JP2007111638A - Membrane water purification system and membrane water purification method - Google Patents

Membrane water purification system and membrane water purification method Download PDF

Info

Publication number
JP2007111638A
JP2007111638A JP2005306212A JP2005306212A JP2007111638A JP 2007111638 A JP2007111638 A JP 2007111638A JP 2005306212 A JP2005306212 A JP 2005306212A JP 2005306212 A JP2005306212 A JP 2005306212A JP 2007111638 A JP2007111638 A JP 2007111638A
Authority
JP
Japan
Prior art keywords
filtration
membrane
raw water
water purification
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005306212A
Other languages
Japanese (ja)
Inventor
Kazuo Sekizawa
一夫 関沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2005306212A priority Critical patent/JP2007111638A/en
Publication of JP2007111638A publication Critical patent/JP2007111638A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane water purification system and a membrane water purification method which can inhibit clogging of a filtration membrane while suppressing energy for operation. <P>SOLUTION: The membrane water purification system 1 comprises a fine particle counter 9 for counting the number of fine particles having a specific particle diameter in fine particles of suspended solid in raw water, and a control part 15 for switching the filtration method of the raw water carried out by the filtration membrane 3a between dead end filtration and cross flow filtration based on the number of the counted fine particles having the specific particle diameter. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、原水に含まれる微粒子を濾過膜を用いて除去する膜浄水設備及び膜浄水方法に関するものである。   The present invention relates to a membrane water purification facility and a membrane water purification method for removing fine particles contained in raw water using a filtration membrane.

従来、このような分野の技術として、下記特許文献1記載の膜浄水設備が知られている。この膜浄水設備は、濾過膜により原水を濾過することで、原水中の懸濁物質を除去して、膜ろ過水を得るものである。この種の膜浄水設備における濾過膜の濾過方式として、濾過膜に導入される原水の全量について濾過を行うデッドエンド濾過と、原水を濾過膜に沿って通過させ循環させながらその原水の一部についてのみ濾過を行うクロスフロー濾過とがある。
特許3028447号公報
Conventionally, a membrane water purification facility described in Patent Document 1 below is known as a technique in such a field. This membrane water purification equipment removes suspended matter in raw water by filtering raw water through a filtration membrane, thereby obtaining membrane filtered water. As a filtration method of the filtration membrane in this type of membrane water purification equipment, dead-end filtration for filtering the entire raw water introduced into the filtration membrane, and a part of the raw water while circulating the raw water through the filtration membrane There is cross-flow filtration that only performs filtration.
Japanese Patent No. 3028447

しかしながら、デッドエンド濾過方式による濾過では、原水の循環量が少ないので小さいエネルギーで運転が可能である一方、濾過膜の目詰まりを発生させやすいという欠点がある。これに対して、クロスフロー濾過方式による濾過では、濾過膜の目詰まりを発生させにくい一方で、原水を多く循環させるための大きなエネルギーが必要であるという欠点がある。このような膜浄水設備にあっては、省エネルギー化と目詰まりの抑制とを両立させるために、上記デッドエンド濾過とクロスフロー濾過の2方式を適宜切り替えながら膜浄水設備を運転することが考えられる。そして、このような運転においても、更なる省エネルギー化及び目詰まりの抑制が望まれる。   However, the filtration by the dead end filtration method has a drawback that it can be operated with a small amount of energy because the circulation amount of the raw water is small, and the filter membrane is easily clogged. On the other hand, the filtration by the cross flow filtration method has a drawback that it is difficult to cause clogging of the filtration membrane, but requires a large amount of energy for circulating a large amount of raw water. In such a membrane water purification facility, in order to achieve both energy saving and suppression of clogging, it is conceivable to operate the membrane water purification facility while appropriately switching between the two methods of dead end filtration and crossflow filtration. . Even in such an operation, further energy saving and suppression of clogging are desired.

そこで、本発明は、運転のエネルギーを抑えながら、濾過膜の目詰まりを抑制することができる膜浄水設備及び膜浄水方法を提供することを目的とする。   Then, an object of this invention is to provide the membrane water purification equipment and membrane water purification method which can suppress clogging of a filtration membrane, suppressing the energy of driving | operation.

上述のような膜浄水設備では、懸濁物質を含む原水自体が、濾過膜において目詰まりを発生し易い性状であるときには、濾過方式としてクロスフロー濾過を選択し目詰まりを抑えることが好ましい。それに対し、原水が比較的目詰まりを発生し難い性状であるときには、デッドエンド濾過を選択し運転のエネルギーを抑えることが好ましい。このように、運転のエネルギーを抑えながら濾過膜の目詰まりを抑制する上では、原水の濾過膜での目詰まりの発生し易さを検知し、それに応じてタイミング良く濾過方式を切り替えることが望まれる。なお、以下の説明においては、濾過膜における目詰まりの発生し易さを示す上記のような原水の性状を、「目詰まり容易性」と称する。   In the above-described membrane water purification equipment, when the raw water itself containing suspended solids is likely to be clogged in the filtration membrane, it is preferable to select the cross flow filtration as the filtration method to suppress clogging. On the other hand, when the raw water has a property that is relatively difficult to cause clogging, it is preferable to select dead-end filtration to reduce the operation energy. As described above, in order to suppress clogging of the filtration membrane while suppressing operation energy, it is desirable to detect the ease of clogging of the raw water filtration membrane and switch the filtration method at a suitable timing accordingly. It is. In the following description, the property of the raw water as described above indicating the ease of clogging in the filtration membrane is referred to as “easy to clog”.

ここで、原水による膜の目詰まり容易性を表し得る一般的な指標としては、原水の「FI値(Fouling Index)」がある。しかし、FI値は、原水について連続的に自動測定することが困難であるので、上記濾過方式を切り替える際の判断基準として採用するとすれば、設備の連続的な運転が困難となる。そこで、本発明者らは、原水の目詰まり容易性を表し得る値で、FI値の代わりに濾過方式の切り替え基準として採用しうる測定値を見出すべく、鋭意研究を行った。その結果、本発明者らは、原水中の懸濁物質の微粒子数を粒径ごとに分けて計数した場合、その粒径の中に、微粒子数とFI値とが高い相関関係を示すものが存在することを見出し、本発明を完成するに至った。   Here, as a general index that can express the ease of clogging of the membrane by the raw water, there is a “FI value (Fouling Index)” of the raw water. However, since it is difficult to continuously measure the FI value of raw water continuously, if it is adopted as a criterion for switching the filtration method, continuous operation of the facility becomes difficult. Accordingly, the present inventors have conducted intensive research to find a measurement value that can be used as a reference for switching the filtration method instead of the FI value, with a value that can represent the ease of clogging of raw water. As a result, when the present inventors counted the number of fine particles of suspended solids in raw water separately for each particle size, the particle size shows a high correlation between the number of fine particles and the FI value. The present invention has been found and the present invention has been completed.

本発明に係る膜浄水設備は、原水に含まれる懸濁物質を濾過膜を用いて除去する膜浄水設備において、原水中の懸濁物質の微粒子のうち特定の粒径を有する微粒子の数を計数する微粒子計数手段と、微粒子計数手段によって計数された特定の粒径を有する微粒子の数に基づいて、濾過膜で行われる原水の濾過の方式をデッドエンド濾過とクロスフロー濾過との間で切り替える制御手段と、を備えたことを特徴とする。   The membrane water purification equipment according to the present invention is a membrane water purification equipment that removes suspended substances contained in raw water using a filtration membrane, and counts the number of fine particles having a specific particle diameter among fine particles of suspended substances in raw water. Control for switching between raw-end filtration and dead-flow filtration based on the number of fine particles having a specific particle size counted by the fine particle counting means Means.

この膜浄水設備においては、原水中の懸濁物質の微粒子のうち特定の粒径を有する微粒子数が計数される。計数されたこの微粒子数に基づいて、濾過膜で行われる濾過の方式が切り替えられながら運転され、デッドエンド濾過とクロスフロー濾過とが行われる。この場合の濾過方式の切り替えの基準として、原水のFI値に高い相関関係を有する粒径の微粒子数を採用することにより、原水のFI値を測定することなく原水の目詰まり容易性が認識され、その目詰まり容易性に追従した濾過方式の切り替えが可能になる。すなわち、この膜浄水設備によれば、原水の目詰まり容易性に追従してタイミングよく濾過方式を切り替えることが可能になるので、運転のエネルギーを抑えながら、濾過膜の目詰まりを抑制することができる。   In this membrane water purification equipment, the number of fine particles having a specific particle size among the fine particles of suspended substances in raw water is counted. Based on the counted number of fine particles, the system is operated while switching the filtration method performed in the filtration membrane, and dead-end filtration and cross-flow filtration are performed. By adopting the number of fine particles having a particle size having a high correlation with the FI value of the raw water as a reference for switching the filtration method in this case, the ease of clogging of the raw water is recognized without measuring the FI value of the raw water. Thus, it is possible to switch the filtration method following the ease of clogging. That is, according to this membrane water purification equipment, it becomes possible to switch the filtration method in a timely manner following the ease of clogging of the raw water, so it is possible to suppress clogging of the filtration membrane while suppressing the energy of operation. it can.

また、制御手段は、特定の粒径を有する微粒子の数が閾値未満の場合には、濾過の方式をデッドエンド濾過にし、特定の粒径を有する微粒子の数が閾値以上の場合には、濾過の方式をクロスフロー濾過にするように、濾過の方式を切り替え、閾値は可変であると好適である。このような構成を採用することで、原水の処理速度が比較的高い高フラックス運転を行う場合や、原水の処理速度が比較的低い低フラックス運転を行う場合にも、それぞれに適切な閾値を選択することができるので、処理速度に応じた濾過方式の切り替えを行うことができる。   In addition, when the number of fine particles having a specific particle size is less than the threshold, the control means sets the filtration method to dead-end filtration, and when the number of fine particles having the specific particle size is greater than or equal to the threshold, the control means It is preferable that the filtering method is switched and the threshold value is variable so that the above method is cross flow filtration. By adopting such a configuration, even when performing high flux operation with a relatively high raw water treatment speed or low flux operation with a relatively low raw water treatment speed, select an appropriate threshold value for each. Therefore, the filtration method can be switched according to the processing speed.

また、本発明の膜浄水方法は、原水に含まれる懸濁物質を濾過膜を用いて除去する膜浄水方法において、原水中の懸濁物質の微粒子のうち特定の粒径を有する微粒子の数を計数する微粒子計数ステップと、微粒子計数ステップによって計数された特定の粒径を有する微粒子の数に基づいて、濾過膜で行われる原水の濾過の方式を、デッドエンド濾過とクロスフロー濾過との間で切り替える制御ステップと、を備えたことを特徴とする。   Further, the membrane water purification method of the present invention is a membrane water purification method for removing suspended substances contained in raw water using a filtration membrane, wherein the number of fine particles having a specific particle size among fine particles of suspended substances in raw water is determined. Based on the fine particle counting step to count and the number of fine particles having a specific particle size counted by the fine particle counting step, the raw water filtration method performed in the filtration membrane is between dead-end filtration and cross-flow filtration. And a control step for switching.

この膜浄水方法においては、原水中の懸濁物質の微粒子のうち特定の粒径を有する微粒子数が計数される。計数されたこの微粒子数に基づいて、濾過膜で行われる濾過の方式が切り替えられながら運転され、デッドエンド濾過とクロスフロー濾過とが行われる。この場合の濾過方式の切り替えの基準として、原水のFI値に高い相関関係を有する粒径の微粒子数を採用することにより、原水のFI値を測定することなく原水の目詰まり容易性が認識され、その目詰まり容易性に追従した濾過方式の切り替えが可能になる。すなわち、この膜浄水方法によれば、原水の目詰まり容易性に追従してタイミングよく濾過方式を切り替えることが可能になるので、運転のエネルギーを抑えながら、濾過膜の目詰まりを抑制することができる。   In this membrane water purification method, the number of fine particles having a specific particle size among the fine particles of suspended substances in raw water is counted. Based on the counted number of fine particles, the system is operated while switching the filtration method performed in the filtration membrane, and dead-end filtration and cross-flow filtration are performed. By adopting the number of fine particles having a particle size having a high correlation with the FI value of the raw water as a reference for switching the filtration method in this case, the ease of clogging of the raw water is recognized without measuring the FI value of the raw water. Thus, it is possible to switch the filtration method following the ease of clogging. That is, according to this membrane water purification method, it becomes possible to switch the filtration method in a timely manner following the ease of clogging of the raw water, so it is possible to suppress clogging of the filtration membrane while suppressing operation energy. it can.

本発明の膜浄水設備及び膜浄水方法によれば、運転のエネルギーを抑えながら、濾過膜の目詰まりを抑制することができる。   According to the membrane water purification equipment and the membrane water purification method of the present invention, clogging of the filtration membrane can be suppressed while suppressing operation energy.

以下、図面を参照しつつ本発明に係る膜浄水設備及び膜浄水方法の好適な一実施形態について詳細に説明する。   Hereinafter, a preferred embodiment of a membrane water purification facility and a membrane water purification method according to the present invention will be described in detail with reference to the drawings.

図1に示すように、膜浄水設備1は、導入した原水から懸濁物質を除去して膜ろ過水を得る設備であり、原水槽2及び膜濾過装置3を備えている。この膜浄水設備1には、懸濁物質を含んだ原水がラインL1を通じて導入され、一旦原水槽2に貯留される。そして、原水槽2の原水は、原水ポンプP2によりラインL2及びラインL11を通じて、膜濾過装置3の入口から導入される。   As shown in FIG. 1, the membrane water purification facility 1 is a facility that removes suspended substances from the introduced raw water to obtain membrane filtered water, and includes a raw water tank 2 and a membrane filtration device 3. In this membrane water purification equipment 1, raw water containing suspended substances is introduced through a line L 1 and temporarily stored in the raw water tank 2. And the raw | natural water of the raw | natural water tank 2 is introduce | transduced from the inlet_port | entrance of the membrane filtration apparatus 3 through the line L2 and the line L11 with the raw | natural water pump P2.

膜濾過装置3は、原水を濾過する濾過膜3aを有しており、導入した原水を濾過膜3aによって濾過する。そして、膜濾過装置3は、原水の濾過後の固体成分を濾過膜3aで捕捉すると共に、液体成分をラインL12を通じて出口から排出する。ラインL12から排出された液体は、膜ろ過水として一旦浄水池5に貯留され、図示しない後段の処理に送られる。また、膜濾過装置3には、濾過膜3aよりも上流側においてラインL13が接続されており、ラインL13上のバルブV13を開くことで、ラインL11から導入した原水の一部をラインL13から排出することができる。ラインL13から排出された原水は、循環ポンプP13によって再びラインL11を通じ、入口側から膜濾過装置3に導入される。なお、ここでは、濾過膜3aは、材料が酢酸セルロースであり、公称孔径0.01μmの内圧式中空糸UF膜によって構成されている。   The membrane filtration device 3 has a filtration membrane 3a for filtering the raw water, and the introduced raw water is filtered by the filtration membrane 3a. And the membrane filtration apparatus 3 discharges | emits a liquid component from an exit through the line L12 while capturing the solid component after filtration of raw | natural water with the filtration membrane 3a. The liquid discharged from the line L12 is temporarily stored in the water purification basin 5 as membrane filtrate and sent to a subsequent process (not shown). Further, a line L13 is connected to the membrane filtration device 3 on the upstream side of the filtration membrane 3a, and a part of the raw water introduced from the line L11 is discharged from the line L13 by opening the valve V13 on the line L13. can do. The raw water discharged from the line L13 is introduced into the membrane filtration device 3 from the inlet side through the line L11 again by the circulation pump P13. Here, the filtration membrane 3a is made of cellulose acetate, and is constituted by an internal pressure type hollow fiber UF membrane having a nominal pore diameter of 0.01 μm.

この膜浄水設備1においては、バルブV13の開閉及び循環ポンプP13のON/OFFによって原水の流動経路を変更することができ、このことで、膜濾過装置3における濾過方式を選択的に切り替えて運転することができる。すなわち、バルブV13を閉じ循環ポンプP13をOFFにした場合には、膜濾過装置3の入口から導入される原水は、全量が濾過膜3aによって濾過されることになる。つまり、この場合、濾過膜3aで行われる原水の濾過方式は、デッドエンド濾過である。このデッドエンド濾過で膜浄水設備1を運転する場合、原水の循環量が少ないので小さいエネルギーで運転が可能である一方、濾過膜3aの目詰まりが発生しやすいという欠点がある。   In the membrane water purification equipment 1, the flow path of the raw water can be changed by opening / closing the valve V13 and turning on / off the circulation pump P13, thereby selectively switching the filtration method in the membrane filtration device 3 and operating. can do. That is, when the valve V13 is closed and the circulation pump P13 is turned off, the entire amount of raw water introduced from the inlet of the membrane filtration device 3 is filtered by the filtration membrane 3a. That is, in this case, the raw water filtration method performed by the filtration membrane 3a is dead-end filtration. When the membrane water purification facility 1 is operated by this dead end filtration, since the circulation amount of the raw water is small, it can be operated with a small amount of energy, but there is a disadvantage that the filtration membrane 3a is easily clogged.

これに対し、バルブV13を開け循環ポンプP13をONにした場合、膜濾過装置3の入口から導入される原水は、濾過膜3aの膜面に沿って通過し循環しながら、その原水の一部が濾過膜3aで濾過され、残りはラインL13を通じて再び膜濾過装置3の入口へ導入されて循環することになる。つまり、この場合、濾過膜3aで行われる原水の濾過方式は、クロスフロー濾過である。このクロスフロー濾過で膜浄水設備1を運転する場合、濾過膜3aの膜面に沿って発生する原水の流れによって膜面が洗浄され、膜面に付着するの懸濁物質が押し流されるので、濾過膜3aの目詰まりを発生させにくい。その一方で、クロスフロー濾過による運転では、原水を多く循環させるための大きなエネルギーが必要であるという欠点がある。   On the other hand, when the valve V13 is opened and the circulation pump P13 is turned on, the raw water introduced from the inlet of the membrane filtration device 3 passes through the membrane surface of the filtration membrane 3a and circulates, while part of the raw water is circulated. Is filtered through the filtration membrane 3a, and the remainder is again introduced into the inlet of the membrane filtration device 3 through the line L13 and circulated. That is, in this case, the raw water filtration method performed by the filtration membrane 3a is cross flow filtration. When the membrane water purification facility 1 is operated by this cross flow filtration, the membrane surface is washed by the flow of raw water generated along the membrane surface of the filtration membrane 3a, and suspended substances adhering to the membrane surface are washed away. It is difficult to cause clogging of the film 3a. On the other hand, the operation by the cross flow filtration has a drawback that a large amount of energy is required for circulating a large amount of raw water.

このため、膜浄水設備1において、運転のエネルギーを抑えながら、濾過膜3aの目詰まりを抑制するためには、原水の目詰まり容易性に合わせて、上記2種類の濾過方式をタイミングよく切り替えながら運転することが好ましい。すなわち、原水の目詰まり容易性が小さい場合には、運転のエネルギーの節約を優先させるべく濾過方式をデッドエンド濾過とし、原水の目詰まり容易性が大きい場合には、濾過膜3aの目詰まり抑制を優先させるべく濾過方式をクロスフロー濾過とすることが望まれる。そして、この濾過方式をタイミングよく切り替えるためには、季節や天候等の諸条件によって随時変化する原水の目詰まり容易性を正しく検知することが重要である。   For this reason, in the membrane water purification facility 1, in order to suppress clogging of the filtration membrane 3a while suppressing operation energy, the above two types of filtration methods are switched in a timely manner in accordance with the ease of clogging of raw water. It is preferable to drive. That is, when the raw water is not easily clogged, the filtration method is set to dead end filtration in order to give priority to saving energy of operation, and when the raw water is easily clogged, clogging of the filter membrane 3a is suppressed. In order to prioritize the above, it is desired that the filtration method is cross flow filtration. And in order to switch this filtration system at a good timing, it is important to correctly detect the clogging ease of raw water that changes from time to time depending on various conditions such as season and weather.

ここで、懸濁物質を含む原水の性状を示す指標としては、FI値が一般的に用いられており、このFI値は、目詰まりの容易性を直接示す指標であるので、濾過方式の切り替え基準とすることも可能である。ところが、FI値は連続的に自動測定できないので、切り替え基準として原水のFI値を用いると、膜浄水設備1の円滑な連続運転が困難になる。   Here, the FI value is generally used as an index indicating the properties of raw water containing suspended solids, and this FI value is an index directly indicating the ease of clogging. It can also be a standard. However, since the FI value cannot be continuously and automatically measured, if the FI value of the raw water is used as the switching reference, smooth continuous operation of the membrane water purification facility 1 becomes difficult.

そこで、本発明者らは、濾過膜3aの目詰まりに関わっている懸濁物質の微粒子は、ほとんどが濾過膜3aの孔径に対応した特定の粒径のものであることを見出し、そのような特定の粒径を有する微粒子(以下「特定微粒子」という)の数の大小を、目詰まり容易性の指標として用いることができることを見出した。そして、膜浄水設備1では、原水の単位体積あたりに含まれる特定微粒子数を、FI値の代わりに濾過方式の切り替え基準として採用している。すなわち、この膜浄水設備1では、上記特定微粒子数が閾値未満の場合には、濾過方式がデッドエンド濾過とされ、上記特定微粒子数が閾値以上の場合には、濾過方式がクロスフロー濾過とされて運転が行われる。   Therefore, the present inventors have found that most of the suspended particulates involved in the clogging of the filtration membrane 3a have a specific particle size corresponding to the pore size of the filtration membrane 3a. It has been found that the number of fine particles having a specific particle size (hereinafter referred to as “specific fine particles”) can be used as an index of clogging ease. And in the membrane water purification equipment 1, the specific fine particle number contained per unit volume of raw | natural water is employ | adopted as a switching reference | standard of a filtration system instead of FI value. That is, in this membrane water purification equipment 1, when the number of the specific fine particles is less than the threshold, the filtration method is dead-end filtration, and when the number of the specific fine particles is greater than or equal to the threshold, the filtration method is the cross flow filtration. Driving.

このような、上記特定微粒子数を基準とした濾過方式の切り替えを行うため、膜浄水設備1は、濁度センサ7及び微粒子カウンタ9を備えている。濁度センサ7は、原水槽2中の原水の濁度を測定し、その結果を電気信号に変換して制御部15に送信する。また微粒子カウンタ9は、原水槽2中の原水の単位体積あたりに含まれる懸濁物質の微粒子数を、粒径ごとに測定し、その結果を電気信号に変換して制御部15に送信する。また、制御部15は、これらの電気信号を処理すると共に、バルブV13及び循環ポンプP13に電気信号を送信することでバルブV13の開閉及び循環ポンプP13のON/OFFを切り替える。   In order to switch the filtration method based on the number of specific fine particles as described above, the membrane water purification facility 1 includes a turbidity sensor 7 and a fine particle counter 9. The turbidity sensor 7 measures the turbidity of the raw water in the raw water tank 2, converts the result into an electrical signal, and transmits it to the control unit 15. The fine particle counter 9 measures the number of fine particles of the suspended substance contained per unit volume of the raw water in the raw water tank 2 for each particle diameter, converts the result into an electric signal, and transmits the electric signal to the control unit 15. In addition, the control unit 15 processes these electrical signals and transmits the electrical signals to the valve V13 and the circulation pump P13 to switch between opening and closing of the valve V13 and ON / OFF of the circulation pump P13.

以上のような構成に基づき、膜浄水設備1において行われる膜浄水方法について、図2を参照しながら説明する。   Based on the above configuration, a membrane water purification method performed in the membrane water purification facility 1 will be described with reference to FIG.

まず、濁度センサ7によって、原水槽2に貯留された原水の濁度が測定され(S102)、制御部15は、この濁度が予め定められた基準値以上になるまでは、所定の運転を行う(後述のS110)。また、原水の濁度が基準値以上になった場合には、以下の処理を行う。即ち、微粒子カウンタ9によって、原水槽2に貯留された原水の単位体積あたりに含まれる懸濁物質の微粒子の数が、粒径ごとにカウントされ、電気信号として制御部15に送られる。制御部15は、粒径ごとに分けてカウントされた微粒子数のうち、予め設定された特定の粒径(ここでは、例えば、5μm以下の粒径)を有する微粒子のカウント数、つまり特定微粒子数Pを取得する(S104)。このように、微粒子カウンタ9及び制御部15は、特定微粒子数Pを計数する微粒子計数手段を構成している。なお、上記「特定の粒径」の設定についての説明は後述する。   First, the turbidity of the raw water stored in the raw water tank 2 is measured by the turbidity sensor 7 (S102), and the control unit 15 performs a predetermined operation until the turbidity exceeds a predetermined reference value. (S110 described later). In addition, when the turbidity of the raw water exceeds the reference value, the following processing is performed. That is, the fine particle counter 9 counts the number of fine particles of suspended solids contained per unit volume of raw water stored in the raw water tank 2 for each particle size, and sends it to the control unit 15 as an electric signal. The control unit 15 counts the number of fine particles having a preset specific particle size (here, for example, a particle size of 5 μm or less) among the number of fine particles counted separately for each particle size, that is, the specific number of fine particles. P is acquired (S104). Thus, the fine particle counter 9 and the control unit 15 constitute a fine particle counting means for counting the specific fine particle number P. The setting of the “specific particle size” will be described later.

ここで、膜浄水設備1の運転状態が高フラックス運転(「高フラックス運転」については後述する)である場合には(S106)、濾過形式切り替えの閾値がn1に設定される(S108)。そして、原水の単位体積あたりの特定微粒子数Pが閾値n1未満であれば、制御部15は、バルブV13及び循環ポンプP13に電気信号を送信し、バルブV13を閉じ循環ポンプP13をOFFにすることで、濾過形式をデッドエンド濾過に切り替える(S110)。これにより、膜浄水設備1内を循環する水が少なく抑えられるので、原水の目詰まり容易性が比較的低い場合において、運転に係るエネルギーを抑えながら効率の良い濾過を行うことができる。一方、特定微粒子数Pが閾値n1以上であれば、制御部15は、バルブV13を開き循環ポンプP13をONにすることで、濾過形式をクロスフロー濾過に切り替える(S112)。これにより、原水の目詰まり容易性が比較的高い場合において、濾過膜3aの目詰まりを抑制することができる。   Here, when the operation state of the membrane water purification facility 1 is a high flux operation (“high flux operation” will be described later) (S106), the filtration format switching threshold is set to n1 (S108). If the number P of specific fine particles per unit volume of the raw water is less than the threshold value n1, the control unit 15 transmits an electrical signal to the valve V13 and the circulation pump P13, closes the valve V13, and turns off the circulation pump P13. Thus, the filtration format is switched to dead-end filtration (S110). Thereby, since the amount of water circulating in the membrane water purification facility 1 is reduced, efficient filtration can be performed while suppressing energy related to operation when the ease of clogging of the raw water is relatively low. On the other hand, if the specific particle number P is equal to or greater than the threshold value n1, the control unit 15 opens the valve V13 and turns on the circulation pump P13 to switch the filtration type to cross flow filtration (S112). Thereby, clogging of the filtration membrane 3a can be suppressed when clogging ease of raw water is relatively high.

また、ステップS106において、膜浄水設備1の運転状態が高フラックス運転以外である場合には、濾過形式の切り替えの閾値が上記n1よりも大きいn2に設定される(S114)。そして、制御部15は、上記S108と同様に、特定微粒子数Pが閾値n2未満であれば、濾過形式をデッドエンド濾過に切り替え(S110)、微粒子数Pが閾値n2以上であれば、濾過形式をクロスフロー濾過に切り替える(S112)。このように、膜浄水設備1の運転状態の設定が高フラックス運転であるかそれ以外の運転であるかによって、上記閾値が可変となっている。   Moreover, in step S106, when the operation state of the membrane water purification facility 1 is other than the high flux operation, the threshold value for switching the filtration format is set to n2 larger than the n1 (S114). Then, similarly to S108, the control unit 15 switches the filtration format to dead-end filtration if the specific particle count P is less than the threshold value n2 (S110), and if the particulate count P is greater than or equal to the threshold value n2, the filtration format. Is switched to cross flow filtration (S112). Thus, the threshold value is variable depending on whether the setting of the operation state of the membrane water purification facility 1 is high flux operation or other operation.

この膜浄水設備1では、濾過膜3aの上流側と下流側との水圧差(膜間差圧)を、図示しないセンサによって検知し、制御部15はこの膜間差圧の推移(膜間差圧トレンド)を常時監視している。そして、制御部15は、膜間差圧トレンドが異常であると判断した場合には(S114)、例えば濾過膜3aの薬品洗浄といった異常時の処理を行う(S116)。以上説明した処理が、膜浄水設備1の運転中、制御部15によって繰り返されることで、運転のエネルギーを抑えながら濾過膜3aの目詰まりが抑制され、膜間差圧が安定した連続運転が可能となる。   In this membrane water purification equipment 1, a water pressure difference (transmembrane differential pressure) between the upstream side and the downstream side of the filtration membrane 3a is detected by a sensor (not shown), and the control unit 15 changes the transmembrane pressure difference (transmembrane difference). The pressure trend is constantly monitored. When the controller 15 determines that the transmembrane pressure difference trend is abnormal (S114), the controller 15 performs an abnormal process such as chemical cleaning of the filtration membrane 3a (S116). The process described above is repeated by the control unit 15 during the operation of the membrane water purification facility 1, so that clogging of the filtration membrane 3 a is suppressed while suppressing operation energy, and continuous operation with stable transmembrane pressure is possible. It becomes.

ここで、上記処理における上記特定微粒子数Pに係る「特定の粒径」の設定について説明する。どのような粒径の微粒子が濾過膜3aの目詰まりの主たる要因となるかは、原水中の懸濁物質の成分等の諸条件によって異なる。よって、濾過方式の切り替え基準としてどのような粒径の微粒子をカウントすべきかは、膜浄水設備1の処理対象となる原水に対応させた設定をする必要がある。そこで、特定の粒径の設定にあっては、処理対象となる原水について、予め実験によってFI値と粒径ごとの微粒子数との関係を求め、FI値との相関関係が最も高い粒径を、その原水における上記特定の粒径として設定する。すなわち、原水中のある粒径の微粒子数が多くなれば、原水のFI値も高くなるという相関関係があるが、そのような相関関係が最も高くなるような粒径の範囲を特定の粒径として設定する。   Here, the setting of the “specific particle size” related to the specific fine particle number P in the processing will be described. The particle size with which the fine particles become the main factor of clogging of the filtration membrane 3a varies depending on various conditions such as the components of suspended substances in the raw water. Therefore, it is necessary to make a setting corresponding to the raw water to be treated by the membrane water purification facility 1 to determine what particle size fine particles should be counted as the filtration method switching reference. Therefore, in setting a specific particle size, the raw water to be treated is previously determined by experiment to determine the relationship between the FI value and the number of fine particles for each particle size, and the particle size having the highest correlation with the FI value is determined. The specific particle size in the raw water is set. That is, there is a correlation that if the number of fine particles having a certain particle size in the raw water increases, the FI value of the raw water also increases. Set as.

このような設定により、当該原水において濾過膜3aの目詰まりの主たる要因となる微粒子の粒径が、上記特定の粒径として設定されることになる。そして、特定の粒径がこのように設定されることで、FI値を測定することなく、比較的連続的な測定が容易な特定微粒子数Pによって、原水の目詰まり容易性を正確に判断することができる。従って、膜浄水設備1では、原水の目詰まり容易性に連動して濾過方式をタイミングよく切り替えることが可能となる。その結果、膜浄水設備1の運転のエネルギーを抑え、濾過膜3aの目詰まりを抑制しながら連続運転を行うことができる。なお、膜浄水設備1に、特定の粒径の設定を行う設定手段を設け、原水の性状を変化させ得る諸条件(例えば、降雨情報等)を参照しながら、上記のような特定の粒径の設定が自動的に行われるようにしてもよい。   With such a setting, the particle size of the fine particles, which is a main factor of clogging of the filtration membrane 3a in the raw water, is set as the specific particle size. Then, by setting the specific particle size in this way, the ease of clogging of the raw water is accurately determined by the specific fine particle count P that is relatively easy to measure without measuring the FI value. be able to. Therefore, in the membrane water purification facility 1, it becomes possible to switch the filtration method with good timing in conjunction with the ease of clogging of the raw water. As a result, it is possible to perform continuous operation while suppressing the energy of operation of the membrane water purification facility 1 and suppressing clogging of the filtration membrane 3a. The membrane water purification facility 1 is provided with a setting means for setting a specific particle size, and the specific particle size as described above is referred to with reference to various conditions (for example, rainfall information) that can change the properties of the raw water. The setting may be automatically performed.

また、上記処理において、高フラックス運転時の閾値n1が、低フラックス運転時の閾値n2に比して低く設定される理由は次の通りである。高フラックス運転を行う場合には、より目詰まりが発生しやすいため、目詰まりの抑制を優先すべく、比較的微粒子数が少ない場合であっても早めにクロスフロー濾過に切り替える必要があるからである。なお、ここでは、濾過膜3aでの濾過流速を2.5m/日以上とする運転を「高フラックス運転」といい、1.5m/日未満とする運転を「低フラックス運転」といい、1.5m/日以上2.5m/日未満とする運転を「通常フラックス運転」という。なお、閾値n1,n2としては、原水のFI値の2.5〜4に対応する値を設定することが好ましい。   In the above process, the reason why the threshold value n1 during high flux operation is set lower than the threshold value n2 during low flux operation is as follows. When performing high flux operation, clogging is more likely to occur, so it is necessary to switch to cross-flow filtration as soon as possible even if the number of particles is relatively small in order to prioritize the suppression of clogging. is there. Here, an operation in which the filtration flow rate at the filtration membrane 3a is 2.5 m / day or more is referred to as “high flux operation”, and an operation in which the filtration flow rate is less than 1.5 m / day is referred to as “low flux operation”. The operation of 5 m / day or more and less than 2.5 m / day is referred to as “normal flux operation”. In addition, as threshold value n1, n2, it is preferable to set the value corresponding to 2.5-4 of FI value of raw | natural water.

なお、本発明は、前述した実施形態に限定されるものではない。例えば、特定微粒子数に、原水の濁度、原水の濁度の上昇率、濾過膜3aの孔径に近い粒径の微粒子数、FI値、降雨量情報、ダム放流情報、及び膜間圧差の変化率等の他の条件のうち一つ又は複数を組み合わせた切り替え基準をもって、デッドエンド濾過とクロスフロー濾過との切り替えを行ってもよい。   In addition, this invention is not limited to embodiment mentioned above. For example, changes in the turbidity of raw water, the rate of increase in turbidity of raw water, the number of fine particles having a particle size close to the pore size of the filtration membrane 3a, FI value, rainfall information, dam discharge information, and transmembrane pressure difference Switching between dead-end filtration and crossflow filtration may be performed using a switching criterion that combines one or more of other conditions such as rate.

また、上記実施形態では、クロスフロー濾過の際に膜面の洗浄効果が高い内圧式中空糸膜を濾過膜3aとして用いたが、本発明は、外圧式中空糸膜を用いてもよい。また、濾過膜3aはUF膜に限られず、MF膜であってもよい。また、濾過膜3aの材質は、有機膜に限られず、無機膜であってもよい。   Moreover, in the said embodiment, although the internal pressure type | formula hollow fiber membrane with the high washing | cleaning effect of a membrane surface was used as the filtration membrane 3a in the case of crossflow filtration, you may use an external pressure type | formula hollow fiber membrane for this invention. The filtration membrane 3a is not limited to a UF membrane, and may be an MF membrane. The material of the filtration membrane 3a is not limited to an organic membrane, and may be an inorganic membrane.

本発明に係る膜浄水設備の実施形態を示す概略図である。It is the schematic which shows embodiment of the membrane water purification equipment which concerns on this invention. 膜浄水設備で行われる膜浄水方法のフローチャートである。It is a flowchart of the membrane water purification method performed with a membrane water purification equipment.

符号の説明Explanation of symbols

1…膜浄水設備、3…膜濾過装置、3a…濾過膜、9…微粒子カウンタ(微粒子計数手段)、15…制御部(制御手段)。   DESCRIPTION OF SYMBOLS 1 ... Membrane water purification equipment, 3 ... Membrane filtration apparatus, 3a ... Filtration membrane, 9 ... Fine particle counter (fine particle counting means), 15 ... Control part (control means).

Claims (3)

原水に含まれる懸濁物質を濾過膜を用いて除去する膜浄水設備において、
前記原水中の前記懸濁物質の微粒子のうち特定の粒径を有する微粒子の数を計数する微粒子計数手段と、
前記微粒子計数手段によって計数された前記特定の粒径を有する微粒子の数に基づいて、前記濾過膜で行われる前記原水の濾過の方式をデッドエンド濾過とクロスフロー濾過との間で切り替える制御手段と、を備えたことを特徴とする膜浄水設備。
In membrane water purification equipment that removes suspended matter contained in raw water using a filtration membrane,
Fine particle counting means for counting the number of fine particles having a specific particle size among the fine particles of the suspended substance in the raw water;
Control means for switching the raw water filtration method performed by the filtration membrane between dead-end filtration and cross-flow filtration based on the number of fine particles having the specific particle diameter counted by the fine particle counting means; Membrane water purification equipment characterized by comprising
前記制御手段は、
前記特定の粒径を有する微粒子の数が閾値未満の場合には、前記濾過の方式をデッドエンド濾過にし、前記特定の粒径を有する微粒子の数が前記閾値以上の場合には、前記濾過の方式をクロスフロー濾過にするように、前記濾過の方式を切り替え、
前記閾値は可変であることを特徴とする請求項1に記載の膜浄水設備。
The control means includes
When the number of fine particles having the specific particle size is less than a threshold, the filtration method is dead-end filtration, and when the number of fine particles having the specific particle size is greater than or equal to the threshold, the filtration method Switch the filtration method so that the method is cross flow filtration,
The membrane water purification facility according to claim 1, wherein the threshold value is variable.
原水に含まれる懸濁物質を濾過膜を用いて除去する膜浄水方法において、
前記原水中の前記懸濁物質の微粒子のうち特定の粒径を有する微粒子の数を計数する微粒子計数ステップと、
前記微粒子計数ステップによって計数された前記特定の粒径を有する微粒子の数に基づいて、前記濾過膜で行われる前記原水の濾過の方式を、デッドエンド濾過とクロスフロー濾過との間で切り替える制御ステップと、を備えたことを特徴とする膜浄水方法。
In a membrane water purification method for removing suspended substances contained in raw water using a filtration membrane,
A fine particle counting step for counting the number of fine particles having a specific particle size among the fine particles of the suspended matter in the raw water;
A control step of switching the raw water filtration method performed by the filtration membrane between dead-end filtration and cross-flow filtration based on the number of fine particles having the specific particle diameter counted by the fine particle counting step. And a membrane water purification method.
JP2005306212A 2005-10-20 2005-10-20 Membrane water purification system and membrane water purification method Pending JP2007111638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005306212A JP2007111638A (en) 2005-10-20 2005-10-20 Membrane water purification system and membrane water purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005306212A JP2007111638A (en) 2005-10-20 2005-10-20 Membrane water purification system and membrane water purification method

Publications (1)

Publication Number Publication Date
JP2007111638A true JP2007111638A (en) 2007-05-10

Family

ID=38094300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306212A Pending JP2007111638A (en) 2005-10-20 2005-10-20 Membrane water purification system and membrane water purification method

Country Status (1)

Country Link
JP (1) JP2007111638A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057163A1 (en) * 2012-10-10 2014-04-17 Aslak Siimes System and method for the purification of flowing fluid
JP2016165708A (en) * 2015-03-03 2016-09-15 水ing株式会社 Evaluation method of membrane clogging property of water to be treated, membrane treating device and its operation method
JP2017047395A (en) * 2015-09-04 2017-03-09 水ing株式会社 Method for evaluating membrane-clogging property of water to be treated, membrane filtration apparatus used in the method for evaluating the membrane-clogging property, and membrane filtration method for water to be treated whose membrane-clogging property evaluation index value is determined by using the method for evaluating the membrane-clogging property
JP2019098296A (en) * 2017-12-07 2019-06-24 オルガノ株式会社 Apparatus and method for treating iron/manganese containing water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266874A (en) * 1995-03-29 1996-10-15 Dick Deguremon Kk Method for operating water filter device
JPH0975918A (en) * 1995-09-12 1997-03-25 Nissin Electric Co Ltd Method for preventing the malodorous taste of water of purification plant and the like and device for preventing malodorous taste
JP2000172822A (en) * 1998-12-07 2000-06-23 Yokogawa Electric Corp Water quality control system and method for estimating number of protozoa included in water
JP2004141782A (en) * 2002-10-25 2004-05-20 Yokogawa Electric Corp Water quality control method
JP2005087949A (en) * 2003-09-19 2005-04-07 Fuji Electric Systems Co Ltd Method for detecting membrane damage of membrane filtration apparatus and device therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266874A (en) * 1995-03-29 1996-10-15 Dick Deguremon Kk Method for operating water filter device
JPH0975918A (en) * 1995-09-12 1997-03-25 Nissin Electric Co Ltd Method for preventing the malodorous taste of water of purification plant and the like and device for preventing malodorous taste
JP2000172822A (en) * 1998-12-07 2000-06-23 Yokogawa Electric Corp Water quality control system and method for estimating number of protozoa included in water
JP2004141782A (en) * 2002-10-25 2004-05-20 Yokogawa Electric Corp Water quality control method
JP2005087949A (en) * 2003-09-19 2005-04-07 Fuji Electric Systems Co Ltd Method for detecting membrane damage of membrane filtration apparatus and device therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057163A1 (en) * 2012-10-10 2014-04-17 Aslak Siimes System and method for the purification of flowing fluid
JP2016165708A (en) * 2015-03-03 2016-09-15 水ing株式会社 Evaluation method of membrane clogging property of water to be treated, membrane treating device and its operation method
JP2017047395A (en) * 2015-09-04 2017-03-09 水ing株式会社 Method for evaluating membrane-clogging property of water to be treated, membrane filtration apparatus used in the method for evaluating the membrane-clogging property, and membrane filtration method for water to be treated whose membrane-clogging property evaluation index value is determined by using the method for evaluating the membrane-clogging property
JP2019098296A (en) * 2017-12-07 2019-06-24 オルガノ株式会社 Apparatus and method for treating iron/manganese containing water

Similar Documents

Publication Publication Date Title
CN107010744A (en) A kind of micro- waste water water purifier
JP2007111638A (en) Membrane water purification system and membrane water purification method
JP2006263501A (en) System and method for cleaning membrane
EP3663266B1 (en) Water purifier and control method of the same
KR20170111581A (en) Water purifying apparatus and recovery rate control method thereof
JP3473309B2 (en) Operation control device for membrane separation device
CN213294797U (en) Reverse osmosis water purification system and water purification unit
JP2003533345A (en) Method and apparatus for purifying water
JP2000146948A (en) Filter for water-quality measurement and turbidity removal apparatus
CN107032450A (en) A kind of adjustable water purifier of waste water ratio and its adjusting method
JP3680452B2 (en) Anomaly detection method and control method for membrane processing system
JP2009262021A (en) Membrane filtration method and membrane filtration apparatus
JP2009262087A (en) Operation method of water treatment device
CN207385205U (en) A kind of PVDF ultrafiltration membrane device with pre-washing function
WO2016056130A1 (en) Raw water filtration treatment system, and method for cleaning filtration device
CN207391122U (en) A kind of water purifier
JPH11169851A (en) Water filter and its operation
KR20140146388A (en) Two stage membrane filtration system having flexible recovery ratio and operation method thereof
JPH0342018A (en) Membrane separation apparatus
CN206858220U (en) A kind of adjustable water purifier of waste water ratio
JP2009000585A (en) Membrane filtration apparatus
JP2009183920A (en) Liquid purifying apparatus
JP2007319785A (en) Method for detecting fracture of filtration membrane
CN219194715U (en) Automatic prepositive ultrafiltration back flushing system
CN213446368U (en) High-water-quality filter element system and water purifier

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070628

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090616