JP2016165708A - Evaluation method of membrane clogging property of water to be treated, membrane treating device and its operation method - Google Patents

Evaluation method of membrane clogging property of water to be treated, membrane treating device and its operation method Download PDF

Info

Publication number
JP2016165708A
JP2016165708A JP2015149968A JP2015149968A JP2016165708A JP 2016165708 A JP2016165708 A JP 2016165708A JP 2015149968 A JP2015149968 A JP 2015149968A JP 2015149968 A JP2015149968 A JP 2015149968A JP 2016165708 A JP2016165708 A JP 2016165708A
Authority
JP
Japan
Prior art keywords
membrane
water
treated
number concentration
nanoparticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015149968A
Other languages
Japanese (ja)
Other versions
JP6530996B2 (en
Inventor
吉英 貝谷
Yoshifusa Kaitani
吉英 貝谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Publication of JP2016165708A publication Critical patent/JP2016165708A/en
Application granted granted Critical
Publication of JP6530996B2 publication Critical patent/JP6530996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for evaluating water to be treated by measuring accurately, simply and quickly a membrane clogging degree evaluation index included in the water to be treated such as raw city water.SOLUTION: There is provided an evaluation method of membrane clogging property of water to be treated that is treated by a separation membrane. In the evaluation method of the membrane clogging property of the water to be treated, after measuring a nanoparticle number concentration in the water to be treated, the membrane clogging property of the water to be treated is evaluated from a relation between the nanoparticle number concentration determined beforehand and a membrane clogging degree evaluation index.SELECTED DRAWING: Figure 1

Description

本発明は、被処理水の評価方法、膜処理装置およびその運転方法に関する。   The present invention relates to a method for evaluating water to be treated, a membrane treatment apparatus, and an operation method thereof.

限外ろ過膜や精密ろ過膜を用いた膜ろ過装置は、圧力容器内に分離膜を配設して、この分離膜で容器内を原水側と透過水側(ろ過水側)に仕切り、原水側に原水をポンプで加圧導入するとともに、膜ろ過により透過水側から透過水を得るものである。
特に近年は、クリプトスポリジウムなどの病原性微生物の問題から、河川水、地下水を原水とした浄水処理への適用が進んでいる。
Membrane filtration devices using ultrafiltration membranes or microfiltration membranes have a separation membrane in the pressure vessel, and the separation membrane separates the vessel into the raw water side and the permeate side (filtrated water side). The raw water is pressurized and introduced to the side by a pump, and permeate is obtained from the permeate side by membrane filtration.
Particularly in recent years, due to problems of pathogenic microorganisms such as Cryptosporidium, application to water purification treatment using river water and groundwater as raw water is progressing.

このような膜ろ過装置では、分離膜の原水側膜面や膜細孔内に原水中に含まれる成分の付着や析出が生じて分離膜が汚染され、継続使用によってろ過性能が次第に低下する。
浄化処理において膜汚染を生じさせる物質は、有機物、鉄、マンガン、アルミニウム、シリカ等であると言われており、現状、膜透過流束等の運転条件を選定する際には、原水中のこれらの濃度を測定し、その結果と今までの実績等から経験的に決定することが多い。
In such a membrane filtration device, the components contained in the raw water adhere to and deposit on the raw water side membrane surface and membrane pores of the separation membrane, contaminating the separation membrane, and the filtration performance gradually deteriorates due to continuous use.
Substances that cause membrane contamination in purification treatment are said to be organic matter, iron, manganese, aluminum, silica, etc. Currently, when selecting operating conditions such as membrane permeation flux, these substances in raw water It is often determined empirically from the results and past results.

また、膜汚染の原因物質として有機物は最も重要な膜汚染物質である。この水質指標としては全有機炭素(TOC)が使用されているが、TOCの値が同じ原水でも膜のろ過抵抗の上昇速度が異なる場合が度々見受けられ、実際の運転と設計時の予想が大きく異なるため、薬品洗浄の頻度が増えたりするなどのトラブルが発生することは少なくない。
また、運転管理においても同様であり、TOC濃度に変化がないのに膜汚染が急激に進行する場合もある。この原因としては、膜汚染を引き起こす原因となる有機物がTOC成分の極々一部であり、その濃度が低いため、その変化がTOCを測定しても検出できないことにある。
Organic substances are the most important membrane contaminants as the cause of membrane contamination. Total organic carbon (TOC) is used as the water quality indicator, but even when the raw water has the same TOC value, the rate of increase in the filtration resistance of the membrane is often different. Because of differences, it is not uncommon for problems such as increased frequency of chemical cleaning.
The same applies to the operation management, and there is a case where the film contamination rapidly proceeds even though the TOC concentration does not change. This is because the organic matter that causes film contamination is an extremely small part of the TOC component, and its concentration is low, so that the change cannot be detected even if the TOC is measured.

TOC等の個々の水質ではなく、オーバーオールに分離膜供給水の膜閉塞性を評価する手法として、JIS K3802に定義されているファウリングインデックス(FI値)を使用した方法等があるが、これら従来の指標は、基本的に逆透過膜装置への供給水の評価を想定した指標であり、数度の濁度がある水道原水では、同じFI値となり評価方法として適切でない。   As a method for evaluating the membrane blockage of the separation membrane supply water in the overall rather than the individual water quality such as TOC, there is a method using the fouling index (FI value) defined in JIS K3802, etc. The index is basically an index that assumes the evaluation of the water supplied to the reverse permeable membrane device. In the tap water with several degrees of turbidity, the FI value is the same and is not suitable as an evaluation method.

また、関連する従来法として、例えば特許文献1には、膜供給水の濁質量と溶解性有機炭素(DOC)の測定値および膜透過流束の関数から、膜透過流束、物理洗浄間隔、薬品洗浄間隔、前処理条件等の最適化を図る方法が記載されている。しかしながら、この方法では、DOC、紫外線吸光度(E260)、濁度を分析する必要があり、また、比較的難解な理論式を用いるため煩雑であり、汎用的ではない。また、この方法は有機成分由来の汚染原因をフミン質に限定し、膜汚染の進行割合をDOCとE260の比率から単に計算しているため、フミン質以外の有機成分が膜汚染に関与する場合には、その影響を正しく評価できない。
また、近年の研究では、浄水処理における膜汚染に関与する有機物で重要なものは、紫外線吸光度発現物質であるフミン質よりも、多糖類であることが明らかになっており、その意味でも特許文献1に記載の方法は妥当性に欠けるものである。
In addition, as a related conventional method, for example, Patent Document 1 describes a membrane permeation flux, a physical cleaning interval, a function of a turbid mass of membrane feed water and a measured value of dissolved organic carbon (DOC) and a membrane permeation flux. A method for optimizing the chemical cleaning interval and pretreatment conditions is described. However, in this method, it is necessary to analyze DOC, ultraviolet absorbance (E260), and turbidity, and since it uses a relatively difficult theoretical formula, it is complicated and not versatile. In addition, this method limits the cause of contamination from organic components to humic substances, and simply calculates the rate of progress of membrane contamination from the ratio of DOC and E260, so that organic components other than humic substances are involved in membrane contamination. Cannot be evaluated correctly.
In recent researches, it has been clarified that the important organic substances involved in membrane contamination in water purification treatment are polysaccharides rather than humic substances that express UV absorbance. The method described in 1 is lacking in validity.

また、特許文献2および特許文献3においても原水、膜供給水、膜ろ過水などのフミン質や紫外線吸光度(E260)に基づき凝集処理などの制御を行うことが記載されているが、これらは近年の研究報告から考えると合理性に欠く運転方法である。   Further, Patent Document 2 and Patent Document 3 also describe that the coagulation treatment and the like are controlled based on humic substances such as raw water, membrane supply water, and membrane filtered water, and ultraviolet absorbance (E260). This is a driving method that lacks rationality.

本発明者は鋭意研究を重ね、非特許文献1〜4に記載の水道原水等の膜供給水中の膜閉塞有機物質に関する新しい指標である「ファウリングポテンシャル(Fouling Potential:FP)」を開発した。
本指標は、水道原水やそれについて前処理を行った膜供給水中の膜閉塞有機物、すなわち、多糖類の存在量や分子量に関する有益な情報を与える指標である。
This inventor repeated earnest research and developed "Fouling Potential (FP)" which is a new parameter | index regarding the film | membrane obstruction | occlusion organic substance in film | membrane supply waters, such as raw water supply of a nonpatent literature 1-4.
This index is an index that gives useful information regarding the abundance and molecular weight of the membrane clogging organic matter in the raw water supply water or the membrane supply water that has been pretreated therefor, that is, polysaccharides.

また、FP測定に必要な試料量は500〜1000mL程度であり、浄水処理で凝集剤注入率選択のために一般的に行われるジャーテストに必要な試料量とほぼ同じであることから、ジャーテストを行った後に引き続いてFPを測定することで、凝集処理による膜閉塞物質量の減少量を定量的に把握することが可能となる、非常に有効な指標の一つである。   In addition, the sample amount necessary for FP measurement is about 500 to 1000 mL, which is almost the same as the sample amount necessary for the jar test generally performed for selecting the flocculant injection rate in the water purification treatment. This is one of the very effective indices that enables the quantitative measurement of the amount of decrease in the amount of the membrane occluding substance due to the agglomeration process by continuously measuring the FP after performing the above.

なお、本発明者が非特許文献1〜4で報告しているように、水道原水などの天然水中のファウリングポテンシャル(FP)に代表される膜閉塞度物質の存在量は、河川水、湖沼水などの水源によって異なるし、季節変動も生じる。毎日激しく変動するものではなく、水源特性に応じて数カ月程度の期間はほぼ一定の値を示す場合は、ファウリングポテンシャル(FP)に代表される膜閉塞度物質の評価指標を毎日測定する必要はなく、ある期間中に数回程度測定しておけばよい。例えば特許文献4に記載の方法によって、簡便に測定できる紫外線吸光度(E260)を測定してその除去率から膜供給水の膜閉塞度を評価すれば、非常に簡単にファウリングポテンシャル(FP)を把握することが可能である。   In addition, as the inventor has reported in Non-Patent Documents 1 to 4, the abundance of membrane clogging substances represented by fouling potential (FP) in natural water such as raw water for tap water is river water, lakes and lakes. It varies depending on the water source such as water, and seasonal variations occur. If it does not fluctuate every day and shows a constant value for several months depending on the characteristics of the water source, it is necessary to measure the evaluation index of the membrane occlusion material represented by fouling potential (FP) every day. Instead, it may be measured several times during a certain period. For example, by measuring the ultraviolet absorbance (E260) that can be easily measured by the method described in Patent Document 4 and evaluating the degree of membrane occlusion of the membrane feed water from the removal rate, the fouling potential (FP) can be calculated very easily. It is possible to grasp.

特開2001−327967号公報JP 2001-327967 A 特開2001−170458号公報JP 2001-170458 A 特開2008−126223号公報JP 2008-126223 A 特開2013−228846号公報JP 2013-228846 A

鹿島田浩二、他1名、「浄水処理におけるファウリングポテンシャルの提案とその特性評価(I)」、第60回全国水道研究発表会講演集、社団法人日本水道協会、2009年5月、p.134−135Koji Kashimada and one other, “Proposal of Fouling Potential in Water Treatment and Its Characteristic Evaluation (I)”, Proceedings of the 60th National Waterworks Research Conference, Japan Water Works Association, May 2009, p. 134-135 貝谷吉英、他1名、「浄水処理におけるファウリングポテンシャルの提案とその特性評価(II)」、第60回全国水道研究発表会講演集、社団法人日本水道協会、2009年5月、p.136−137Yoshihide Kaitani and one other, “Proposal of Fouling Potential in Water Treatment and Its Characteristic Evaluation (II)”, Proceedings of the 60th National Waterworks Research Conference, Japan Waterworks Association, May 2009, p. 136-137 貝谷吉英、他1名、「浄水処理におけるファウリングポテンシャルの提案とその特性評価(III)」、第61回全国水道研究発表会講演集、社団法人日本水道協会、2010年5月、p.252−253Yoshihide Kaitani and one other, “Proposal of Fouling Potential in Water Purification and Its Characteristic Evaluation (III)”, 61st National Waterworks Research Conference Lecture, Japan Waterworks Association, May 2010, p. 252-253 貝谷吉英、他1名、「浄水処理におけるファウリングポテンシャルの提案とその特性評価(IV)」、第62回全国水道研究発表会講演集、社団法人日本水道協会、2011年5月、p.352−353Yoshihide Kaitani and one other, “Proposal of Fouling Potential in Water Treatment and Its Characteristic Evaluation (IV)”, 62nd National Waterworks Research Presentation Lecture, Japan Waterworks Association, May 2011, p. 352-353

このようにFPの測定は比較的煩雑な操作を伴わず、必要試料量も少ないが、測定時間は、試料の膜閉塞物質量によるものの、1〜3時間程度が標準的であり、また、専用の測定装置が必要であることから、現場における連続モニタリング指標としては、必ずしも適しているとは言い難い。また、試料数が多くなると、最適処理条件の決定に膨大な時間を必要とする。   As described above, FP measurement does not involve a relatively complicated operation and requires a small amount of sample. However, although the measurement time depends on the amount of the membrane-occluding substance in the sample, it is typically about 1 to 3 hours. Therefore, it is not necessarily suitable as a continuous monitoring index in the field. In addition, when the number of samples increases, it takes a lot of time to determine the optimum processing conditions.

また、台風などを含む降雨、融雪期のように、水質が時間単位で急激に変化する場合、短時間で膜閉塞度評価指標を求めて被処理水の膜閉塞性を評価して運転条件等を決定することが必要になる。   Also, when the water quality changes abruptly in units of time, such as during rainy and snowmelt periods, including typhoons, etc., operating conditions are determined by determining the membrane occlusion evaluation index in a short time and evaluating the membrane occlusion of the treated water. It will be necessary to determine.

以上のように従来法では、水道原水等の被処理水に含まれる膜閉塞物質の含有量を正確かつ簡単に、そして迅速に測定することができなかった。また、それに伴って、膜処理装置をトラブルなく継続して運転することが困難であった。   As described above, according to the conventional method, the content of the membrane-occluding substance contained in the water to be treated such as raw water for tap water cannot be measured accurately, simply and quickly. Accordingly, it has been difficult to continuously operate the membrane processing apparatus without any trouble.

本発明の目的は、水道原水等の被処理水に含まれる膜閉塞物質を正確かつ簡単に、そして迅速に測定して被処理水を評価する方法、その評価を行う手段を備える膜処理装置、およびその膜処理装置の運転方法を提供することにある。   An object of the present invention is to accurately and easily measure a membrane plugging substance contained in water to be treated, such as raw water for water supply, quickly, and to evaluate the water to be treated, a membrane treatment apparatus having means for performing the evaluation, Another object of the present invention is to provide a method for operating the film processing apparatus.

本発明者は、上記課題を解決すべく鋭意研究を重ね、紫外線吸光度発現物質よりも多糖様物質の方が膜閉塞において遥かに重大な影響を与え、被処理水の膜閉塞性と相関性が高いのは、紫外線吸光度発現物質の存在量ではなく、多糖様物質の存在量であることを見出した。そして、近年、測定技術が急速に進歩している、いくつかのナノ粒子計測方法を用いてナノ粒子数濃度とFPに代表される膜閉塞度評価指標とに良好な相関関係が存在することを見出し、本発明を完成させた。   The present inventor has intensively studied to solve the above-mentioned problems, and the polysaccharide-like substance has a much more significant effect on the membrane occlusion than the UV light-absorbing substance and has a correlation with the membrane occlusion of the water to be treated. It has been found that the higher is not the amount of the substance exhibiting UV absorbance, but the amount of the polysaccharide-like substance. In recent years, there has been a rapid correlation between the nanoparticle number concentration and the membrane occlusion evaluation index typified by FP, using several nanoparticle measurement methods that have been rapidly advanced in measurement technology. The headline and the present invention were completed.

本発明は、分離膜を用いて処理する被処理水の膜閉塞性の評価方法であって、前記被処理水のナノ粒子数濃度を測定した後、予め求めたナノ粒子数濃度と膜閉塞度評価指標との関係から、前記被処理水の膜閉塞性を評価する、被処理水の膜閉塞性の評価方法である。
このような被処理水の膜閉塞性の評価方法を、以下では「本発明の評価方法」ともいう。
The present invention is a method for evaluating the membrane clogging property of water to be treated that is treated using a separation membrane, and after measuring the concentration of nanoparticles in the water to be treated, the concentration of the number of nanoparticles and the degree of membrane clogging obtained in advance are measured. This is a method for evaluating the membrane blocking property of the water to be treated, which evaluates the membrane blocking property of the water to be treated from the relationship with the evaluation index.
Hereinafter, such a method for evaluating the water blocking property of water to be treated is also referred to as “the evaluation method of the present invention”.

本発明の評価方法は、ナノ粒子追跡解析法(NTA)、レーザー誘起破壊検知法(LIDB)、電気抵抗ナノパルス法(TRPS)または動的光散乱法(DLS)によって、前記被処理水の前記ナノ粒子数濃度を測定することが好ましい。   The evaluation method of the present invention includes the nanoparticle tracking analysis method (NTA), laser induced breakdown detection method (LIDB), electrical resistance nanopulse method (TRPS), or dynamic light scattering method (DLS). It is preferable to measure the particle number concentration.

本発明の評価方法は、前記被処理水における450nm未満の前記ナノ粒子数濃度を測定することが好ましい。   The evaluation method of the present invention preferably measures the nanoparticle number concentration of less than 450 nm in the water to be treated.

本発明の評価方法は、前記ナノ粒子追跡解析法(NTA)において用いるレーザーの波長が488nmまたは405nmであることが好ましい。   In the evaluation method of the present invention, the wavelength of the laser used in the nanoparticle tracking analysis method (NTA) is preferably 488 nm or 405 nm.

本発明の評価方法は、前記膜閉塞度評価指標が、FP、MFI(MFI0.45)、MFI−UF、MFI−NF、CFS−MFIUFまたはUMFIであることが好ましい。 In the evaluation method of the present invention, the membrane occlusion degree evaluation index is preferably FP, MFI (MFI 0.45 ), MFI-UF, MFI-NF, CFS-MFI UF, or UMFI.

また、本発明は、分離膜を用いて被処理水を処理してろ過水を得る膜処理装置であって、前記被処理水のナノ粒子数濃度を測定するためのナノ粒子数濃度測定手段を有し、予め求めたナノ粒子数濃度と膜閉塞度評価指標との関係に基づいて、前記ナノ粒子数濃度測定手段によって得られたナノ粒子数濃度から膜閉塞度評価指標を求めて前記被処理水の膜閉塞性を評価し、運転条件を選定することができる、膜処理装置である。
このような膜処理装置を、以下では「本発明の装置」ともいう。
Moreover, the present invention is a membrane treatment apparatus for obtaining filtered water by treating treated water using a separation membrane, comprising a nanoparticle number concentration measuring means for measuring the nanoparticle number concentration of the treated water. And determining the membrane occlusion degree evaluation index from the nanoparticle number concentration obtained by the nanoparticle number concentration measuring means based on the relationship between the nanoparticle number concentration and the membrane occlusion degree evaluation index determined in advance. It is a membrane processing apparatus that can evaluate the water blocking properties of water and select operating conditions.
Hereinafter, such a film processing apparatus is also referred to as “the apparatus of the present invention”.

さらに、本発明は、分離膜を用いて被処理水を処理してろ過水を得る膜処理装置の運転方法であって、前記被処理水のナノ粒子数濃度を測定するナノ粒子数濃度測定ステップと、予め求めたナノ粒子数濃度と膜閉塞度評価指標との関係に基づいて、前記ナノ粒子数濃度測定ステップによって得られたナノ粒子数濃度から膜閉塞度評価指標を求めて前記被処理水の膜閉塞性を評価し、運転条件を選定する運転条件選定ステップと、を備える、膜処理装置の運転方法である。
このような膜処理装置の運転方法を、以下では「本発明の運転方法」ともいう。
Furthermore, the present invention is a method for operating a membrane treatment apparatus for obtaining filtered water by treating treated water using a separation membrane, the nanoparticle number concentration measuring step for measuring the nanoparticle number concentration of the treated water And determining the membrane occlusion degree evaluation index from the nanoparticle number concentration obtained by the nanoparticle number concentration measurement step based on the relationship between the nanoparticle number concentration and the membrane occlusion degree evaluation index determined in advance. An operation condition selection step for evaluating the membrane blocking property and selecting an operation condition.
Hereinafter, such an operation method of the membrane treatment apparatus is also referred to as “operation method of the present invention”.

ナノ粒子数濃度は非常に簡単かつ迅速に測定することができるので、本発明によれば、水道原水等の被処理水に含まれる膜閉塞度評価指標を正確かつ簡単に、そして迅速に(例えば5〜15分程度の短時間で)、測定して被処理水を評価する方法、その評価を行う手段を備える膜処理装置、およびその膜処理装置の運転方法を提供することができる。   Since the nanoparticle number concentration can be measured very easily and quickly, according to the present invention, the membrane clogging degree evaluation index contained in the water to be treated such as raw water for tap water can be accurately, easily and quickly (for example, In a short time of about 5 to 15 minutes, it is possible to provide a method for measuring and evaluating the water to be treated, a membrane treatment apparatus provided with means for performing the assessment, and a method for operating the membrane treatment apparatus.

実施例1において得られたグラフである。2 is a graph obtained in Example 1. 実施例2において得られたグラフである。6 is a graph obtained in Example 2.

<本発明の評価方法>
本発明の評価方法について説明する。
本発明の評価方法では、被処理水のナノ粒子数濃度を測定する。
ナノ粒子数濃度の測定は、100nm以下のナノ粒子が評価できれば、何ら分析原理や測定条件について限定されないが、ナノ粒子追跡解析法(NTA)、レーザー誘起破壊検知法(LIDB)、電気抵抗ナノパルス法(TRPS)または動的光散乱法(DLS)によって行うことが好ましい。
<Evaluation method of the present invention>
The evaluation method of the present invention will be described.
In the evaluation method of the present invention, the concentration of nanoparticles in water to be treated is measured.
The measurement of the number concentration of nanoparticles is not limited in terms of analysis principle and measurement conditions as long as nanoparticles of 100 nm or less can be evaluated. Nanoparticle tracking analysis method (NTA), laser-induced breakdown detection method (LIDB), electric resistance nanopulse method (TRPS) or dynamic light scattering (DLS) is preferred.

ナノ粒子追跡解析法(NTA)について説明する。
ナノ粒子追跡解析法は、ナノ粒子トラッキング解析法ともいい、粒子のブラウン運動の速度が粒子径に依存することを利用し、NTA(Nano Tracking Analysis)技術により、粒子のブラウン運動パターンを計測することで、粒子径と個数の粒度分布グラフを得る方法である。
例えば特表2014−521967号公報に、その説明が記載されている。
なお、ナノ粒子追跡解析法をPTAと略する場合もある。
The nanoparticle tracking analysis method (NTA) will be described.
Nanoparticle tracking analysis method, also called nanoparticle tracking analysis method, uses the fact that the speed of the Brownian motion of the particle depends on the particle diameter, and measures the Brownian motion pattern of the particle using NTA (Nano Tracking Analysis) technology. This is a method for obtaining a particle size distribution graph of particle diameter and number.
For example, the description is described in JP-T-2014-521967.
The nanoparticle tracking analysis method may be abbreviated as PTA.

レーザー誘起破壊検知法(LIDB、Laser Induced Breakdown Detection)について説明する。
レーザー誘起破壊検知法は、ナノ秒パルスレーザーを、検知するナノ粒子を含む液体に集光させることで、ナノ粒子がレーザービームと交差するたびに生成するプラズマをセンサーによって検知し、得られたプラズマ統計値からサイズ分布と濃度を導き出す方法である。
The laser induced breakdown detection method (LIDB, Laser Induced Breakdown Detection) will be described.
In the laser-induced breakdown detection method, a nanosecond pulsed laser is focused on a liquid containing the nanoparticles to be detected, and the plasma generated each time the nanoparticles cross the laser beam is detected by a sensor. This is a method of deriving the size distribution and concentration from statistical values.

電気抵抗ナノパルス法(TRPS、Tunable Resistive Pulse Sensor)について説明する。
電気抵抗ナノパルス法は、ナノポアを挟んだ溶液中に電圧をかけると溶液中に含まれるナノ粒子が細孔を通過するが、その際に発生する電気抵抗ナノパルスから粒子の体積を求める(例えば、長いパルスほど体積の大きい粒子となる)方法である。
例えば特表2013−518268号公報に、その説明が記載されている。
The electrical resistance nanopulse method (TRPS, Tunable Resistive Pulse Sensor) will be described.
In the electric resistance nanopulse method, when a voltage is applied to a solution sandwiching nanopores, nanoparticles contained in the solution pass through pores, and the volume of the particles is obtained from the electric resistance nanopulse generated at that time (for example, a long length) This is a method in which particles become larger in volume as a pulse).
For example, the description is described in JP-T-2013-518268.

動的光散乱法(DLS)について説明する。
動的光散乱法(DLS)は、準弾性光散乱法(QELS)ともいい、懸濁液中の粒子または分子のブラウン運動がレーザー光を異なる強度で散乱させることを利用し、これらの強度の変化を解析することでブラウン運動の速度が得られるため、ストークス・アインシュタインの式を使用して粒径を求める方法である。
例えば特表2014−521967号公報に、その説明が記載されている。
The dynamic light scattering method (DLS) will be described.
Dynamic light scattering (DLS), also known as quasi-elastic light scattering (QELS), utilizes the Brownian motion of particles or molecules in suspension to scatter laser light at different intensities. Since the speed of Brownian motion can be obtained by analyzing the change, this is a method of obtaining the particle size using the Stokes-Einstein equation.
For example, the description is described in JP-T-2014-521967.

なお、本発明において、630〜680nmの波長のレーザーを使用する従来の分析装置では、本発明で評価しているナノ粒子数濃度の測定ができない場合がある。
ナノ粒子数濃度を動的光散乱法(DLS)によって測定する場合、使用レーザー波長を600nm以下にしたり、レーザー出力を従来よりも大きくするなどして、被処理水のナノ粒子数濃度を測定することができる。
In the present invention, a conventional analyzer using a laser with a wavelength of 630 to 680 nm may not be able to measure the concentration of the number of nanoparticles evaluated in the present invention.
When measuring the nanoparticle number concentration by dynamic light scattering (DLS), measure the nanoparticle number concentration of the water to be treated by setting the laser wavelength to 600 nm or less or increasing the laser output. be able to.

本発明の評価方法において被処理水のナノ粒子数濃度の測定は、ナノ粒子追跡解析法(NTA)によって行うことが好ましい。ナノ粒子追跡解析法(NTA)において、用いるレーザーの波長は、500nm以下が好ましく、488nmがより好ましく、405nmとすることがさらに好ましい。405nmのレーザー波長を使用する場合、装置の価格が高くなることがある。   In the evaluation method of the present invention, the measurement of the concentration of nanoparticles in the water to be treated is preferably performed by a nanoparticle tracking analysis method (NTA). In the nanoparticle tracking analysis method (NTA), the wavelength of the laser used is preferably 500 nm or less, more preferably 488 nm, and even more preferably 405 nm. When using a laser wavelength of 405 nm, the price of the device may be high.

本発明の評価方法では、上記のような方法によって、被処理水における450nm未満、好ましくは400nm未満、より好ましくは200nm未満、さらに好ましくは100nm未満のナノ粒子数濃度を測定することが好ましい。   In the evaluation method of the present invention, it is preferable to measure the nanoparticle number concentration in the water to be treated of less than 450 nm, preferably less than 400 nm, more preferably less than 200 nm, and still more preferably less than 100 nm by the method as described above.

本発明の評価方法では、上記のようにして被処理水のナノ粒子数濃度を測定した後、予め求めたナノ粒子数濃度と膜閉塞度評価指標との関係から、前記被処理水の膜閉塞性を評価する。
本発明者は鋭意検討し、ファウリングポテンシャル(FP)に代表される膜閉塞度評価指標とナノ粒子数濃度とは相関が高い関係(例えば相関係数が高い比例関係)を示すことがわかった。したがって、ナノ粒子数濃度と膜閉塞度評価指標との関係を予め求めておけば、ナノ粒子数濃度を測定することで、精度良く、膜閉塞度評価指標を知見し、前記被処理水の膜閉塞性を評価することができる。
In the evaluation method of the present invention, after measuring the nanoparticle number concentration of the water to be treated as described above, from the relationship between the nanoparticle number concentration and the membrane clogging degree evaluation index determined in advance, the membrane clogging of the water to be treated Assess sex.
The present inventor has intensively studied and found that the membrane blockage degree evaluation index represented by fouling potential (FP) and the nanoparticle number concentration have a high correlation (for example, a proportional relationship with a high correlation coefficient). . Therefore, if the relationship between the nanoparticle number concentration and the membrane occlusion degree evaluation index is obtained in advance, the membrane occlusion degree evaluation index can be obtained with high accuracy by measuring the nanoparticle number concentration, and the membrane of the water to be treated The occlusive property can be evaluated.

膜閉塞度評価指標について説明する。
膜閉塞度評価指標として、ファウリングポテンシャル(FP)、MFI(MFI0.45)、MFI−UF、MFI−NF、CFS−MFIUF、UMFIを好適例として挙げられる。ただし、その他の被処理水の膜閉塞度評価方法であってもよい。
The membrane occlusion degree evaluation index will be described.
Preferable examples of the membrane occlusion degree evaluation index include fouling potential (FP), MFI (MFI 0.45 ), MFI-UF, MFI-NF, CFS-MFI UF and UMFI. However, other methods for evaluating the degree of blockage of water to be treated may be used.

ファウリングポテンシャル(FP)の測定方法を説明する。
初めに、分離膜として公称孔径0.22μmの疎水性PVDF膜を用意し、この分離膜を撹拌式加圧セルに装着して、セルの撹拌子の回転速度:1,450rpm、全量定速ろ過(膜透過流束20m/日)の条件で、前記被処理水について加圧ろ過を行い、膜差圧が上昇した後、前記分離膜をセルから取り外し、1%−シュウ酸洗浄(洗浄時間60分、洗浄温度20℃)を行い(好ましくはさらにスポンジを用いた膜面洗浄を行い)、その後、再度、前記シュウ酸洗浄後の前記分離膜を前記セルに装着した上で、上記の加圧ろ過によって生じたろ液を用いてろ過を行い、再び膜差圧を測定する。そして、この膜差圧とろ過開始時の膜差圧の差(m−Aq,at25℃)を総ろ過水量(m3/m2−膜)で除した値を被処理水のファウリングポテンシャル(FP)とする。
A method for measuring the fouling potential (FP) will be described.
First, a hydrophobic PVDF membrane having a nominal pore size of 0.22 μm is prepared as a separation membrane, and this separation membrane is attached to a stirring type pressure cell. The rotating speed of the stirring bar of the cell is 1,450 rpm, and the whole volume is constant rate filtration. Under the condition of (membrane permeation flux 20 m / day), the water to be treated was subjected to pressure filtration, and after the membrane differential pressure increased, the separation membrane was removed from the cell and washed with 1% -oxalic acid (washing time 60). (Preferably further cleaning of the membrane surface using a sponge), and then again mounting the separation membrane after the oxalic acid cleaning on the cell and then applying the pressure Filtration is performed using the filtrate produced by filtration, and the membrane pressure difference is measured again. The difference between the membrane pressure difference and the membrane pressure difference at the start of filtration (m-Aq, at 25 ° C.) divided by the total amount of filtered water (m 3 / m 2 -membrane) is the fouling potential of treated water ( FP).

MFI(MFI0.45)、MFI−UF、MFI−NF、CFS−MFIUFについて説明する。
MFI(Modified Fouling Index)では、平均孔径0.45μm、直径47mmのメンブレンフィルター(一般に、ミリポア社製、セルロース混合エステル(TYPE HA))を用い、これに圧力2.0bar(200kPa)で被処理水を通水し、ろ過を行う。
グラフの横軸及び縦軸をそれぞれ、ろ過水量:V(l)及びろ過時間/ろ過水量:t/V(s/l)として、20℃におけるろ過試験結果としてプロットし、t/V−Vカーブの直線となる部分の傾きを算出し、その値をMFIとする。
MFI−UF(Modified Fouling Index-Ultrafiltration)は、UF膜を利用して測定する場合であり、分画分子量13,000ダルトンのUF膜を使用する例がある。
MFI−NF(Nanofiltration-Modified Fouling Index)は、NF膜を使用して測定する場合であり、500〜1500ダルトンのNF膜を使用する例がある。
CFS−MFIUF(Crossflow Sampler-Modified Fouling Index-Ultrafiltration)は、MFI−UF法に供給する試験水の前処理として、クロスフローろ過方式の膜ろ過装置を使用し、その膜ろ過水をMFI−UF法の評価装置に供給する方式である。
参考資料:Desalination, Vol.32, pp.137-148 (1980)
参考資料:Journal of Membrane Science, Vol.197, pp.1-21 (2002)
参考資料:Desalination, Vol.192, pp.1-7 (2006)
参考資料:Water Research, Vol.45, pp.1639-1650 (2011)
MFI (MFI 0.45 ), MFI-UF, MFI-NF, and CFS-MFI UF will be described.
MFI (Modified Fouling Index) uses a membrane filter (generally manufactured by Millipore, cellulose mixed ester (TYPE HA)) having an average pore size of 0.45 μm and a diameter of 47 mm, and water to be treated at a pressure of 2.0 bar (200 kPa). Pass water and filter.
The horizontal axis and vertical axis of the graph are plotted as filtration test results at 20 ° C., with the filtered water amount: V (l) and the filtration time / filtered water amount: t / V (s / l), respectively, and the t / V-V curve. The slope of the part that becomes a straight line is calculated, and the value is defined as MFI.
MFI-UF (Modified Fouling Index-Ultrafiltration) is a case where measurement is performed using a UF membrane, and there is an example in which a UF membrane having a molecular weight cut off of 13,000 daltons is used.
MFI-NF (Nanofiltration-Modified Fouling Index) is a case where measurement is performed using an NF membrane, and there is an example using an NF membrane of 500 to 1500 daltons.
CFS-MFI UF (Crossflow Sampler-Modified Fouling Index-Ultrafiltration) uses a cross-flow filtration type membrane filtration device as a pretreatment of test water to be supplied to the MFI-UF method. This is a method of supplying to a legal evaluation device.
Reference materials: Desalination, Vol.32, pp.137-148 (1980)
Reference materials: Journal of Membrane Science, Vol.197, pp.1-21 (2002)
Reference materials: Desalination, Vol.192, pp.1-7 (2006)
Reference materials: Water Research, Vol.45, pp.1639-1650 (2011)

UMFIについて説明する。
UMFI(Unified Membrane Fouling Index)は、実際に使用する膜でミニモジュールを作成し、それを用いてろ過試験を行う方法である。従って、ろ過条件は、使用する膜や実機の運転条件などによって選択される。
実際の膜ろ過装置は、定速ろ過で運転される場合が多いため、ろ過試験においても定速ろ過が採用される事が多い。
ケーキろ過理論が適用できるので、ケーキろ過定数を算出し、それをUMFIとする。
参考資料:Environ. Sci.Technol., Vol.42, pp.714-720 (2008)
UMFI will be described.
The UMFI (Unified Membrane Fouling Index) is a method of creating a mini-module with a membrane actually used and performing a filtration test using the mini-module. Therefore, the filtration conditions are selected depending on the membrane used, the operating conditions of the actual machine, and the like.
Since an actual membrane filtration apparatus is often operated by constant speed filtration, constant speed filtration is often employed in filtration tests.
Since the cake filtration theory can be applied, the cake filtration constant is calculated and set as UMFI.
Reference: Environ. Sci. Technol., Vol.42, pp.714-720 (2008)

本発明の評価方法において、被処理水は、分離膜を用いて処理する水であれば特に限定されない。
ここで分離膜も限定されない。分離膜として、限外ろ過膜(UF膜)、精密ろ過膜(MF膜)、逆浸透膜(RO膜)、ナノろ過膜(NF膜)などが挙げられる。
被処理水として、具体的には、水道原水(河川水、地下水など)、海水、生物処理水が挙げられる。
In the evaluation method of the present invention, the water to be treated is not particularly limited as long as it is water treated using a separation membrane.
Here, the separation membrane is not limited. Examples of the separation membrane include an ultrafiltration membrane (UF membrane), a microfiltration membrane (MF membrane), a reverse osmosis membrane (RO membrane), and a nanofiltration membrane (NF membrane).
Specific examples of water to be treated include raw water for rivers (river water, groundwater, etc.), seawater, and biologically treated water.

前記被処理水について本発明の評価方法に供する前に、前処理として、粒径が0.45μm以上の粒子を取り除くことが好ましい。浄水処理、膜分離活性汚泥法(MBR)、海水淡水化(RO膜とその前処理用MF膜やUF膜)、用水処理などに使用する膜ろ過プロセスの膜閉塞物質は、膜孔径と同等かそれよりも小さい物質であり、その大きさは概ね0.1〜0.2μm以下であるが、それらをナノ粒子解析装置で分析を行う場合、0.45μm以上の粒子が測定の妨害因子となり得るためである。前記被処理水について本発明の評価方法に供する前に粒径が0.45μm以上の粒子を取り除く手段としては、孔径が0.45μm程度のメンブレンフィルターでろ過する手段が好ましい。前処理に使用する膜(メンブレンフィルター等)の孔径は、評価すべきナノ粒子が前処理で除去されなければ孔径が0.45μmでなくてもよく、0.22μmがより好ましく、0.2μmがより好ましく、0.1μmがさらに好ましい。妨害物質をより除去でき、膜閉塞に影響するナノ粒子のみが測定できる傾向があるからである。ただし、孔径が小さすぎる膜を用いて前処理を行うと、評価すべきナノ粒子が前処理で除去されてしまう場合がある。
前処理に使用する膜は親水性の膜が好ましく、親水化処理を行ったPVDF、PES、PSの材質の膜がより好ましく、また、親水性の材質であるCAでも構わない。
Before subjecting the water to be treated to the evaluation method of the present invention, it is preferable to remove particles having a particle size of 0.45 μm or more as a pretreatment. Is the membrane clogging substance used in membrane filtration processes used for water purification, membrane separation activated sludge process (MBR), seawater desalination (RO membrane and its pretreatment MF membrane and UF membrane), water treatment, etc., equal to the membrane pore size? It is a smaller substance, and its size is about 0.1 to 0.2 μm or less. However, when they are analyzed with a nanoparticle analyzer, particles of 0.45 μm or more can be a hindrance to measurement. Because. As a means for removing particles having a particle diameter of 0.45 μm or more before being subjected to the evaluation method of the present invention for the water to be treated, a means for filtering with a membrane filter having a pore diameter of about 0.45 μm is preferable. The pore diameter of the membrane (membrane filter, etc.) used for the pretreatment is not limited to 0.45 μm unless the nanoparticles to be evaluated are removed by the pretreatment, more preferably 0.22 μm, and 0.2 μm. More preferred is 0.1 μm. This is because interfering substances can be removed more and only nanoparticles that affect membrane blockage tend to be measured. However, if pretreatment is performed using a film having a pore size that is too small, nanoparticles to be evaluated may be removed by the pretreatment.
The membrane used for the pretreatment is preferably a hydrophilic membrane, more preferably a membrane made of PVDF, PES, or PS that has been subjected to a hydrophilic treatment, and may be CA, which is a hydrophilic material.

<本発明の装置、本発明の運転方法>
次に、本発明の装置について説明する。
本発明の装置は、前記被処理水のナノ粒子数濃度を測定するためのナノ粒子数濃度測定手段を有する。
ナノ粒子数濃度測定手段として、前述の本発明の評価方法における、ナノ粒子追跡解析法(NTA)、レーザー誘起破壊検知法(LIDB)、電気抵抗ナノパルス法(TRPS)または動的光散乱法(DLS)を行うことができる装置を用いることができる。
<Apparatus of the present invention, operation method of the present invention>
Next, the apparatus of the present invention will be described.
The apparatus of this invention has a nanoparticle number concentration measuring means for measuring the nanoparticle number concentration of the said to-be-processed water.
As a nanoparticle number concentration measuring means, the nanoparticle tracking analysis method (NTA), laser induced breakdown detection method (LIDB), electric resistance nanopulse method (TRPS) or dynamic light scattering method (DLS) in the evaluation method of the present invention described above. ) Can be used.

このような本発明の装置は、前述の本発明の評価方法の場合と同様に、予め求めたナノ粒子数濃度と膜閉塞度評価指標との関係に基づいて、前記ナノ粒子数濃度測定手段によって得られたナノ粒子数濃度から膜閉塞度評価指標を求めて前記被処理水の膜閉塞性を、正確かつ簡単に、そして迅速に(例えば5〜15分程度の短時間で)、評価することができる。よって、その結果、運転条件(膜透過流束、薬品洗浄の頻度など)を迅速に最適化するように選定することができるので、トラブルなく装置を運転することができる。   As in the case of the evaluation method of the present invention described above, such an apparatus of the present invention uses the nanoparticle number concentration measuring means based on the relationship between the nanoparticle number concentration determined in advance and the membrane occlusion degree evaluation index. Obtaining a membrane clogging degree evaluation index from the obtained nanoparticle number concentration, and evaluating the membrane clogging property of the water to be treated accurately, easily and quickly (for example, in a short time of about 5 to 15 minutes). Can do. As a result, the operating conditions (membrane permeation flux, frequency of chemical cleaning, etc.) can be selected so as to be quickly optimized, so that the apparatus can be operated without any trouble.

また、このような本発明の装置は、本発明の運転方法を実施することができる。   Moreover, such an apparatus of the present invention can implement the operation method of the present invention.

なお、本発明の装置および本発明の運転方法において、ナノ粒子数濃度の測定方法、ナノ粒子追跡解析法(NTA)において用いるレーザーの波長、ナノ粒子の粒子径、膜閉塞度評価指標等の好適態様は、本発明の評価方法の場合と同様とすることができる。   In addition, in the apparatus of the present invention and the operation method of the present invention, the measurement method of the nanoparticle number concentration, the wavelength of the laser used in the nanoparticle tracking analysis method (NTA), the particle diameter of the nanoparticle, the evaluation index of the membrane occlusion, etc. The aspect can be the same as in the evaluation method of the present invention.

以下に本発明の実施例を記す。本発明は以下の実施例に限定されない。   Examples of the present invention will be described below. The present invention is not limited to the following examples.

<実施例1>
いくつかの種類の水道原水を用意し、0.45μmのメンブレンフィルターを用いてろ過したものを供試水とした。そして、各々の供試水について、ファウリングポテンシャル(FP)およびナノ粒子数濃度を測定した。
<Example 1>
Several types of raw tap water were prepared and filtered using a 0.45 μm membrane filter as test water. And about each test water, the fouling potential (FP) and the nanoparticle number density | concentration were measured.

ファウリングポテンシャル(FP)の測定方法について説明する。
初めに、公称孔径0.22μmの疎水性PVDF膜(ミリポア社製、GVHP、直径25mm)を使用し、これを撹拌式加圧セルに装着し、HPLC用送液ポンプで加圧ろ過を行った。ろ過は、セルの撹拌子を1,450rpmで回転させながら全量定速ろ過(膜透過流束20m/日)で行い、膜差圧がある程度以上上昇した後、膜をセルから取り外し、1%−シュウ酸洗浄(洗浄時間60分、洗浄温度20℃程度)と膜面のスポンジ洗浄を行った。洗浄後、膜をセルに装着し、供試水のGVHP膜ろ過水でろ過を行い、再び膜差圧を測定した。この膜差圧とろ過開始時の膜差圧の差(m−Aq,at25℃)を総ろ過水量(m3/m2−膜)で除した値を供試水のファウリングポテンシャル(FP)とした。
A method for measuring the fouling potential (FP) will be described.
First, a hydrophobic PVDF membrane (Millipore, GVHP, diameter 25 mm) having a nominal pore size of 0.22 μm was used, and this was attached to a stirring type pressure cell, and pressure filtration was performed with a liquid feed pump for HPLC. . Filtration is performed by constant volume filtration (membrane permeation flux 20 m / day) while rotating the stirring bar of the cell at 1,450 rpm. After the membrane differential pressure has risen to some extent, the membrane is removed from the cell and 1%- Oxalic acid cleaning (cleaning time 60 minutes, cleaning temperature about 20 ° C.) and sponge cleaning of the membrane surface were performed. After washing, the membrane was attached to the cell, filtered with GVHP membrane filtered water of the test water, and the membrane differential pressure was measured again. The difference between the membrane pressure difference and the membrane pressure difference at the start of filtration (m-Aq, at 25 ° C.) divided by the total amount of filtered water (m 3 / m 2 -membrane) is the fouling potential (FP) of the test water. It was.

ナノ粒子数濃度(個/mL)をナノ粒子追跡解析法(NTA)によって求めた。
具体的には、マイクロトラック社製、Zeta View PMX110を用いた。また、測定においては488nmのレーザー波長を用いた。
測定の結果、ピーク粒径は0.12μmであった。
The nanoparticle number concentration (pieces / mL) was determined by nanoparticle tracking analysis (NTA).
Specifically, Zeta View PMX110 manufactured by Microtrack Co. was used. In the measurement, a laser wavelength of 488 nm was used.
As a result of the measurement, the peak particle size was 0.12 μm.

測定された各供試水のFPとナノ粒子数濃度との関係を示すグラフを、図1に示す。
図1に示すように、FPとナノ粒子数濃度とは相関係数が高い関係を示すことがわかった。
したがって、図1を用いれば、ナノ粒子数濃度を測定することで、精度良く、FPを知見することができると言える。
A graph showing the relationship between the measured FP of each test water and the nanoparticle number concentration is shown in FIG.
As shown in FIG. 1, it was found that FP and the nanoparticle number concentration show a high correlation coefficient.
Therefore, if FIG. 1 is used, it can be said that FP can be known accurately by measuring the nanoparticle number concentration.

<実施例2>
ナノ粒子数濃度を、ナノ粒子追跡解析法(NTA)を測定原理とした分析装置(PMX社製:ZetaView PMX110、仕様:レーザー波長488nm、レーザー出力40mW)で評価した。
試料には、水道原水(20種類)、水道原水の凝集処理水AまたはBを使用した。
これら凝集処理水は、2種類の河川水(原水)の各々にポリ塩化アルミニウム(PAC)を添加し、急速撹拌(130rpm×3分)を行い、3分静置して得た。また、凝集処理水として、PACの添加量を変えたものをいくつか用意した。
分析は、各試料を0.45μmメンブレンフィルターで前処理した後に行った。
図2にナノ粒子解析装置で測定したナノ粒子数濃度と膜閉塞度評価指標であるFPとの測定結果の関係を示す。なお、FPは実施例1と同様の方法で測定した。
<Example 2>
The nanoparticle number concentration was evaluated with an analyzer (manufactured by PMX: ZetaView PMX110, specification: laser wavelength 488 nm, laser output 40 mW) based on the nanoparticle tracking analysis method (NTA) as a measurement principle.
As samples, raw tap water (20 types) and aggregated treated water A or B of tap raw water were used.
These agglomerated treated water was obtained by adding polyaluminum chloride (PAC) to each of two kinds of river water (raw water), rapidly stirring (130 rpm × 3 minutes), and allowing to stand for 3 minutes. In addition, several agglomerated waters with different PAC addition amounts were prepared.
Analysis was performed after each sample was pretreated with a 0.45 μm membrane filter.
FIG. 2 shows the relationship between the measurement results of the nanoparticle number concentration measured by the nanoparticle analyzer and the FP which is a membrane blockage degree evaluation index. The FP was measured by the same method as in Example 1.

図2に示すように、FPとナノ粒子数濃度とは相関係数が高い関係を示すことがわかった。
したがって、図2を用いれば、ナノ粒子数濃度を測定することで、精度良く、被処理水のFPを求めることができると言える。
As shown in FIG. 2, it was found that FP and nanoparticle number concentration have a high correlation coefficient.
Therefore, if FIG. 2 is used, it can be said that FP of to-be-processed water can be calculated | required accurately by measuring a nanoparticle number density | concentration.

Claims (7)

分離膜を用いて処理する被処理水の膜閉塞性の評価方法であって、
前記被処理水のナノ粒子数濃度を測定した後、予め求めたナノ粒子数濃度と膜閉塞度評価指標との関係から、前記被処理水の膜閉塞性を評価する、被処理水の膜閉塞性の評価方法。
A method for evaluating the membrane blocking properties of water to be treated using a separation membrane,
After measuring the nanoparticle number concentration of the water to be treated, the membrane clogging of the water to be treated is evaluated from the relationship between the nanoparticle number concentration determined in advance and the membrane clogging degree evaluation index. Evaluation method of sex.
ナノ粒子追跡解析法(NTA)、レーザー誘起破壊検知法(LIDB)、電気抵抗ナノパルス法(TRPS)または動的光散乱法(DLS)によって、前記被処理水の前記ナノ粒子数濃度を測定する、請求項1に記載の被処理水の膜閉塞性の評価方法。   The nanoparticle number concentration of the treated water is measured by a nanoparticle tracking analysis method (NTA), a laser-induced breakdown detection method (LIDB), an electric resistance nanopulse method (TRPS), or a dynamic light scattering method (DLS). The evaluation method of the film | membrane blockability of the to-be-processed water of Claim 1. 前記被処理水における450nm未満の前記ナノ粒子数濃度を測定する、請求項1または2に記載の被処理水の膜閉塞性の評価方法。   The evaluation method of the film obstruction | occlusion property of the to-be-processed water of Claim 1 or 2 which measures the said nanoparticle number density | concentration of less than 450 nm in the to-be-processed water. 前記ナノ粒子追跡解析法(NTA)において用いるレーザーの波長が488nmまたは405nmである、請求項1〜3のいずれかに記載の被処理水の膜閉塞性の評価方法。   The evaluation method of the film obstruction | occlusion property of the to-be-processed water in any one of Claims 1-3 whose wavelength of the laser used in the said nanoparticle tracking analysis method (NTA) is 488 nm or 405 nm. 前記膜閉塞度評価指標が、FP、MFI(MFI0.45)、MFI−UF、MFI−NF、CFS−MFIUFまたはUMFIである、請求項1〜4のいずれかに記載の被処理水の膜閉塞性の評価方法。 The membrane closure degree evaluation index, FP, MFI (MFI 0.45) , an MFI-UF, MFI-NF, CFS-MFI UF or UMFI, membrane clogging of the water to be treated according to any one of claims 1 to 4 Evaluation method of sex. 分離膜を用いて被処理水を処理してろ過水を得る膜処理装置であって、
前記被処理水のナノ粒子数濃度を測定するためのナノ粒子数濃度測定手段を有し、
予め求めたナノ粒子数濃度と膜閉塞度評価指標との関係に基づいて、前記ナノ粒子数濃度測定手段によって得られたナノ粒子数濃度から膜閉塞度評価指標を求めて前記被処理水の膜閉塞性を評価し、運転条件を選定することができる、膜処理装置。
A membrane treatment device for treating filtered water using a separation membrane to obtain filtered water,
Having a nanoparticle number concentration measuring means for measuring the nanoparticle number concentration of the water to be treated;
Based on the relationship between the nanoparticle number concentration obtained beforehand and the membrane blockage degree evaluation index, the membrane blockage degree evaluation index is obtained from the nanoparticle number concentration obtained by the nanoparticle number concentration measuring means, and the membrane of the water to be treated Membrane treatment equipment that can evaluate occlusive properties and select operating conditions.
分離膜を用いて被処理水を処理してろ過水を得る膜処理装置の運転方法であって、
前記被処理水のナノ粒子数濃度を測定するナノ粒子数濃度測定ステップと、
予め求めたナノ粒子数濃度と膜閉塞度評価指標との関係に基づいて、前記ナノ粒子数濃度測定ステップによって得られたナノ粒子数濃度から膜閉塞度評価指標を求めて前記被処理水の膜閉塞性を評価し、運転条件を選定する運転条件選定ステップと、
を備える、膜処理装置の運転方法。
A method of operating a membrane treatment apparatus for treating filtered water using a separation membrane to obtain filtered water,
A nanoparticle number concentration measuring step for measuring the nanoparticle number concentration of the water to be treated;
Based on the relationship between the nanoparticle number concentration and the membrane blockage degree evaluation index obtained in advance, the membrane occlusion degree evaluation index is obtained from the nanoparticle number concentration obtained by the nanoparticle number concentration measurement step, and the membrane of the water to be treated An operation condition selection step for evaluating the blockage and selecting the operation condition;
A method for operating a membrane treatment apparatus.
JP2015149968A 2015-03-03 2015-07-29 Method of evaluating membrane blockage of treated water and method of operating membrane processing apparatus Active JP6530996B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015040969 2015-03-03
JP2015040969 2015-03-03

Publications (2)

Publication Number Publication Date
JP2016165708A true JP2016165708A (en) 2016-09-15
JP6530996B2 JP6530996B2 (en) 2019-06-12

Family

ID=56897954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015149968A Active JP6530996B2 (en) 2015-03-03 2015-07-29 Method of evaluating membrane blockage of treated water and method of operating membrane processing apparatus

Country Status (1)

Country Link
JP (1) JP6530996B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114636689A (en) * 2022-05-23 2022-06-17 武汉七斗光电科技有限公司 Tibetan medicine raw ore component quantitative detection method and system based on LIBS technology
JP7472070B2 (en) 2021-04-19 2024-04-22 水ing株式会社 Method for predicting membrane clogging rate of filtration membrane for water purification treatment and membrane filtration treatment method for raw water for water purification treatment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111638A (en) * 2005-10-20 2007-05-10 Sumitomo Heavy Ind Ltd Membrane water purification system and membrane water purification method
JP2010012362A (en) * 2006-10-05 2010-01-21 Ngk Insulators Ltd Method of treating organic drainage
WO2013091118A1 (en) * 2011-12-22 2013-06-27 Nanotion Ag Method and apparatus for analysis of samples containing small particles
JP2013223846A (en) * 2012-04-23 2013-10-31 Swing Corp Evaluation method of treated water, membrane treatment apparatus, and operation method of the same
JP2014521967A (en) * 2011-08-05 2014-08-28 ナノサイト・リミテッド Optical detection and analysis of particles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111638A (en) * 2005-10-20 2007-05-10 Sumitomo Heavy Ind Ltd Membrane water purification system and membrane water purification method
JP2010012362A (en) * 2006-10-05 2010-01-21 Ngk Insulators Ltd Method of treating organic drainage
JP2014521967A (en) * 2011-08-05 2014-08-28 ナノサイト・リミテッド Optical detection and analysis of particles
WO2013091118A1 (en) * 2011-12-22 2013-06-27 Nanotion Ag Method and apparatus for analysis of samples containing small particles
JP2013223846A (en) * 2012-04-23 2013-10-31 Swing Corp Evaluation method of treated water, membrane treatment apparatus, and operation method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7472070B2 (en) 2021-04-19 2024-04-22 水ing株式会社 Method for predicting membrane clogging rate of filtration membrane for water purification treatment and membrane filtration treatment method for raw water for water purification treatment
CN114636689A (en) * 2022-05-23 2022-06-17 武汉七斗光电科技有限公司 Tibetan medicine raw ore component quantitative detection method and system based on LIBS technology

Also Published As

Publication number Publication date
JP6530996B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
Xiong et al. Fouling of microfiltration membranes by flowback and produced waters from the Marcellus shale gas play
JP4867413B2 (en) Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus
JP4793193B2 (en) Aggregation apparatus and aggregation method
JP4862576B2 (en) Aggregation apparatus and aggregation method
JP6137176B2 (en) Water treatment method
JP2018012062A (en) Membrane blockage estimation method and membrane blockage estimation device of reverse osmosis membrane supply water, and operation management method of water treatment equipment using the membrane blockage estimation method
KR100720139B1 (en) Operation control system using water analysis of membrane filtration device and method thereof
Zhan et al. Application of fouling index for forward osmosis hybrid system: A pilot demonstration
JP2012213676A (en) Water quality evaluation method and operation management method for water treatment apparatus
JP6530996B2 (en) Method of evaluating membrane blockage of treated water and method of operating membrane processing apparatus
Frick et al. Evaluation of pretreatments for a blowdown stream to feed a filtration system with discarded reverse osmosis membranes
JP6441712B2 (en) Method for evaluating membrane clogging of treated water
JP5863176B2 (en) Method for evaluating water to be treated, membrane treatment apparatus, water treatment plant, and operation method thereof
Roorda et al. Understanding membrane fouling in ultrafiltration of WWTP-effluent
JP6486799B2 (en) MEMBRANE OBSTRUCTION EVALUATION METHOD FOR TREATED WATER, MEMBRANE FILTER APPARATUS USED FOR THE MEMBRANE OBSTRUCTION EVALUATION METHOD, AND MEMBRANE FILTRATION METHOD FOR TREATED WATER WITH DETERMINING MEMBRANE OBSTRUCTION EVALUATION INDEX
JP2018012061A (en) Membrane obstructiveness evaluation method of reverse osmotic membrane feed water, operation control method of water treatment device using the membrane obstructiveness evaluation method
Mueller et al. Ceramic membranes for water treatment
JP5935967B2 (en) Flocculant addition amount determination method, water treatment method, and water treatment apparatus
JP7113454B2 (en) Water treatment method and equipment
Lipp et al. Characterization of nanoparticulate fouling and breakthrough during low-pressure membrane filtration
Habib et al. Predicting colloidal fouling of tap water by silt density index (SDI): Pore blocking in a membrane process
EP3056259B1 (en) Device for measuring membrane fouling index
JP7314101B2 (en) Membrane blockage evaluation method for water to be treated, method for determining conditions for coagulation treatment of water to be treated, and film blockage evaluation device for water to be treated
JP4517615B2 (en) Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus
JP6859707B2 (en) Water quality evaluation method, quantification method and water treatment method of water to be treated

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170731

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170814

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190520

R150 Certificate of patent or registration of utility model

Ref document number: 6530996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250