JP2004141782A - Water quality control method - Google Patents

Water quality control method Download PDF

Info

Publication number
JP2004141782A
JP2004141782A JP2002310525A JP2002310525A JP2004141782A JP 2004141782 A JP2004141782 A JP 2004141782A JP 2002310525 A JP2002310525 A JP 2002310525A JP 2002310525 A JP2002310525 A JP 2002310525A JP 2004141782 A JP2004141782 A JP 2004141782A
Authority
JP
Japan
Prior art keywords
water
particles
water quality
flocculant
floc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002310525A
Other languages
Japanese (ja)
Other versions
JP4185348B2 (en
Inventor
Noboru Morisawa
森沢 昇
Isao Mori
森 意佐央
Tomoaki Yasue
安江 知明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOFU CITY
Yokogawa Electric Corp
Original Assignee
KOFU CITY
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOFU CITY, Yokogawa Electric Corp filed Critical KOFU CITY
Priority to JP2002310525A priority Critical patent/JP4185348B2/en
Publication of JP2004141782A publication Critical patent/JP2004141782A/en
Application granted granted Critical
Publication of JP4185348B2 publication Critical patent/JP4185348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a water quality control method to perform a control considering water quality fluctuation and seasonal factors and achieve reduction of packs and thus realize a more efficient control method for a water purification plant. <P>SOLUTION: The water quality control method controls the water quality of a supernatant after a flocculant is fed to form flocks and the flocks are precipitated. This water quality control method comprises using the particle diameter and the number of particles as a water quality control index, measuring the particle diameter and the number of particles of suspended substance contained in water on the upperstream side, forming flocks by changing at least one of the injection rate or basicity of the flocculant to be fed to the water on the upperstream side based on the result of the measurement, and obtaining an optimum injection rate and basicity of the flocculant to be fed to the water by measuring the particle diameter and the number of particles of the supernatant after the flocks are precipitated. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば浄水場の水質管理方法の改善に関し、原水に含まれる懸濁物の粒径及び粒子数に基づいて凝集剤の最適注入率及び塩基度を定め、効果的な濁度の改善を図った浄水管理方法に関する。
【0002】
【従来の技術】
浄水場では、原水中に凝集剤(PAC・・・ポリ塩化アルミニウム・・・以下パックと称す)等を注入することによって、懸濁物質を凝集させて除去している。凝集剤を注入することにより、懸濁物質を取り込んだ凝集塊(以下フロックと称す)が形成される。このフロックを沈殿分離することにより懸濁物質が除去される。凝集沈殿処理の上澄水は、砂ろ過処理でさらに清澄な水になり、塩素による殺菌処理を施して水道水になる。凝集剤を注入して懸濁物質を凝集させる方法は、原水中の懸濁物質が主に粘土質であるときに極めて有効な方法である。
これら一連の浄水処理操作に関連する先行技術文献としては次のようなものがある。
【0003】
【特許文献1】
特公昭60−43762号公報
【特許文献2】
特開平04−35702号公報。
【0004】
前記した凝集沈殿ろ過方法において、凝集操作ではフロックは2から3mm程度に成長し、この成長したフロックは沈殿池で沈降分離される。一方、沈降分離で除去できなかった約50μm程度以下の微細なフロックは、有効径が0.45から0.7mmの範囲のろ過砂が充填されたろ過池にて除去される。
【0005】
ろ過池ではろ過を開始してから時間経過と共にろ過層内への抑留物が蓄積して損失水頭が上昇し、ろ過水量が減少する。このため、ろ過継続時間に達した時点で逆流洗浄操作が行われ、ろ過水の一部を洗浄水としてろ過池の流出側から供給し、ろ過層内の抑留物を洗浄水と共に排出することが行われる。逆洗排水はその後排水池に送られ、汚泥が沈降分離された後、上澄水は原水に返送される。
【0006】
【発明が解決しようとする課題】
逆流洗浄操作回数は少ないほど望ましい。そのためには、ろ過池まで運ばれる懸濁物をより少なくする必要がある。
ところで、一般に浄水場では着水井に流入する原水の濁度に応じてパックの注入量を制御している。即ち、原水の濁度を濁度計で測定しその濁度をもとにパックの注入量を決定している。
【0007】
しかしながら、濁度に準拠した制御ではろ過池への懸濁物の流出を細かく管理するのは難しいという問題があった。
本発明は上述の問題点を解決するためになされたもので、懸濁物の内容を粒径で捕らえ、この粒径に基づいてパックの注入率とパックの塩基度を考慮した管理を行うことによりろ過池まで運ばれる懸濁物をより少なくした水質管理方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
このような問題点を解決するために、請求項1においては、
凝集剤を投入してフロックを形成し、このフロックが沈降した後の上澄水の水質を管理する水質管理方法において、水質管理指標として粒径及び粒子数を用いたことを特徴とする。
【0009】
請求項2においては、請求項1記載の水質管理方法において、
原水に含まれる懸濁物の粒径及び粒子数を測定し、測定結果に基づいて原水に投入する凝集剤の注入率を変化させてフロックを形成し、フロックが沈降した後の上澄水の粒径及び粒子数を測定して原水に投入する凝集剤の最適注入率を求めるようにしたことを特徴とする。
【0010】
請求項3においては、請求項1記載の水質管理方法において、
原水に含まれる懸濁物の粒径及び粒子数を測定し、測定結果に基づいて原水に投入する凝集剤を選択するに際しては、塩基度の異なる凝集剤を用いてフロックを形成し、フロックが沈降した後の上澄水の粒径及び粒子数を測定して水に投入する凝集剤を選択するようにしたことを特徴とする。
【0011】
【発明の実施の形態】
以下、図面を用いて本発明を詳細に説明する。
図1は本発明の実施形態の一例を示す浄水場の説明図である。
図において、1は着水井であり、取水口から取り入れた原水が流入する。ここには第1粒子カウンタが配置されており、原水に含まれる懸濁物が測定され、測定結果に応じてパックが投入される。
【0012】
パックが投入された原水は急速混和池2で混和され、フロック形成池3で懸濁物の成長が促進され、大きくなった懸濁物の塊(フロック)が沈降する。ここで処理された水は薬品沈殿池4を経て急速ろ過池へ送られる。
薬品沈殿池4の中間部には第2粒子カウンタ6が配置されており、その出力により投入したパック量の過不足が判断される。
【0013】
図2は実施に先立つ実験の概要を示すもので、工程(a)において500mlの原水をビーカーに採取し、濁度計と粒子カウンタ(図示省略)を用いて濁度と粒径別粒子数を測定する、その後パックを注入する。パックの注入量ははじめ10mg/lとし、この原水とパックの混合液を工程(b)においてジャーテスタに入れて撹拌する。ジャーテスタでは撹拌羽の回転数を150rpmで10分撹拌し、次に50rpmで5分撹拌後10分間沈静させる。
次に工程(c)においてビーカーを取り出し、工程(a)と同様上澄液の濁度と粒径別粒子数を測定する。
【0014】
図3は上述のパックの注入量を15mg/l,20mg/l,25mg/lと変化させたときの粒径ごとの懸濁物除去率の関係を示す説明図である。なお、丸印Pで囲った部分は2〜10μm以下の粒子の除去率が重なった状態を示している。
図によれば、パックの注入量が10mg/lの場合は粒径の如何に関わらず除去率は10%程度であるが、注入量が15mg/lになると10μm以下の粒子の除去率は40%程度と向上し、20mg/l,25mg/lになると60%,90%程度に除去率が向上する。
【0015】
これに対し10μm以上の粒子の除去率は注入量が15mg/lの除去率は20%程度、20mg/lで27%程度、25mg/lで60%程度の除去率となっている。
一般に浄水場の平常注入率は15mg/l〜20mg/l程度であり、25mg/lは過剰注入とされているが、上述の結果では平常の注入率では10μm以上の粒子が多数含まれている原水では除去率が悪く、その場合は25mg/l以上の注入率とする必要があることがわかる。
【0016】
図4は図1に示す浄水場において、着水井1にパックを注入し沈殿池4の中間部において濁度計で測定した濁度と粒子カウンタで2〜3μmの粒子について測定した粒子数の変化であり、横軸は経過時間を示している。図において、Aで示す線は沈殿池中間の濁度変化を示し、Bは沈殿池中間の粒子数の変化を示している。
【0017】
また、Cで示す縦線は15時30分ごろパックの注入率を14mg/lから25mg/lに増加させた時点を示し、Dで示す縦線は18時少し前にパック注入率を25mg/lから14mg/lに減少させた時点を示し、Eで示す縦線は20時24分少し前に粒子数が最大値になった時点を示している。
【0018】
図によれば、注入率を変化させたことによる濁度の変化は0.2度(約5%)程度なのに対し、粒子数の変化は+350個(約50%)と大きく変化しているのが分かる。このことは浄化度の指標として濁度より感度のよい粒子数変動を用いる方が水質変動を顕著に捕らえることができることを示している。
【0019】
ところで、市販のパックには塩基度の異なる各種のパックがあり、塩基度の高い種類(例えば塩基度62)は夏場の高温・高濁度度時、塩基度の低い種類(塩基度52)は冬場の低温・低濁度時用として用いられている。
【0020】
図5は塩基度と注入率を変化させた場合の粒子除去率と粒径(μm)の関係を示す図である。Aは注入率15mg/lで塩基度52のパック,Bは注入率15mg/lで塩基度62のパック、A’は注入率25mg/lで塩基度52のパック,B’は注入率25mg/lで塩基度62のパックを注入した場合の除去率を示している。
【0021】
図において、15mg/l注入したA,Bの場合を見ると、2〜10μmの細かい粒子は塩基度の高いパックBが塩基度の低いパックAに比較して除去特性に優れていることがわかる。しかし、10μm以上の大きい粒子の場合は特性が逆転し塩基度の低いパックAの方が除去特性が優れていることがわかる。
【0022】
これに対し、25mg/lの注入率としたA’,B’の場合はどの粒径においても塩基度の高いパックB’の方が除去特性に優れていることが分かる。つまりパックBで10μm以上の粒子を除去しようとした場合は通常(15mg/l)より過剰に注入する必要があることが分かる。
本発明の以上の説明は、説明および例示を目的として特定の好適な実施例を示したに過ぎない。したがって本発明はその本質から逸脱せずに多くの変更、変形をなし得ることは当業者に明らかである。
【0023】
例えば、パックの注入率や塩基度は実施例で示したものに限ることなく濁質、濁度、温度に応じて適宜調整可能である。特許請求の範囲の欄の記載により定義される本発明の範囲は、その範囲内の変更、変形を包含するものとする。
【0024】
【発明の効果】
以上述べたように、本発明によれば、凝集剤を投入してフロックを形成し、このフロックが沈降した後の上澄水の水質を管理する水質管理方法において、水質管理指標として粒径及び粒子数を用い、原水に含まれる懸濁物の粒径、粒子数および温度を測定し、測定結果に基づいて原水に投入する凝集剤の注入率又は塩基度の少なくとも一方を変化させてフロックを形成し、フロックが沈降した後の上澄水の粒径及び粒子数を測定して水に投入する凝集剤の最適注入率及び塩基度を求めるようにしたので、水質変動や季節要因を考慮した管理が可能となり、パックの低減を図ってより効率的な浄水場の管理方法を実現することができる。
【0025】
【図面の簡単な説明】
【図1】本発明が実施される浄水場の一例を示す説明図である。
【図2】実施に先立つ実験の概要を示す説明図である。
【図3】パック注入率と粒径別濁質の除去率を示す説明図である。
【図4】濁度計で測定した濁度と粒子カウンタで2〜3μmの粒子について測定した粒子数の変化を示す説明図である。
【図5】パック注入率に塩基度を加味した粒径別濁質の除去率を示す説明図である。
【符号の説明】
1  着水井
2  急速混和池
3  フロック形成池
4  薬品沈殿池
5  第1粒子カウンタ
6  第2粒子カウンタ
10 ビーカ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to, for example, an improvement of a water quality management method of a water purification plant, and determines an optimum injection rate and a basicity of a flocculant based on the particle size and the number of particles of a suspension contained in raw water to effectively improve turbidity. Water purification management method.
[0002]
[Prior art]
In the water purification plant, suspended substances are aggregated and removed by injecting a flocculant (PAC ... polyaluminum chloride ... hereinafter referred to as a pack) or the like into raw water. By injecting the flocculant, a floc (hereinafter, referred to as a floc) that incorporates the suspended substance is formed. The suspended solids are removed by sedimentation of the floc. The supernatant water of the coagulation-sedimentation process becomes clearer water by the sand filtration process, and is sterilized by chlorine to become tap water. The method of injecting a flocculant to coagulate a suspended substance is an extremely effective method when the suspended substance in raw water is mainly clayey.
Prior art documents related to these series of water purification treatment operations include the following.
[0003]
[Patent Document 1]
Japanese Patent Publication No. 60-43762 [Patent Document 2]
JP-A-04-35702.
[0004]
In the coagulation sedimentation filtration method described above, the floc grows to about 2 to 3 mm in the coagulation operation, and the grown floc is settled and separated in the sedimentation basin. On the other hand, fine flocs of about 50 μm or less that cannot be removed by sedimentation are removed in a filter pond filled with filter sand having an effective diameter in the range of 0.45 to 0.7 mm.
[0005]
In the filter pond, with the lapse of time after the start of filtration, deterrents accumulate in the filter layer, the head loss increases, and the amount of filtered water decreases. For this reason, when the filtration duration time is reached, backwashing operation is performed, and a part of the filtered water is supplied as washing water from the outlet side of the filtration pond, and the contaminants in the filtration layer are discharged together with the washing water. Done. The backwash wastewater is then sent to a drainage pond, where the sludge is settled and separated, and the supernatant water is returned to the raw water.
[0006]
[Problems to be solved by the invention]
It is desirable that the number of backwashing operations is small. To do so, it is necessary to reduce the amount of suspended solids carried to the filtration pond.
In general, at a water purification plant, the amount of pack to be injected is controlled according to the turbidity of raw water flowing into a landing well. That is, the turbidity of the raw water is measured by a turbidity meter, and the amount of the pack to be injected is determined based on the turbidity.
[0007]
However, there is a problem that it is difficult to finely control the outflow of the suspended matter to the filtration pond with the control based on the turbidity.
The present invention has been made in order to solve the above-mentioned problems, and it is intended to capture the content of a suspension by a particle size and perform management in consideration of a pack injection rate and a pack basicity based on the particle size. The purpose of the present invention is to provide a water quality management method in which the amount of suspended solids carried to a filtration pond is reduced.
[0008]
[Means for Solving the Problems]
In order to solve such a problem, in claim 1,
A water quality management method for controlling the water quality of the supernatant water after the floc has settled by introducing a flocculant, wherein the particle size and the number of particles are used as water quality management indices.
[0009]
In claim 2, in the water quality management method according to claim 1,
Measure the particle size and the number of particles in the suspension contained in the raw water, change the injection rate of the flocculant to be added to the raw water based on the measurement results to form flocs, and the particles of the supernatant water after the flocs settle. It is characterized in that the diameter and the number of particles are measured to determine the optimum injection rate of the coagulant to be charged into the raw water.
[0010]
In claim 3, in the water quality management method according to claim 1,
When measuring the particle size and the number of particles of the suspension contained in the raw water and selecting a flocculant to be added to the raw water based on the measurement result, a floc is formed using a flocculant having a different basicity, and the floc is formed. The method is characterized in that the particle size and the number of the supernatant water after sedimentation are measured and the coagulant to be introduced into the water is selected.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory diagram of a water purification plant showing an example of an embodiment of the present invention.
In the figure, reference numeral 1 denotes a landing well into which raw water taken in from an intake port flows. Here, a first particle counter is arranged, the suspended matter contained in the raw water is measured, and a pack is loaded according to the measurement result.
[0012]
The raw water into which the packs are introduced is mixed in the rapid mixing pond 2, the growth of the suspension is promoted in the floc forming pond 3, and the larger suspended mass (floc) is settled. The water treated here is sent to the rapid filtration pond via the chemical sedimentation pond 4.
A second particle counter 6 is disposed at an intermediate portion of the chemical sedimentation basin 4, and the output of the second particle counter 6 determines whether the amount of the supplied pack is sufficient or not.
[0013]
FIG. 2 shows the outline of the experiment prior to the implementation. In step (a), 500 ml of raw water was collected in a beaker, and the turbidity and the number of particles by particle size were measured using a turbidimeter and a particle counter (not shown). Measure, then pour the pack. The injection amount of the pack is initially 10 mg / l, and the mixture of the raw water and the pack is put into a jar tester in step (b) and stirred. In the jar tester, the stirring blades are stirred at 150 rpm for 10 minutes, then stirred at 50 rpm for 5 minutes and then allowed to settle for 10 minutes.
Next, in step (c), the beaker is taken out, and the turbidity of the supernatant and the number of particles by particle size are measured in the same manner as in step (a).
[0014]
FIG. 3 is an explanatory diagram showing the relationship of the suspended matter removal rate for each particle size when the injection amount of the above-mentioned pack is changed to 15 mg / l, 20 mg / l, and 25 mg / l. The portion surrounded by a circle P indicates a state where the removal rates of particles of 2 to 10 μm or less overlap.
According to the figure, when the injection amount of the pack is 10 mg / l, the removal rate is about 10% regardless of the particle size, but when the injection amount becomes 15 mg / l, the removal rate of particles of 10 μm or less is 40%. %, And at 20 mg / l and 25 mg / l, the removal rate increases to about 60% and 90%.
[0015]
On the other hand, the removal rate of particles of 10 μm or more is about 20% when the injection amount is 15 mg / l, about 27% at 20 mg / l, and about 60% at 25 mg / l.
In general, the normal injection rate of a water purification plant is about 15 mg / l to 20 mg / l, and 25 mg / l is considered to be excessive injection. However, according to the above results, the normal injection rate contains many particles of 10 μm or more. It can be seen that the removal rate is poor in raw water, and in that case, the injection rate needs to be 25 mg / l or more.
[0016]
FIG. 4 shows the change in the turbidity measured by a turbidimeter and the number of particles measured by a particle counter in the middle part of the sedimentation basin 4 and the particles of 2-3 μm in the water purification plant shown in FIG. And the horizontal axis indicates elapsed time. In the figure, the line indicated by A indicates a change in turbidity in the middle of the sedimentation tank, and B indicates a change in the number of particles in the middle of the sedimentation tank.
[0017]
The vertical line indicated by C indicates the point at which the injection rate of the pack was increased from 14 mg / l to 25 mg / l at about 15:30, and the vertical line indicated by D indicates the pack injection rate of 25 mg / l 1 to 14 mg / l, and the vertical line indicated by E indicates the time when the number of particles reached the maximum value slightly before 20:24.
[0018]
According to the figure, the change in turbidity caused by changing the injection rate is about 0.2 degrees (about 5%), while the change in the number of particles is as large as +350 (about 50%). I understand. This indicates that water quality fluctuation can be more remarkably captured by using a particle number fluctuation more sensitive than turbidity as an index of the degree of purification.
[0019]
By the way, there are various types of packs having different basicities in commercially available packs. A high basicity type (for example, basicity 62) is a high temperature and high turbidity in summer, and a low basicity type (basicity 52) is. It is used for low temperature and low turbidity in winter.
[0020]
FIG. 5 is a diagram showing the relationship between the particle removal rate and the particle size (μm) when the basicity and the injection rate are changed. A is a pack with an injection rate of 15 mg / l and a basicity of 52, B is a pack with an injection rate of 15 mg / l and a basicity of 62, A 'is a pack with an injection rate of 25 mg / l and a basicity of 52, and B' is an injection rate of 25 mg / l 1 shows the removal rate when a pack having a basicity of 62 was injected.
[0021]
In the figure, looking at the cases of A and B injected at 15 mg / l, it can be seen that fine particles of 2 to 10 μm have better removal characteristics in pack B having a higher basicity than pack A having a lower basicity. . However, in the case of large particles of 10 μm or more, the characteristics are reversed, and it is understood that Pack A having a lower basicity has better removal characteristics.
[0022]
On the other hand, in the case of A 'and B' at an injection rate of 25 mg / l, it can be seen that pack B 'having a higher basicity has better removal characteristics at any particle size. In other words, it can be seen that when removing particles of 10 μm or more with Pack B, it is necessary to inject more than usual (15 mg / l).
The foregoing description of the present invention has been presented by way of illustration and example only of particular preferred embodiments. Thus, it will be apparent to one skilled in the art that the present invention may be modified or modified in many ways without departing from its essentials.
[0023]
For example, the injection rate and the basicity of the pack are not limited to those shown in the examples, but can be appropriately adjusted according to the turbidity, turbidity, and temperature. The scope of the present invention defined by the description of the claims is intended to cover alterations and modifications within the scope.
[0024]
【The invention's effect】
As described above, according to the present invention, a floc is formed by adding a flocculant, and in a water quality management method for managing the quality of the supernatant water after the floc has settled, the particle size and the particle size are used as water quality management indices. Using the number, the particle size of the suspension contained in the raw water, the number of particles and the temperature are measured, and the floc is formed by changing at least one of the injection rate or the basicity of the flocculant to be added to the raw water based on the measurement result. Then, the size and number of supernatant water after floc sedimentation were measured to determine the optimal injection rate and basicity of the flocculant to be added to the water. It is possible to reduce the number of packs and realize a more efficient water purification plant management method.
[0025]
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of a water purification plant in which the present invention is implemented.
FIG. 2 is an explanatory diagram showing an outline of an experiment prior to implementation.
FIG. 3 is an explanatory diagram showing a pack injection rate and a removal rate of turbid matter by particle diameter.
FIG. 4 is an explanatory diagram showing changes in turbidity measured by a turbidimeter and the number of particles measured for particles of 2 to 3 μm by a particle counter.
FIG. 5 is an explanatory view showing a particle-size-based turbidity removal rate in which basicity is added to a pack injection rate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Landing well 2 Rapid mixing pond 3 Floc forming pond 4 Chemical sedimentation tank 5 First particle counter 6 Second particle counter 10 Beaker

Claims (3)

凝集剤を投入してフロックを形成し、このフロックが沈降した後の上澄水の水質を管理する水質管理方法において、水質管理指標として懸濁物の粒径及び粒子数を用いたことを特徴とする水質管理方法。A floc is formed by adding a flocculant, and in the water quality control method for controlling the quality of the supernatant water after the floc has settled, the particle size and the number of particles of the suspension are used as a water quality control index. Water quality management method. 原水に含まれる懸濁物の粒径及び粒子数を測定し、測定結果に基づいて原水に投入する凝集剤の注入率を変化させてフロックを形成し、フロックが沈降した後の上澄水の粒径及び粒子数を測定して原水に投入する凝集剤の最適注入率を求めるようにしたことを特徴とする請求項1記載の水質管理方法。The particle size and number of the suspension contained in the raw water are measured, the floc is formed by changing the injection rate of the flocculant added to the raw water based on the measurement result, and the supernatant water particles after the floc settles. The water quality management method according to claim 1, wherein the diameter and the number of particles are measured to determine an optimum injection rate of the coagulant to be charged into the raw water. 原水に含まれる懸濁物の粒径及び粒子数を測定し、測定結果に基づいて原水に投入する凝集剤を選択するに際しては、塩基度の異なる凝集剤を用いてフロックを形成し、フロックが沈降した後の上澄水の粒径及び粒子数を測定して水に投入する凝集剤を選択するようにしたことを特徴とする請求項1記載の水質管理方法。When measuring the particle size and the number of particles of the suspension contained in the raw water and selecting a flocculant to be added to the raw water based on the measurement result, a floc is formed using a flocculant having a different basicity, and the floc is formed. The water quality management method according to claim 1, wherein the particle size and the number of the supernatant water after sedimentation are measured to select a coagulant to be added to the water.
JP2002310525A 2002-10-25 2002-10-25 Water quality management method Expired - Lifetime JP4185348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002310525A JP4185348B2 (en) 2002-10-25 2002-10-25 Water quality management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002310525A JP4185348B2 (en) 2002-10-25 2002-10-25 Water quality management method

Publications (2)

Publication Number Publication Date
JP2004141782A true JP2004141782A (en) 2004-05-20
JP4185348B2 JP4185348B2 (en) 2008-11-26

Family

ID=32455996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002310525A Expired - Lifetime JP4185348B2 (en) 2002-10-25 2002-10-25 Water quality management method

Country Status (1)

Country Link
JP (1) JP4185348B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136765A (en) * 2004-11-10 2006-06-01 Hitachi Ltd Device for supporting operation of water treatment process
JP2006326485A (en) * 2005-05-26 2006-12-07 Nakamichi Kankyo Kaihatsu:Kk Waste liquid treatment apparatus, system and method
JP2007111638A (en) * 2005-10-20 2007-05-10 Sumitomo Heavy Ind Ltd Membrane water purification system and membrane water purification method
CN100375721C (en) * 2006-01-24 2008-03-19 哈尔滨工业大学 On line optimizing method for water processing flocculant granularity distribution
JP2010137115A (en) * 2008-12-09 2010-06-24 Hitachi Ltd Coagulant injection control method
WO2014133448A1 (en) * 2013-02-28 2014-09-04 ULMERT MED FIRMA FLOCELL, Hans Method to optimise the chemical precipitations process in a water- or waste water treatment plants

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105753126A (en) * 2016-05-18 2016-07-13 路林茫 Surface water body total-condensation in-situ purification method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136765A (en) * 2004-11-10 2006-06-01 Hitachi Ltd Device for supporting operation of water treatment process
JP4493473B2 (en) * 2004-11-10 2010-06-30 株式会社日立製作所 Water treatment process operation support equipment
JP2006326485A (en) * 2005-05-26 2006-12-07 Nakamichi Kankyo Kaihatsu:Kk Waste liquid treatment apparatus, system and method
JP2007111638A (en) * 2005-10-20 2007-05-10 Sumitomo Heavy Ind Ltd Membrane water purification system and membrane water purification method
CN100375721C (en) * 2006-01-24 2008-03-19 哈尔滨工业大学 On line optimizing method for water processing flocculant granularity distribution
JP2010137115A (en) * 2008-12-09 2010-06-24 Hitachi Ltd Coagulant injection control method
WO2014133448A1 (en) * 2013-02-28 2014-09-04 ULMERT MED FIRMA FLOCELL, Hans Method to optimise the chemical precipitations process in a water- or waste water treatment plants
US10829397B2 (en) 2013-02-28 2020-11-10 Hans Ulmert Med Firma Flocell Method to optimise the chemical precipitations process in a water- or waste water treatment plants

Also Published As

Publication number Publication date
JP4185348B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
JP3205450B2 (en) Automatic injection rate determination device and automatic determination method
JPH09323004A (en) Water treating apparatus
JP2007203133A (en) Coagulation treatment method and its treatment apparatus for nonprocessed water
JP4505772B2 (en) Coagulant injection control method for water purification plant
JP4523731B2 (en) Water treatment equipment
JP4185348B2 (en) Water quality management method
JP4071364B2 (en) Pretreatment device for reverse osmosis membrane separator
JP3698678B2 (en) Fine sand slow filtration equipment
JP2002035503A (en) Turbid water treatment apparatus
JP5818148B2 (en) Outside tank type membrane separation activated sludge method and activated sludge treatment equipment
JP3559822B2 (en) Water treatment method and apparatus
JP2003200007A (en) Water treatment apparatus
JP3854471B2 (en) Water purification equipment
JP2009183901A (en) Membrane filtration concentration method of coagulation treated water and coagulated waste muddy water
JP2002066568A (en) Water treating method and apparatus
JP2022174886A (en) Flocculant injection control method and flocculant injection control device
JP2004290926A (en) Flocculation precipitation apparatus
JP4037615B2 (en) Aggregation condition determination method
JP3905663B2 (en) Solid-liquid separator and flocculation condition determination method
JP2002192163A (en) Water cleaning method by rapid filtration
JP7269148B2 (en) Filtration treatment method and filtration device
JP2004025109A (en) Water treatment method and water treatment apparatus
US20230406741A1 (en) System and method for auto-flocculation of wastewater
JP2001104712A (en) Flocculation/precipitation equipment and method of water treatment using the same
JP7316156B2 (en) Water purification method and water purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4185348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term