、濾過層の圧損
失勾配と濾過水の水質を実施例3と同じ測定方法を用い
て測定した。得られた結果を表2に示す。
(Comparative Example 8) Seawater, equipment,
The method, the type of flocculant, and the flocculant concentration, filtration was performed using sand having an effective diameter of 250 μm and a uniformity coefficient of 1.4 as a filter medium, and the pressure loss gradient of the filtration layer and the quality of the filtered water were measured in the same manner as in Example 3. It measured using. Table 2 shows the obtained results. (Comparative Example 9) With the same seawater, apparatus, method, type of flocculant and flocculant concentration as in Example 8, an effective diameter of 1000 μm as a filter medium
m, and filtration was performed using sand having a uniformity coefficient of 1.5, and the pressure loss gradient of the filtration layer and the quality of the filtered water were measured using the same measurement method as in Example 3. Table 2 shows the obtained results.

【0034】[0034]

【表2】 [Table 2]

【0035】(実施例5)懸濁物質を9mg/lを含む
海水に第一工業製薬製のカチオン性有機系高分子凝集剤
ハイセットC−545(商品名)を0.05mg/l添
加して、30分間ポンプ循環で撹拌した後、1000m
mφの内面ゴムライニングした鉄製の濾過機に、ユニチ
カ製の糸径10デニールのポリエステル製糸濾材を10
00mmの厚みで充填した1次濾過機に、38m/hr
で流して濾過した。さらに2次濾過として500mmφ
の塩化ビニル製のパイプに実施例1の砂を600mmの
厚みに充填した濾過塔に、15m/hrで流して濾過し
た。1次濾過機の圧損失勾配と2次濾過水の水質を実施
例3と同様の測定方法で測定した。この場合の濃度積は
0.45である。結果を表3に示す。このように粒状濾
材以外の濾材を用いても、本発明の効果は期待できる。 (比較例10)実施例5と同様の海水、装置、方法で凝
集剤の添加を止めて、濾過層の圧損失勾配と濾過水の水
質を実施例3と同じ測定方法を用いて測定した。結果を
表3に示す。
Example 5 To a seawater containing 9 mg / l of a suspended substance, 0.05 mg / l of a cationic organic polymer flocculant Hiset C-545 (trade name) manufactured by Daiichi Kogyo Seiyaku was added. After stirring for 30 minutes by pump circulation, 1000m
A 10-denier polyester yarn filter medium made of Unitika is supplied to an iron filter having an inner rubber lining of
38m / hr into a primary filter packed with a thickness of 00mm
And filtered. 500mmφ as secondary filtration
The sand of Example 1 was filled to a thickness of 600 mm into a vinyl chloride pipe, and the mixture was filtered at 15 m / hr through a filtration tower. The pressure loss gradient of the primary filter and the quality of the secondary filtered water were measured by the same measurement method as in Example 3. The density product in this case is 0.45. Table 3 shows the results. Thus, the effect of the present invention can be expected even if a filter medium other than the granular filter medium is used. (Comparative Example 10) The addition of the flocculant was stopped using the same seawater, apparatus, and method as in Example 5, and the pressure loss gradient of the filtration layer and the quality of the filtered water were measured using the same measurement method as in Example 3. Table 3 shows the results.

【0036】[0036]

【表3】 [Table 3]

【0037】(実施例6)40mmφの塩化ビニル製の
パイプに有効径380μm、均等係数1.4の砂を60
0mmの厚みに充填した1次濾過塔に、懸濁物質を0.
4mg/lを含む海水に、0.1Nの酢酸に溶解したキ
トサンを0.2 mg/l添加して、スターラーで7分
撹拌後、7.5m/hrで流して濾過した。濾過塔の圧
損失勾配と濾過水の水質を実施例3と同じ測定方法を用
いて測定した。この場合の濃度積は0.08である。結
果を表4に示す。天然高分子系のカチオン性高分子凝集
剤を用いても、本発明の効果は期待できる。 (比較例11)実施例6と同じ海水、装置、方法で濾過
し、キトサン10mg/lを添加した後濾過して、濾過
層の圧損失勾配と濾過水の水質を実施例3と同じ測定方
法を用いて測定した。この場合の濃度積は4である。結
果を表4に示す。本発明の濃度積の範囲以上の高い凝集
剤の濃度を添加すると、この例のように濾過水の水質は
悪化することがある。
(Example 6) Sand of an effective diameter of 380 µm and a uniformity coefficient of 1.4 was poured into a pipe of 40 mmφ made of vinyl chloride by 60.
The suspended substance was placed in a primary filtration tower packed to a thickness of 0 mm.
To seawater containing 4 mg / l, 0.2 mg / l of chitosan dissolved in 0.1 N acetic acid was added, and the mixture was stirred with a stirrer for 7 minutes, and then filtered at 7.5 m / hr. The pressure drop gradient of the filtration tower and the quality of the filtered water were measured using the same measurement method as in Example 3. The density product in this case is 0.08. Table 4 shows the results. The effect of the present invention can be expected even when a natural polymer-based cationic polymer flocculant is used. (Comparative Example 11) Filtration was carried out using the same seawater, apparatus and method as in Example 6, and after adding 10 mg / l of chitosan, filtration was carried out. The pressure loss gradient of the filtration layer and the water quality of the filtrate were measured in the same manner as in Example 3. It measured using. The density product in this case is 4. Table 4 shows the results. Addition of a high flocculant concentration higher than the concentration product range of the present invention may deteriorate the quality of filtered water as in this example.

【0038】[0038]

【表4】 [Table 4]

【0039】(実施例7)実施例1と同様の濾過装置、
凝集剤の種類、凝集剤の濃度、濾過方法で海水を濾過し
た濾過水を、縦28cm、横24cmの小型のイオン交
換膜電気透析装置(以下「透析装置」という。)に電流
を流さずに、線流速4cm/秒で一定流量を供給し、透
析装置の入口の圧力を測定して閉塞性を評価した。結果
を表5に示した。濾過水を供給し始めた時の初期の圧力
は、透析装置の閉塞、膜の汚染等の進行により、時間の
経過とともに次第に上昇する。この初期圧力からの経時
的な圧力変化を単位時間当たりで表して圧力勾配とする
と、透析装置の運転可能な圧力には制限があることか
ら、この圧力勾配により透析装置の稼働可能な時間が決
まり、長時間の運転を可能にするためには、この圧力勾
配をできるだけ小さくすることが必要となる。実施例7
と比較例12を比較すると、実施例7の圧力勾配が約1
/4程度に小さくなっていることから、透析装置の運転
可能な日数は、本発明の前処理を行えば数倍延長できる
ことがわかる。 (比較例12)比較例1と同様の濾過装置、濾過方法で
海水を濾過した濾過水を、実施例7と同様の透析装置
に、実施例7と同様の条件で供給して、透析装置の入口
の圧力を測定した。結果を表5に示した。
(Embodiment 7) The same filtration device as in Embodiment 1,
The type of the coagulant, the concentration of the coagulant, and the filtered water obtained by filtering the seawater by the filtration method are applied to a small 28 cm-long and 24 cm-wide small ion exchange membrane electrodialyzer (hereinafter referred to as "dialyzer") without passing current. A constant flow rate was supplied at a linear flow rate of 4 cm / sec, and the pressure at the inlet of the dialyzer was measured to evaluate the obstruction. Table 5 shows the results. The initial pressure at the start of supplying the filtered water gradually increases over time due to the progress of clogging of the dialysis device, contamination of the membrane, and the like. If a pressure change over time from this initial pressure is expressed per unit time as a pressure gradient, the operable pressure of the dialyzer is limited, so that the pressure gradient determines the operable time of the dialyzer. In order to enable long-time operation, it is necessary to make this pressure gradient as small as possible. Example 7
Compared with Comparative Example 12, the pressure gradient of Example 7 was about 1
Since it is reduced to about / 4, it can be understood that the number of days in which the dialysis device can be operated can be extended several times by performing the pretreatment of the present invention. (Comparative Example 12) Filtration water obtained by filtering seawater by the same filtration apparatus and filtration method as in Comparative Example 1 was supplied to the same dialysis apparatus as in Example 7 under the same conditions as in Example 7, and The pressure at the inlet was measured. Table 5 shows the results.

【0040】[0040]

【表5】 [Table 5]

【0041】[0041]

【発明の効果】本発明は、添加する凝集剤の種類の選定
と、凝集剤の添加量を原料水中の懸濁物質の濃度と凝集
剤の濃度の積を0.02〜0.2にして添加して濾過す
ることにより、また濾過に粒状濾材を用いる場合はその
有効径の選定により、濾過水の水質の向上と濾過の安定
化が達成できる、電気透析法、逆浸透法および用水前処
理等に適した原料水の前処理方法を提供することができ
る。
According to the present invention, the type of the coagulant to be added is selected, and the amount of the coagulant to be added is set to 0.02 to 0.2 of the product of the concentration of the suspended substance in the raw water and the concentration of the coagulant. Electrodialysis, reverse osmosis, and water pretreatment can improve the quality of filtered water and stabilize filtration by adding and filtering, and when using a particulate filter medium for filtration, by selecting the effective diameter. It is possible to provide a method for pretreatment of raw water suitable for, for example, the following.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/56 C02F 1/46 103 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location C02F 1/56 C02F 1/46 103

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 懸濁物質を含む原料水に、カチオン性の
有機系高分子凝集剤を、原料水中の懸濁物質の濃度と凝
集剤の濃度の積が、これら濃度を共にmg/lの単位で
表して0.02〜0.5の範囲になる量を添加して、次
いで濾過することを特徴とする原料水の前処理方法。
1. A raw material water containing a suspended substance is charged with a cationic organic polymer flocculant, and the product of the concentration of the suspended substance and the concentration of the flocculant in the raw water is such that both these concentrations are in mg / l. A method for pretreatment of raw water, comprising adding an amount in the range of 0.02 to 0.5 expressed in units, followed by filtration.
【請求項2】原料水に、凝集剤を、請求項1の関係より
求められる濃度で添加して、有効径が300μm〜80
0μmで、均等係数が1.6以下の粒状濾材を用いて濾
過する請求項1記載の前処理をした後、イオン交換膜電
気透析装置に供給して電気透析することを特徴とする原
料水の透析方法。
2. A coagulant is added to raw water at a concentration required from the relationship of claim 1 so that the effective diameter is 300 μm to 80 μm.
Filtration using a particulate filter medium having a uniformity coefficient of 1.6 μm or less at 0 μm, followed by supplying to an ion exchange membrane electrodialysis apparatus for electrodialysis after the pretreatment according to claim 1. Dialysis method.
JP8218123A 1996-08-01 1996-08-01 Pre-treatment of raw material water Pending JPH1043506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8218123A JPH1043506A (en) 1996-08-01 1996-08-01 Pre-treatment of raw material water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8218123A JPH1043506A (en) 1996-08-01 1996-08-01 Pre-treatment of raw material water

Publications (1)

Publication Number Publication Date
JPH1043506A true JPH1043506A (en) 1998-02-17

Family

ID=16714999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8218123A Pending JPH1043506A (en) 1996-08-01 1996-08-01 Pre-treatment of raw material water

Country Status (1)

Country Link
JP (1) JPH1043506A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222872A (en) * 2007-04-26 2007-09-06 Solt Industry Center Of Japan Filter device
JP2010194520A (en) * 2009-02-27 2010-09-09 Tosoh Corp Salt water refining method
JP2013510082A (en) * 2009-11-04 2013-03-21 カウンスィル オブ サイエンティフィック アンド インダストリアル リサーチ Electrodialysis-distillation hybrid process for the recovery of dimethyl sulfoxide (DMSO) solvent from industrial wastewater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222872A (en) * 2007-04-26 2007-09-06 Solt Industry Center Of Japan Filter device
JP4519878B2 (en) * 2007-04-26 2010-08-04 財団法人塩事業センター Filtration device
JP2010194520A (en) * 2009-02-27 2010-09-09 Tosoh Corp Salt water refining method
JP2013510082A (en) * 2009-11-04 2013-03-21 カウンスィル オブ サイエンティフィック アンド インダストリアル リサーチ Electrodialysis-distillation hybrid process for the recovery of dimethyl sulfoxide (DMSO) solvent from industrial wastewater

Similar Documents

Publication Publication Date Title
Park et al. Effect of the removal of DOMs on the performance of a coagulation-UF membrane system for drinking water production
TWI397680B (en) Method of monitoring treating agent residuals and controlling treating agent dosage in water treatment processes
US5047154A (en) Method and apparatus for enhancing the flux rate of cross-flow filtration systems
TWI446956B (en) Method of improving performance of ultrafiltration or microfiltration membrane processes in backwash water treatment
Wang et al. Impact of polymer flocculants on coagulation-microfiltration of surface water
Kim et al. Treating laundry waste water: Cationic polymers for removal of contaminants and decreased fouling in microfiltration
JPWO2014103860A1 (en) Water treatment method
US11866356B2 (en) Method and system for controlling hydrophobic conditions and fouling in water intensive processes
RU2222371C1 (en) The improvements brought in filtration using membranes
JP5672447B2 (en) Filtration device and water treatment device
JPH1043506A (en) Pre-treatment of raw material water
Soffer et al. Threshold flux in fouling of OF membranes by colloidal iron
JP2007222872A (en) Filter device
Sharp et al. Effects of dynamic or secondary-layer coagulation on ultrafiltration
JP5863176B2 (en) Method for evaluating water to be treated, membrane treatment apparatus, water treatment plant, and operation method thereof
WO2011042704A1 (en) Multi layered particulate filter for reducing the turbidity and sdi of water filter
JP2011206750A (en) Water treatment method and water treatment apparatus
JP6486799B2 (en) MEMBRANE OBSTRUCTION EVALUATION METHOD FOR TREATED WATER, MEMBRANE FILTER APPARATUS USED FOR THE MEMBRANE OBSTRUCTION EVALUATION METHOD, AND MEMBRANE FILTRATION METHOD FOR TREATED WATER WITH DETERMINING MEMBRANE OBSTRUCTION EVALUATION INDEX
JP2017136571A (en) Method for determining amount of flocculant added in water treatment equipment
KR100736514B1 (en) A suction pressure/time detector by continuous type for water supply and a treating method of water using the same
KR100736513B1 (en) A suction pressure/time detector by batch type for water supply and a treating method of water using the same
JPH10296019A (en) Method for pretreating raw water
US20080251457A1 (en) Method for reducing fouling in microfiltration systems
JP2016165708A (en) Evaluation method of membrane clogging property of water to be treated, membrane treating device and its operation method
JP2016093789A (en) Water treatment method and water treatment system