JPH10286469A - Plate-like catalyst structural body and catalytic reaction device using the catalyst structural body - Google Patents

Plate-like catalyst structural body and catalytic reaction device using the catalyst structural body

Info

Publication number
JPH10286469A
JPH10286469A JP10027317A JP2731798A JPH10286469A JP H10286469 A JPH10286469 A JP H10286469A JP 10027317 A JP10027317 A JP 10027317A JP 2731798 A JP2731798 A JP 2731798A JP H10286469 A JPH10286469 A JP H10286469A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
component
plate
catalyst structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10027317A
Other languages
Japanese (ja)
Other versions
JP3759832B2 (en
Inventor
Yoshinori Nagai
良憲 永井
Masato Mukai
正人 向井
Yasuyoshi Kato
泰良 加藤
Koji Domoto
孝司 道本
Kazunori Ito
和典 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP02731798A priority Critical patent/JP3759832B2/en
Publication of JPH10286469A publication Critical patent/JPH10286469A/en
Application granted granted Critical
Publication of JP3759832B2 publication Critical patent/JP3759832B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst structural body for efficiently decomposing and removing CO and NOx without any problem even in an exhaust gas of a system coexistent with SOx by using the catalyst structural body having relatively small ventillation resistance while utilizing the effect of accelerating mass transfer by the turbulence of the gas. SOLUTION: The catalyst structural body is formed by laminating plural sheets of plate-like catalyst elements which are constituted by carrying a catalyst component having catalytic activity on the surface and alternately repeating a projected line part composed of a belt-like projection and a flat part at a certain interval, in the state that the projected line parts are contacted each other by pressing, contains (1) at least one kind of an oxide selected from TiO2 , SiO2 , Al2 O3 and SiO2 -Al2 O3 , (2) at least one kind of an oxide selected from V, W and Mo respectively and as the case may be, (3) at least one kind selected from Pt, Ir, Rh and Pd and has >=120 m/hr to <500 m/hr a film coefficient of mass transfer of a reaction material among overall reaction rates of the catalyst and has >0 deg. to <50 deg. crossing angles of the projected line parts of the catalyst elements adjacent to each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排ガス浄化用触媒
構造体に係り、特に排ガス中に硫黄酸化物(SOx)が
存在する場合に窒素酸化物(NOx)、一酸化炭素(C
O)及び/又はダイオキシン(DXN)等の有機化合物
を効率よく除去するための板状触媒を用いた触媒構造体
と該触媒構造体を排ガス流路に配置した触媒反応装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst structure for purifying exhaust gas, and more particularly to a nitrogen oxide (NOx) and a carbon monoxide (C) when a sulfur oxide (SOx) is present in the exhaust gas.
The present invention relates to a catalyst structure using a plate-like catalyst for efficiently removing organic compounds such as O) and / or dioxin (DXN), and a catalyst reaction device in which the catalyst structure is disposed in an exhaust gas channel.

【0002】[0002]

【従来の技術】発電所、各種工場、自動車などから排出
される排煙中のNOxは、光化学スモッグや酸性雨の原
因物質であり、その効果的な除去方法としてアンモニア
(NH3)等を還元剤とした選択的接触還元による排煙
脱硝法が火力発電所を中心に幅広く用いられている。
2. Description of the Related Art NOx in flue gas emitted from power plants, various factories, automobiles, etc. is a cause of photochemical smog and acid rain. As an effective method of removing NOx, ammonia (NH 3 ) is reduced. The flue gas denitration method by selective catalytic reduction as an agent has been widely used mainly in thermal power plants.

【0003】触媒には、バナジウム(V)、モリブデン
(Mo)あるいはタングステン(W)を活性成分にした
酸化チタン(TiO2)系触媒が使用されており、特に
活性成分の一つとしてバナジウムを含む触媒は活性が高
いだけでなく、排ガス中に含まれている不純物による劣
化が小さいこと、より低温から使用できることなどから
現在の脱硝触媒の主流になっている(特開昭50−12
868号公報等)。
As a catalyst, a titanium oxide (TiO 2 ) catalyst containing vanadium (V), molybdenum (Mo) or tungsten (W) as an active component is used. In particular, vanadium is contained as one of the active components. Catalysts have become the mainstream of the current denitration catalysts because they have high activity, are less deteriorated by impurities contained in exhaust gas, and can be used at lower temperatures (Japanese Patent Laid-Open No. 50-12).
868, etc.).

【0004】また、火力発電所等で発生する排ガス中に
は窒素酸化物(NOx)のみならず、その他にも有害な
ガス成分が含まれており、排出規制の対象となっている
ことから、これらガス状成分の効果的な除去も必要にな
ってきている。
[0004] Exhaust gas generated from thermal power plants and the like contains not only nitrogen oxides (NOx) but also other harmful gas components, which are subject to emission regulations. Effective removal of these gaseous components is also needed.

【0005】例えば、前記有害なガス成分としてはガス
タービン排ガス中の一酸化炭素(CO)や都市ゴミや産
業廃棄物等の焼却設備から排出されるダイオキシン(D
XN)等が挙げられる。
For example, the harmful gas components include carbon monoxide (CO) in gas turbine exhaust gas and dioxin (D) discharged from incineration facilities such as municipal waste and industrial waste.
XN) and the like.

【0006】こうした有害ガスの除去を行うにあたっ
て、排ガス中の一酸化炭素(CO)については上記し
た脱硝触媒に、白金、イリジウム、ロジウム、パラジウ
ム等の貴金属を添加して窒素酸化物とともに除去する触
媒(特開平5−329334号)などに記載されてい
る。
In removing such harmful gases, a catalyst for removing carbon monoxide (CO) in exhaust gas by adding a noble metal such as platinum, iridium, rhodium or palladium to the above-mentioned denitration catalyst together with nitrogen oxides. (JP-A-5-329334).

【0007】他方、都市ゴミや産業廃棄物等の焼却設備
から排出される毒性の強いダイオキシン類が大きな社会
問題になっており、その効果的な低減技術が望まれてい
る。ダイオキシンとは、有機塩素化合物であるポリ塩化
ジベンゾパラジオキシン(Polychlorinated dibenzo-p-
dioxins: PCDDs)のことで、極めて安定な物質であり、
多くの異性体・同族体が存在する。また、これと同じよ
うな性質を持つ化合物としてポリ塩化ジベンゾフラン
(Polychlorinated dibenzofurans: PCDFs)があり、ダ
イオキシンと合わせてダイオキシン類と総称されてい
る。こうしたダイオキシン類の排出量を抑える動きとし
て、欧州では1980年代後半から都市ごみ焼却施設か
らの排出量を厳しく規制する動きがあり、日本において
も最近、大気汚染防止法として法規制化されるに至って
いる。
[0007] On the other hand, highly toxic dioxins discharged from incineration facilities for municipal garbage and industrial waste have become a major social problem, and effective reduction techniques are desired. Dioxin is an organic chlorine compound, polychlorinated dibenzo-p-chloride.
dioxins: PCDDs) are extremely stable substances,
There are many isomers and homologues. Polychlorinated dibenzofurans (PCDFs) are compounds having similar properties, and are collectively referred to as dioxins together with dioxins. As a measure to reduce the emission of dioxins, Europe has been strictly controlling the emission from municipal waste incineration facilities since the late 1980s, and Japan has recently been regulated as an Air Pollution Control Law. I have.

【0008】こうした排ガス中のダイオキシン類の除去
に関しても、触媒による酸化分解が残さを生じない方法
として注目されており、例えば特開平2−35914
号公報には廃棄物焼却炉から排出される排ガスを冷却
後、集塵装置で除塵する排ガス処理方法において、除塵
後の排ガスを150℃以上とすることで芳香族系塩素化
合物を触媒により分解することが開示されており、触媒
としては酸化チタン、酸化バナジウム、酸化タングステ
ン、白金、パラジウムのうちから選ばれた少なくとも1
種を使用するとしている。さらに、特開平3−841
5号公報には、排ガス中のダイオキシン類を触媒により
除去する方法において、温度を250℃以上、SV(空
間速度=処理ガス量/触媒量)を50,000 1/h
未満、AV(面積速度=処理ガス量/触媒幾何学的表面
積)を250m/h未満とすることが開示されており、
触媒としてはハニカム形状のものがよいことも記載され
ている。
[0008] Regarding the removal of dioxins in such exhaust gas, attention has been paid to a method in which oxidative decomposition by a catalyst does not produce a residue. For example, JP-A-2-35914.
Japanese Patent Application Publication No. JP-A-2005-115122 discloses an exhaust gas treatment method in which exhaust gas discharged from a waste incinerator is cooled and then dust is removed by a dust collector. In the exhaust gas treatment method, an aromatic chlorine compound is decomposed by a catalyst by setting the exhaust gas after dust removal to 150 ° C. or higher. The catalyst is disclosed as at least one selected from titanium oxide, vanadium oxide, tungsten oxide, platinum, and palladium.
They say they use seeds. Further, JP-A-3-841
No. 5 discloses a method for removing dioxins in exhaust gas using a catalyst, wherein the temperature is 250 ° C. or more and the SV (space velocity = processing gas amount / catalyst amount) is 50,000 1 / h.
And AV (area velocity = processed gas amount / catalyst geometric surface area) of less than 250 m / h.
It is also described that a honeycomb catalyst is preferable as the catalyst.

【0009】一般に、上記のような排ガス中の有害物質
の除去に使用する触媒は通常ハニカム状、板状に成形し
て用いられ、そのための各種製造法が発明考案されてい
る。中でも金属薄板をメタルラス加工後、アルミニウ
ム溶射を施した網状物やセラミック繊維製織布あるいは
不織布を基板に用い、これに前記触媒成分を塗布、圧着
して得た板状触媒を図2の板状触媒エレメントの断面図
に示すような波形を有する形状に加工後、図9(a)に
示すように枠体5に組み込んだ触媒構造体(特開昭54
−79188号公報、特願昭63−324676号公報
など)は、触媒成分のペーストを押出成形したハニカ
ム形状の触媒構造体に比べて通風損失が小さく、煤塵や
石炭の燃焼灰で閉塞されにくいなどの優れた特徴があ
り、現在火力発電用ボイラ排ガスの脱硝触媒として多数
用いられている。
In general, a catalyst used for removing harmful substances in exhaust gas as described above is usually used after being formed into a honeycomb shape or a plate shape, and various production methods therefor have been invented. Among them, a metal plate obtained by subjecting a metal sheet to metal lath processing and then applying a sprayed mesh or ceramic fiber woven or non-woven fabric to a substrate, applying the above-mentioned catalyst component to the substrate, and press-bonding the same to the plate-shaped catalyst shown in FIG. After processing into a shape having a waveform as shown in the cross-sectional view of the catalyst element, a catalyst structure (see Japanese Patent Application Laid-Open No.
-79188, Japanese Patent Application No. 63-324676, etc.) have smaller ventilation loss and are less likely to be blocked by dust or coal combustion ash, as compared to a honeycomb-shaped catalyst structure formed by extrusion-molding a paste of a catalyst component. It is currently widely used as a denitration catalyst for boiler exhaust gas for thermal power generation.

【0010】[0010]

【発明が解決しようとする課題】上述した排ガス中に存
在する有害物質は、一般に非常に低濃度である。例え
ば、ガスタービン排ガス中の一酸化炭素(CO)濃度は
数ppmレベルであり、これを50%以上除去すること
が触媒には要求される。また、都市ゴミ焼却設備や産業
廃棄物の焼却設備から排出される排ガス中にはダイオキ
シン類は、1m3N当たりナノグラム(10-9g)のオ
ーダーで存在しており、したがってダイオキシン類の排
出規制値もng/m3Nオーダーで規定されている。前
記排出規制法などで分かるように、排ガス浄化用の触媒
にはこうした希薄濃度の有害物質を効率よく分解除去で
きるものが望まれる。
The harmful substances present in the above-mentioned exhaust gas are generally very low in concentration. For example, the concentration of carbon monoxide (CO) in the exhaust gas of a gas turbine is on the order of several ppm, and it is required for the catalyst to remove 50% or more of the concentration. In addition, dioxins are present in the exhaust gas discharged from municipal waste incineration equipment and industrial waste incineration equipment in the order of nanograms (10 -9 g) per 1 m 3 N. Therefore, emission control of dioxins is required. The values are also specified in the order of ng / m 3 N. As can be seen from the above-mentioned emission control law and the like, a catalyst for purifying exhaust gas is desired to be capable of efficiently decomposing and removing such a toxic substance having a low concentration.

【0011】ここで、上記従来技術、に用いる触媒
構造体内のガスの通過流路はガスの流れ方向に対して平
行であり、また、通常はRe(レイノルズ数)が200
0以下の領域で使用されるため触媒層内のガスのフロー
パターンは層流となり、通風抵抗が非常に小さいという
特徴を有する。しかし、その反面、触媒表面上での有害
物質の分解反応により生じる反応物質(有害物質)は、
触媒表面近傍でも、その濃度が低いので、触媒反応速度
が低下するという問題がある。すなわち、反応により触
媒表面と触媒表面から一定距離のあるガス相内(バル
ク)との間に濃度勾配が生じるが、反応ガス成分が希薄
なために、バルクからの拡散が律速になり反応速度が小
さくなる。
Here, the gas passage in the catalyst structure used in the above-mentioned prior art is parallel to the gas flow direction, and usually has a Re (Reynolds number) of 200.
Since it is used in a region of 0 or less, the flow pattern of the gas in the catalyst layer is laminar, and has a characteristic that the ventilation resistance is extremely small. However, on the other hand, the reactants (harmful substances) generated by the decomposition reaction of the harmful substances on the catalyst surface are:
Even in the vicinity of the catalyst surface, there is a problem that the catalyst reaction rate is reduced because the concentration is low. That is, the reaction causes a concentration gradient between the catalyst surface and the gas phase (bulk) at a certain distance from the catalyst surface, but the diffusion from the bulk is rate-limiting because the reaction gas component is diluted, and the reaction rate is increased. Become smaller.

【0012】一般に、触媒による反応速度は下式で示さ
れる。 1/K=1/Kr+1/Kf K:総括反応速度係数(m/h) Kr:単位表面積あたりの反応速度定数(m/h) Kf:反応物質の境膜反応速度係数(m/h)
In general, the reaction rate of a catalyst is expressed by the following equation. 1 / K = 1 / Kr + 1 / Kf K: Overall reaction rate coefficient (m / h) Kr: Reaction rate constant per unit surface area (m / h) Kf: Film reaction rate coefficient of reactant (m / h)

【0013】触媒全体としての反応速度(総括反応速度
定数K)は触媒の仕様(組成)が一定、すなわち係数K
rが一定の場合には反応物質の触媒表面への移動(拡
散)が促進されることにより高くなるため、いかに反応
物質の触媒表面への拡散を促すかが触媒反応を効果的に
行うために重要である。しかし、前記従来技術、に
はこうした配慮はなされていない。
The reaction rate (overall reaction rate constant K) of the catalyst as a whole is such that the specification (composition) of the catalyst is constant, that is, the coefficient K
When r is constant, the reaction material is promoted to move (diffusion) to the surface of the catalyst, and thus becomes higher. Therefore, how to promote the diffusion of the reaction material to the surface of the catalyst is important for effectively performing the catalytic reaction. is important. However, the above prior art does not take such considerations.

【0014】すなわち、上記〜の従来技術において
は、触媒上での希薄濃度の被処理物(反応ガス)の反応
についての影響が考慮されてなく、前述した施設に排ガ
ス処理装置として上記〜の従来技術の触媒法を適用
した場合に使用する触媒の量が多くなるといった問題点
があった。
That is, the above-mentioned prior arts do not take into account the influence of the reaction of a dilute substance to be treated (reactive gas) on the catalyst, and the above-mentioned facilities as the above-described conventional exhaust gas treatment apparatuses are not used. There has been a problem that the amount of the catalyst to be used increases when the technical catalytic method is applied.

【0015】さらに、油焚きボイラまたは石炭焚きボイ
ラや都市ゴミ焼却設備からの排ガスには、窒素酸化物
(NOx)や一酸化炭素(CO)等だけでなく硫黄酸化
物(SOx)も含有されているが、この硫黄酸化物(大
半はSO2)は触媒により一部酸化されて下式に示す反
応により、特に低温域で硫酸アンモニウム(NH42
4や酸性硫安NH4HSO4を生成し、触媒の性能低下
を招くばかりか触媒装置が配置されている箇所より後流
側の排ガス流路にある機器に悪影響を及ぼすことにな
る。 2NH3+SO3+H2O→(NH42SO4 NH3+SO3+H2O→NH4HSO4
Further, the exhaust gas from an oil-fired boiler, a coal-fired boiler, or a municipal waste incineration facility contains not only nitrogen oxides (NOx) and carbon monoxide (CO) but also sulfur oxides (SOx). However, this sulfur oxide (mostly SO 2 ) is partially oxidized by a catalyst, and is subjected to the reaction shown by the following formula, particularly in a low temperature range, so that ammonium sulfate (NH 4 ) 2 S
O 4 and ammonium acid sulfate NH 4 HSO 4 are generated, which not only deteriorates the performance of the catalyst, but also adversely affects devices in the exhaust gas flow path downstream of the place where the catalyst device is disposed. 2NH 3 + SO 3 + H 2 O → (NH 4 ) 2 SO 4 NH 3 + SO 3 + H 2 O → NH 4 HSO 4

【0016】ここで、この望ましくないSO2の酸化反
応は通常の反応条件下においては比較的反応速度が低
く、触媒の幾何学的な表面積に比例することが発明者ら
の研究で明らかとなっている。
Here, the inventors have found that this undesirable SO 2 oxidation reaction has a relatively low reaction rate under normal reaction conditions and is proportional to the geometric surface area of the catalyst. ing.

【0017】一方、排ガス中に存在する一酸化炭素(C
O)ならびにダイオキシン(DXN)を酸化分解するた
めには白金等の貴金属添加系触媒が優れているが、この
場合、上記SO2の酸化反応も促進されることとなり、
触媒の単位表面積あたりの総括反応速度定数Kが小さい
(言い換えれば表面積が多い)前記従来技術、で
は、この双方の事実を両立させることが困難であるとい
う問題点があった。
On the other hand, carbon monoxide (C
O) and a noble metal-added catalyst such as platinum are excellent for oxidatively decomposing dioxin (DXN). In this case, the oxidation reaction of SO 2 is also promoted.
In the above-mentioned prior art in which the overall reaction rate constant K per unit surface area of the catalyst is small (in other words, the surface area is large), there is a problem that it is difficult to achieve both of these facts.

【0018】本発明の課題は、上記従来技術の有する問
題点をなくし、ガスの乱れにより物質移動を促進する効
果を利用しつつ、通風抵抗の比較的小さな触媒構造体を
用いることにより硫黄酸化物(SOx)共存系の排ガス
においても問題なく、効率よく一酸化炭素(CO)等と
窒素酸化物(NOx)を分解除去する触媒構造体と該触
媒構造体を用いる触媒反応装置を提供することである。
An object of the present invention is to eliminate the above-mentioned problems of the prior art and to use a catalyst structure having a relatively small ventilation resistance while utilizing the effect of promoting mass transfer by gas turbulence. By providing a catalyst structure that efficiently decomposes and removes carbon monoxide (CO) and the like and nitrogen oxides (NOx) without any problem even in (SOx) coexisting exhaust gas, it is possible to provide a catalyst reaction device using the catalyst structure. is there.

【0019】[0019]

【課題を解決するための手段】上記課題は以下の手段
(1)〜(5)により達成することができる。 (1)表面に触媒活性を有する触媒成分を担持し、排ガ
ス流れに対する交差角度が0を超えて50度未満である
帯状突起からなる突条部と平坦部とを間隔を隔てて交互
に繰り返して構成される板状の第1触媒エレメントと、
表面に触媒活性を有する触媒成分を担持し、排ガス流れ
に対する交差角度が0を超えて130度未満である帯状
突起からなる突条部と平坦部とを間隔を隔てて交互に繰
り返して構成される板状の第2触媒エレメントとを交互
に互いの突条部を当接させた状態で複数枚積層してなる
触媒構造体であって、触媒活性を有する触媒成分の第一
成分としてチタニア、シリカ、アルミナおよびシリカ−
アルミナから選ばれた少なくとも1種類の酸化物ならび
に第二成分としてバナジウム、タングステンおよびモリ
ブデンから選ばれた少なくとも1種類の酸化物をそれぞ
れ含み、当該触媒の総括反応速度に関する係数の内、反
応物質の境膜物質移動係数が120m/h以上、500
m/h未満である板状触媒構造体。
The above objects can be achieved by the following means (1) to (5). (1) A catalyst component having catalytic activity is carried on the surface, and ridges and flat portions formed of strip-like projections having an intersection angle with respect to the exhaust gas flow of more than 0 and less than 50 degrees are alternately repeated at intervals. A plate-shaped first catalyst element,
A catalyst component having catalytic activity is supported on the surface, and the ridge portion and the flat portion, which are formed of band-shaped protrusions having an intersection angle with respect to the exhaust gas flow of more than 0 and less than 130 degrees, are alternately repeated at intervals. A catalyst structure in which a plurality of plate-shaped second catalyst elements are alternately laminated with their ridges in contact with each other, wherein titania and silica are used as first components of a catalyst component having catalytic activity. , Alumina and silica
It contains at least one oxide selected from alumina and at least one oxide selected from vanadium, tungsten and molybdenum as the second component. Membrane mass transfer coefficient of 120 m / h or more, 500
a plate-like catalyst structure having a m / h of less than m / h.

【0020】(2)前記第一成分と第二成分の他に、さ
らに、第三成分として白金、イリジウム、ロジウムおよ
びパラジウムまたはこれらの酸化物の中から選ばれた少
なくとも1種類をそれぞれ含む前記(1)の板状触媒構
造体と同一の構造を備えた板状触媒構造体。
(2) In addition to the first component and the second component, the third component further includes, as a third component, at least one selected from platinum, iridium, rhodium, palladium, and oxides thereof. A plate-like catalyst structure having the same structure as the plate-like catalyst structure of 1).

【0021】(3)前記(1)又は(2)に記載の板状
触媒構造体を、被処理ガスの空塔速度が2m/s以上、
10m/s未満の範囲である排ガス流路に配置して使用
する触媒反応装置。
(3) The plate-like catalyst structure described in (1) or (2) above, wherein the superficial velocity of the gas to be treated is 2 m / s or more,
A catalytic reactor used by being arranged in an exhaust gas flow path having a range of less than 10 m / s.

【0022】(4)前記(1)又は(2)に記載の板状
触媒構造体を、ガス焚ボイラ、油焚ボイラ、石炭焚ボイ
ラ、ガスタービン、ディーゼルエンジン、都市ゴミ焼却
設備、焼結機または化学プラントから排出する排ガスの
流路に配置する触媒反応装置。
(4) The plate-shaped catalyst structure according to the above (1) or (2) is used as a gas-fired boiler, an oil-fired boiler, a coal-fired boiler, a gas turbine, a diesel engine, a municipal refuse incinerator, and a sintering machine. Or a catalytic reaction device placed in the flow path of exhaust gas discharged from a chemical plant.

【0023】(5)前記(1)又は(2)に記載の触媒
構造体が配置されている排ガス流路の前流側に窒素酸化
物の還元剤の注入部を設けることによって排ガス中の窒
素酸化物と、一酸化炭素及び/又はダイオキシン類を同
時に除去する触媒反応装置。
(5) Nitrogen in the exhaust gas is provided by providing an injection portion for a reducing agent of nitrogen oxide on the upstream side of the exhaust gas channel in which the catalyst structure according to the above (1) or (2) is disposed. A catalytic reactor for simultaneously removing oxides, carbon monoxide and / or dioxins.

【0024】本発明の前記第2触媒エレメントは、その
突条部と排ガス流れの交差角度は130度未満であれ
ば、いかなる交差角度を有するものを用いて良いが、第
1触媒エレメントを裏返したものを使用することで、触
媒エレメントの作製コストが大幅に低減できる。
The second catalyst element of the present invention may have any crossing angle as long as the crossing angle between the ridge and the exhaust gas flow is less than 130 degrees, but the first catalyst element is turned over. By using such a material, the production cost of the catalyst element can be significantly reduced.

【0025】[0025]

【作用】本発明の作用を図面を用いて説明する。図3
は、チタン−モリブデン−バナジウム系脱硝触媒と、チ
タン−モリブデン−バナジウム−白金系触媒を板状に成
形し、一定の試験寸法(20×100mm)に切断した
後、温度380℃で測定した各触媒のSO2酸化率を示
したものである。図3からSO2酸化率はいずれの触媒
においてもAV(面積速度)に反比例して、すなわち触
媒の幾何学的表面積が大きくなるにつれて高くなること
が分かり、またその増加傾向は白金添加系において顕著
であることが明らかである。
The operation of the present invention will be described with reference to the drawings. FIG.
Is obtained by shaping a titanium-molybdenum-vanadium-based denitration catalyst and a titanium-molybdenum-vanadium-platinum-based catalyst into a plate shape, cutting them into a fixed test size (20 × 100 mm), and measuring each catalyst at a temperature of 380 ° C. 1 shows the SO 2 oxidation rate of the sample. From FIG. 3, it can be seen that the SO 2 oxidation rate is inversely proportional to the AV (area rate) in all the catalysts, that is, increases as the geometric surface area of the catalyst increases, and the increasing tendency is remarkable in the platinum added system. It is clear that

【0026】次に、図4は一定の温度(350℃)にお
けるチタン−モリブデン−バナジウム−白金系触媒のC
O酸化率を示したものである。図4から、COの酸化率
についてもAVに反比例して高くなることが分かる。
Next, FIG. 4 shows the C-C value of the titanium-molybdenum-vanadium-platinum catalyst at a constant temperature (350 ° C.).
It shows the O oxidation rate. FIG. 4 shows that the oxidation rate of CO also increases in inverse proportion to AV.

【0027】すなわち、図3と図4に示す結果は、チタ
ン−モリブデン−バナジウム−白金系触媒は脱硝触媒と
して用いる場合、好ましくないSO2酸化率を抑えるた
めには当該触媒の幾何学的な表面積を極力少なくするこ
とが良く、一方では排ガス中に存在する一酸化炭素(C
O)を酸化分解するためには表面積の大きな触媒とする
ことが良いという相異なる結果である。
That is, the results shown in FIGS. 3 and 4 show that when the titanium-molybdenum-vanadium-platinum catalyst is used as a denitration catalyst, the geometric surface area of the catalyst is required to suppress the undesired SO 2 oxidation rate. Should be reduced as much as possible. On the other hand, carbon monoxide (C
This is a different result that it is better to use a catalyst having a large surface area to oxidatively decompose O).

【0028】ところが、本発明者らは本発明の請求項
1、2に示す第一成分と二成分を含む触媒または第一成
分〜第三成分を含む触媒構造体において、当該触媒の総
括反応速度のうち、反応物質の境膜物質移動係数Kfが
120m/h以上、500m/h未満となる触媒構造体
を製作して試験したところ、通風抵抗が比較的低く、従
来技術、のようなパラレルフロー型の触媒と同等の
SO2酸化性能で、同等以上の脱硝性能及びCOならび
にダイオキシン類の酸化性能を達成できることを確認し
た。
However, the present inventors have found that in the catalyst containing the first component and the two components or the catalyst structure containing the first to third components according to claims 1 and 2 of the present invention, the overall reaction rate of the catalyst is determined. Among them, a catalyst structure having a film mass transfer coefficient Kf of a reactant of 120 m / h or more and less than 500 m / h was manufactured and tested. It was confirmed that with the same SO 2 oxidation performance as that of the type catalyst, the same or higher denitration performance and oxidation performance of CO and dioxins could be achieved.

【0029】これは、前記本発明の触媒構造体を用いる
ことで、非常に希薄な被処理ガスの触媒表面への拡散
(物質移動)がしやすくなり、単位表面積あたりの総括
反応速度が高くなり、触媒の脱硝反応及びCOなどの酸
化反応が起こり易くなったことに由来するもので、逆に
SO2酸化反応は、本来その反応速度が高くなく、加え
てこうした板状触媒の構造体により上記脱硝性能および
COなどの酸化性能の向上で、必要な触媒の幾何学的な
表面積の減少が可能になったためと考えられる。
This is because the use of the catalyst structure of the present invention facilitates the diffusion (mass transfer) of a very dilute gas to be treated to the catalyst surface and increases the overall reaction rate per unit surface area. , those derived from the oxidation reactions such as denitrification reactions and CO catalyst becomes easy to occur, SO 2 oxidation reaction Conversely, no high reaction rate originally added the the structure of such a plate-shaped catalyst It is considered that the improvement in the denitration performance and the oxidation performance such as CO enabled the required geometric surface area of the catalyst to be reduced.

【0030】他方、都市ゴミや産業廃棄物の焼却により
生じる排ガス中のダイオキシン類についても一酸化炭素
(CO)と同様に、触媒構造体の総括反応速度定数Kを
増加させることにより、触媒全体の反応速度が向上する
ことが認められた。特に前述のようにダイオキシン類は
排ガス中の濃度が極めて低いため拡散を促進する本発明
の効果は大きい。
On the other hand, similarly to carbon monoxide (CO), dioxins in exhaust gas generated by incineration of municipal garbage and industrial waste also increase the overall reaction rate constant K of the catalyst structure to increase the overall catalyst. It was noted that the reaction rate was improved. In particular, as described above, since the concentration of dioxins in the exhaust gas is extremely low, the effect of the present invention for promoting diffusion is great.

【0031】[0031]

【発明の実施の形態】以下本発明の実施の形態を詳細に
説明する。 実施例1 メタチタン酸スラリ(TiO2含有量:30wt%、S
4含有量:8wt%)67kgにモリブデン酸アンモ
ニウム((NH46・Mo724・4H2O)を2.7k
g、メタバナジン酸アンモニウム(NH4VO3)を1.
28kg加え、加熱ニーダを用いて水を蒸発させながら
混練し、水分約36%のペーストを得た。これを3φの
柱状に押し出し造粒後、流動層乾燥機で乾燥し、次に大
気中250℃で2時間焼成した。得られた顆粒をハンマ
ーミルで平均粒径5μmの粒径に粉砕し、本発明の第一
成分と第二成分からなる触媒組成を得た。このときの組
成はV/Mo/Ti=4/5/91(原子比)である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below in detail. Example 1 Metatitanate slurry (TiO 2 content: 30 wt%, S
O 4 content: 8 wt%) 67 kg to 2.7k ammonium molybdate ((NH 4) 6 · Mo 7 O 24 · 4H 2 O)
g, ammonium metavanadate (NH 4 VO 3 ):
28 kg was added and kneaded while evaporating water using a heating kneader to obtain a paste having a water content of about 36%. This was extruded into a 3φ column, granulated, dried by a fluidized bed drier, and then fired in the air at 250 ° C. for 2 hours. The obtained granules were pulverized with a hammer mill to a particle diameter of an average particle diameter of 5 μm to obtain a catalyst composition comprising the first component and the second component of the present invention. The composition at this time is V / Mo / Ti = 4/5/91 (atomic ratio).

【0032】一方、塩化白金酸(H2[PtC16]・6
2O)0.665gを水1リットルに溶解したもの
に、微粉シリカ粉末500gを加え、砂浴上で蒸発乾固
して白金を担持した。これを180℃で2時間乾燥後、
空気中500℃で2時間焼成して0.05wt%Pt−
シリカを調整し、本発明の第三成分からなる触媒成分か
らなる組成を得た。
On the other hand, chloroplatinic acid (H 2 [PtC 16 ] .6
To a solution prepared by dissolving 0.665 g of H 2 O in 1 liter of water, 500 g of fine silica powder was added and evaporated to dryness on a sand bath to carry platinum. After drying this at 180 ° C for 2 hours,
Fired at 500 ° C for 2 hours in air, 0.05wt% Pt-
The silica was adjusted to obtain a composition comprising a catalyst component comprising the third component of the present invention.

【0033】以上の方法で得られた第一成分と第二成分
からなる粉末20kgと第三成分408gに、Al23
・SiO2系無機繊維3kg、水10kgとをニーダを
用いて1時間混練し、粘土状にした。この触媒ペースト
を幅500mm、厚さ0.2mmのSUS304製メタ
ルラス基板にアルミニウム溶射を施して粗面化した基板
にローラを用いてラス目間及び表面に塗布して厚さ約
0.9mm、長さ500mmの板状触媒を得た。この触
媒にプレス成形により図1(a)に示すような平面部3
に所定の間隔で互いに平行に設けられた複数の突条部2
を形成し、風乾後大気中で500℃で2時間焼成した。
To 20 kg of the powder comprising the first and second components and 408 g of the third component obtained by the above method, Al 2 O 3 was added.
3 kg of SiO 2 -based inorganic fiber and 10 kg of water were kneaded for 1 hour using a kneader to make a clay. The catalyst paste is applied to the surface of a SUS304 metal lath substrate having a width of 500 mm and a thickness of 0.2 mm, which has been subjected to aluminum spraying and roughened by using a roller, between the laths and on the surface using a roller to have a thickness of approximately 0.9 mm and a length of approximately 0.9 mm. A 500 mm-thick plate catalyst was obtained. A flat portion 3 as shown in FIG.
A plurality of ridges 2 provided at predetermined intervals in parallel with each other
Was formed, and calcined in air at 500 ° C. for 2 hours.

【0034】得られた触媒エレメント1と該触媒エレメ
ント1を裏返して得られる図1(bに示す突条部2’と
平面部3’を備えた触媒エレメント1’とを、それらの
突条部2、2’の稜線同士を当接させて交互に1枚ずつ
積層して150角×500mm長さの図1(c)に示す
構成の触媒構造体を得た。このとき、触媒エレメント1
の突条部2は排ガス6の流れ方向と30度(角度θ=3
0°)となるように設け、触媒エレメント1’の突条部
2’は排ガス6の流れ方向と150度(角度θ’=15
0°)となるように設けている。
The obtained catalyst element 1 and a catalyst element 1 ′ having a ridge 2 ′ and a flat portion 3 ′ obtained by turning over the catalyst element 1 shown in FIG. The ridge lines 2 and 2 ′ were brought into contact with each other and alternately laminated one by one to obtain a catalyst structure having a configuration of 150 square × 500 mm and having the configuration shown in FIG.
Of the exhaust gas 6 by 30 degrees (angle θ = 3
0 °), and the ridge 2 ′ of the catalyst element 1 ′ is set at 150 ° (angle θ ′ = 15) with respect to the flow direction of the exhaust gas 6.
0 °).

【0035】実施例2 実施例1と同様に調整した触媒エレメント1と触媒エレ
メント1’を、それらの突条部2、2’の稜線同士が当
接するように交互に1枚ずつ積層して150角×500
mm長さの図1(c)の構成の触媒構造体を得た。この
とき、触媒エレメント1の突条部2は排ガス6の流れ方
向と45度(角度θ=45°)となるように設け、触媒
エレメント1’の突条部2’は排ガス6の流れ方向と1
35度(角度θ’=135°)となるように設けてい
る。
Example 2 The catalyst element 1 and the catalyst element 1 ′ prepared in the same manner as in Example 1 were alternately stacked one by one so that the ridges of the ridges 2 and 2 ′ abut each other. Square x 500
A catalyst structure having a length of mm and having the structure shown in FIG. 1C was obtained. At this time, the ridge 2 of the catalyst element 1 is provided so as to be 45 degrees (angle θ = 45 °) with the flow direction of the exhaust gas 6, and the ridge 2 ′ of the catalyst element 1 ′ is aligned with the flow direction of the exhaust gas 6. 1
It is provided so as to be 35 degrees (angle θ ′ = 135 °).

【0036】実施例3 本発明の第三成分である白金を担持しないこと以外は実
施例1と同様に調製した触媒(本発明の第一成分、第二
成分のみ)の粉末20kgに、Al23・SiO2系無
機繊維3kg、水10kgとニーダを用いて1時間混練
し、粘土状にした。この触媒ペーストを幅500mm、
厚さ0.2mmのSUS304製メタルラス基板にアル
ミニウム溶射を施して粗面化した基板にローラを用いて
ラス目間及び表面に塗布して厚さ約0.9mm、長さ5
00mmの板状触媒を得た。この触媒にプレス成形によ
り図1(a)に示す様な波形を形成し、風乾後大気中で
500℃で2時間焼成した。
Example 3 Al 2 O 3 was added to 20 kg of a powder of a catalyst (only the first and second components of the present invention) prepared in the same manner as in Example 1 except that platinum as the third component of the present invention was not supported. The mixture was kneaded with 3 kg of O 3 · SiO 2 -based inorganic fiber, 10 kg of water and a kneader for 1 hour to form a clay. This catalyst paste is 500 mm wide,
A SUS304 metal lath substrate having a thickness of 0.2 mm is sprayed with aluminum and roughened by applying a roller to the gap between the lattices and the surface using a roller to have a thickness of about 0.9 mm and a length of 5 mm.
A 00 mm plate catalyst was obtained. The catalyst was press-formed to form a waveform as shown in FIG. 1 (a), air-dried, and then baked in air at 500 ° C. for 2 hours.

【0037】得られた触媒エレメント1と該触媒エレメ
ント1を裏返して得られる図1(bに示す突条部2’と
平面部3’を備えた触媒エレメント1’とを、それらの
突条部2、2’の稜線同士を当接させて交互に1枚ずつ
積層して150角×500mm長さの図1(c)に示す
構成の触媒構造体を得た。このとき、触媒エレメント1
の突条部2は排ガス6の流れ方向と30度(角度θ=3
0°)となるように設け、触媒エレメント1’の突条部
2’は排ガス6の流れ方向と150度(角度θ’=15
0°)となるように設けている。
The obtained catalyst element 1 and the catalyst element 1 ′ provided with a ridge 2 ′ and a flat portion 3 ′ shown in FIG. The ridge lines 2 and 2 ′ were brought into contact with each other and alternately laminated one by one to obtain a catalyst structure having a configuration of 150 square × 500 mm and having the configuration shown in FIG.
Of the exhaust gas 6 by 30 degrees (angle θ = 3
0 °), and the ridge 2 ′ of the catalyst element 1 ′ is set at 150 ° (angle θ ′ = 15) with respect to the flow direction of the exhaust gas 6.
0 °).

【0038】実施例4 酸化チタン粉末(TiO2含有量:90wt%、SO4
有量:3wt%)22kgにモリブデン酸アンモニウム
((NH46・Mo724・4H2O)を2.8kg、メ
タバナジン酸アンモニウム(NH4VO3)を2.6kg
加え、加熱ニーダを用いて混練し、水分約36%のペー
ストを得た。このときの組成はV/Mo/Ti=7/5
/88(原子比)であり、本発明の第一成分と第二成分
からなる触媒である。以上の方法で得られた触媒ペース
トに、Al23・SiO2系無機繊維10kgを加え
て、約1時間混練した。この触媒ペーストを幅500m
m、厚さ0.2mmのSUS304製メタルラス基板に
アルミニウム溶射を施して粗面化した基板にローラを用
いてラス目間及び表面に塗布して厚さ約0.9mm、長
さ500mmの板状触媒を得た。
[0038] Example 4 Titanium oxide powder (TiO 2 content: 90 wt%, SO 4 content: 3 wt%) 22 kg of ammonium molybdate ((NH 4) 6 · Mo 7 O 24 · 4H 2 O) 2. 8 kg, 2.6 kg of ammonium metavanadate (NH 4 VO 3 )
In addition, the mixture was kneaded using a heating kneader to obtain a paste having a water content of about 36%. The composition at this time is V / Mo / Ti = 7/5
/ 88 (atomic ratio) and is a catalyst comprising the first component and the second component of the present invention. To the catalyst paste obtained by the above method, 10 kg of Al 2 O 3 .SiO 2 inorganic fibers was added and kneaded for about 1 hour. This catalyst paste is 500m wide
m, a SUS304 metal lath substrate with a thickness of 0.2 mm, which is subjected to aluminum spraying and roughened by a roller. A catalyst was obtained.

【0039】この触媒にプレス成形により図1(a)の
ような波形を形成し、風乾後大気中で500℃で2時間
焼成した。得られた触媒エレメント1と該触媒エレメン
ト1を裏返して得られる図1(bに示す突条部2’と平
面部3’を備えた触媒エレメント1’とを、それらの突
条部2、2’の稜線同士を当接させて交互に1枚ずつ積
層して150角×500mm長さの図1(c)に示す構
成の触媒構造体を得た。このとき、触媒エレメント1の
突条部2は排ガス6の流れ方向と30度(角度θ=30
°)となるように設け、触媒エレメント1’の突条部
2’は排ガス6の流れ方向と150度(角度θ’=15
0°)となるように設けている。
The catalyst was press-formed to form a waveform as shown in FIG. 1 (a), air-dried, and then fired in air at 500 ° C. for 2 hours. The obtained catalyst element 1 and a catalyst element 1 ′ having a ridge 2 ′ and a flat portion 3 ′ shown in FIG. The ridge lines of '′ were brought into contact with each other and alternately laminated one by one to obtain a catalyst structure having a configuration of 150 squares × 500 mm and having the configuration shown in FIG. 2 is 30 degrees with the flow direction of the exhaust gas 6 (angle θ = 30
°), and the ridge 2 ′ of the catalyst element 1 ′ is set at 150 ° (angle θ ′ = 15) with respect to the flow direction of the exhaust gas 6.
0 °).

【0040】実施例5 突条部2の稜線が排ガス6の流れ方向と45度(θ=4
5°)、突条部2’の稜線が排ガス6の流れ方向と13
5度(θ’=135°)となるように成形した他は実施
例4と同様に調製した触媒エレメント1と触媒エレメン
ト1’を得た。得られた触媒エレメント1と該触媒エレ
メント1を裏返して得られる図1(b)に示す突条部
2’と平面部3’を備えた触媒エレメント1’とを、そ
れらの突条部2、2’の稜線同士を当接させて交互に1
枚ずつ積層して150角×500mm長さの図1(c)
に示す構成の触媒構造体を得た。このとき、触媒エレメ
ント1の突条部2は排ガス6の流れ方向と45度(角度
θ=45°)となるように設け、触媒エレメント1’の
突条部2’は排ガス6の流れ方向と135度(角度θ’
=135°)となるように設けている。
Example 5 The ridge line of the ridge 2 was 45 degrees with the flow direction of the exhaust gas 6 (θ = 4
5 °), the ridge line of the ridge 2 ′ is aligned with the flow direction of the exhaust gas 6
A catalyst element 1 and a catalyst element 1 'were prepared in the same manner as in Example 4, except that the catalyst element was formed so as to be 5 degrees (θ' = 135 °). The obtained catalyst element 1 and a catalyst element 1 ′ having a flat portion 3 ′ and a ridge portion 2 ′ shown in FIG. 2 'ridges are brought into contact with each other and alternately 1
Fig. 1 (c) with a length of 150 squares x 500mm laminated one by one
A catalyst structure having the structure shown in the following was obtained. At this time, the ridge 2 of the catalyst element 1 is provided so as to be 45 degrees (angle θ = 45 °) with the flow direction of the exhaust gas 6, and the ridge 2 ′ of the catalyst element 1 ′ is aligned with the flow direction of the exhaust gas 6. 135 degrees (angle θ '
= 135 °).

【0041】実施例6 本発明の第三成分として実施例1のPtに代えて0.0
5wt%Irを添加することを除いては実施例1と同様
に調製して触媒構造体を得た。
Example 6 As the third component of the present invention, 0.0 was used in place of Pt of Example 1.
A catalyst structure was obtained in the same manner as in Example 1, except that 5 wt% Ir was added.

【0042】実施例7 本発明の第三成分として実施例1のPtに代えて0.0
5wt%Rhを添加することを除いては実施例1と同様
に調製して触媒構造体を得た。
Example 7 As the third component of the present invention, 0.0 was used in place of Pt in Example 1.
A catalyst structure was obtained in the same manner as in Example 1 except that 5 wt% Rh was added.

【0043】実施例8 本発明の第三成分として実施例1のPtに代えて0.0
5wt%Pdを添加することを除いては実施例1と同様
に調製して触媒構造体を得た。
Example 8 As the third component of the present invention, 0.0 was used instead of Pt of Example 1.
A catalyst structure was obtained in the same manner as in Example 1, except that 5 wt% Pd was added.

【0044】実施例9 酸化チタン粉末(TiO2含有量:90wt%、SO4
有量:3wt%)22kgにメタタングステン酸アンモ
ニウム3.6kgメタバナジン酸アンモニウム2.6k
gをニーダを用いて混練し、水分約36%のペーストを
得た。この時の組成はV/W/Ti=7/5/88(原
子比)であり、上記以外は実施例4と同等にして触媒構
造体を得た。
EXAMPLE 9 3.6 kg of ammonium metatungstate 2.6 kg of ammonium metavanadate was added to 22 kg of titanium oxide powder (TiO 2 content: 90 wt%, SO 4 content: 3 wt%).
g was kneaded using a kneader to obtain a paste having a water content of about 36%. The composition at this time was V / W / Ti = 7/5/88 (atomic ratio), and a catalyst structure was obtained in the same manner as in Example 4 except for the above.

【0045】実施例10 酸化チタン粉末に代えて酸化ケイ素粉末17kgを使用
することを除いては、実施例1と同様に調製して触媒構
造体を得た。
Example 10 A catalyst structure was obtained in the same manner as in Example 1 except that 17 kg of silicon oxide powder was used instead of the titanium oxide powder.

【0046】比較例1 実施例1と同様に調製した本発明の第一成分と第二成分
のみで、図7に示すような触媒エレメント11を成形
し、その突起部12の稜線がガス流れ方向と平行になる
ように一枚ずつ積層して150mm角×500mm長さ
の図9(a)に示す触媒構造体(排ガス流の上流側から
見た図)を得た。
Comparative Example 1 A catalyst element 11 as shown in FIG. 7 was formed from only the first component and the second component of the present invention prepared in the same manner as in Example 1, and the ridge line of the projection 12 was in the gas flow direction. 9 (a) (a diagram viewed from the upstream side of the exhaust gas flow) having a size of 150 mm × 500 mm was obtained.

【0047】比較例2 実施例1と同様に調製した触媒エレメント1を得て、触
媒エレメント1と該触媒エレメント1を裏返して得られ
る図1(b)に示す突条部2’と平面部3’を備えた触
媒エレメント1’とを、それらの突条部2、2’の稜線
同士を当接させて交互に1枚ずつ積層して150角×5
00mm長さの図1(c)に示す構成の触媒構造体を得
た。このとき、触媒エレメント1の突条部2は排ガス6
の流れ方向と50度(角度θ=50°)となるように設
け、触媒エレメント1’の突条部2’は排ガス6の流れ
方向と130度(角度θ’=130°)となるように設
けている。
COMPARATIVE EXAMPLE 2 A catalyst element 1 prepared in the same manner as in Example 1 was obtained, and the catalyst element 1 and the ridge 2 ′ and the flat part 3 shown in FIG. And a catalyst element 1 'having a ridge of 2, and a ridge line 2 and 2' are brought into contact with each other and alternately stacked one by one to form a square of 150 × 5.
A 00 mm long catalyst structure having the configuration shown in FIG. 1C was obtained. At this time, the ridge 2 of the catalyst element 1
Is provided so as to be at 50 degrees (angle θ = 50 °) with respect to the flow direction of the exhaust gas 6 at 130 degrees (angle θ ′ = 130 °) with the flow direction of the exhaust gas 6. Provided.

【0048】比較例3 実施例1と同様に調製した触媒を、プレス成形により図
7のような突条部12と平坦部13を有する波形を形成
し、風乾後大気中で550℃で2時間焼成して触媒エレ
メント11を得た。得られた触媒エレメント11を、そ
の突条部12の稜線が排ガス6の流れ方向に全て平行に
なるように一枚ずつ積層して150mm角×500mm
長さの図9(a)に示すような排ガス流の上流側から見
た触媒構造体を得た。
COMPARATIVE EXAMPLE 3 A catalyst prepared in the same manner as in Example 1 was press-formed to form a waveform having ridges 12 and flat portions 13 as shown in FIG. By calcining, a catalyst element 11 was obtained. The obtained catalyst elements 11 are laminated one by one so that the ridge lines of the ridges 12 are all parallel to the flow direction of the exhaust gas 6, and are 150 mm square × 500 mm
A catalyst structure as seen from the upstream side of the exhaust gas flow as shown in FIG. 9A was obtained.

【0049】比較例4 実施例1と同様に調製した触媒を、プレス成形により図
7のような突条部12と平坦部13を有する波形を形成
し、風乾後大気中で550℃で2時間焼成して触媒エレ
メント11を得た。得られた触媒エレメント11を、そ
の突条部12の稜線が排ガス6の流れ方向と互いに直交
するように配置したものと平行になるように配置したも
のとを交互に1枚ずつ積層して150角×500mm長
さの図9(b)に示す構成の触媒構造体を得た。
COMPARATIVE EXAMPLE 4 A catalyst prepared in the same manner as in Example 1 was press-formed to form a waveform having ridges 12 and flat portions 13 as shown in FIG. By calcining, a catalyst element 11 was obtained. The obtained catalyst elements 11 are alternately stacked one by one on the one in which the ridge lines of the ridges 12 are arranged so as to be orthogonal to the flow direction of the exhaust gas 6 and in the other, and are arranged one by one. A catalyst structure having the configuration shown in FIG.

【0050】比較例5 実施例1と同様に調製した触媒を、プレス成形により図
8(a)に示すような平坦部がなく、突条部22がある
波板状に成形し、風乾後大気中で550℃で2時間焼成
して、触媒エレメント21を得た。得られた触媒エレメ
ント21と該触媒エレメント21を裏返して得られる図
8(b)に示す触媒エレメント21’とを、それらの突
条部22、22’の稜線同士を当接させて交互に1枚ず
つ積層して150角×500mm長さの図9(c)に示
す構成の触媒構造体を得た。このとき、触媒エレメント
21の突条部22は排ガス6の流れ方向と30度(角度
θ=30°)となるように設け、触媒エレメント21’
の突条部22’は排ガス6の流れ方向と160度(角度
θ’=160°)となるように設けている。
Comparative Example 5 The catalyst prepared in the same manner as in Example 1 was formed into a corrugated plate having no flat portions and ridges 22 by press molding as shown in FIG. The resultant was calcined at 550 ° C. for 2 hours in the air to obtain a catalyst element 21. The obtained catalyst element 21 and the catalyst element 21 ′ shown in FIG. 8B obtained by turning the catalyst element 21 upside down are alternately brought into contact by bringing the ridge lines of the ridges 22, 22 ′ into contact with each other. The catalyst structures were laminated one by one to obtain a catalyst structure having a configuration of 150 square × 500 mm and having the configuration shown in FIG. 9C. At this time, the protrusions 22 of the catalyst element 21 are provided so as to be at 30 degrees (angle θ = 30 °) with the flow direction of the exhaust gas 6, and the catalyst element 21 ′
Is provided so as to be 160 degrees (angle θ ′ = 160 °) with the flow direction of the exhaust gas 6.

【0051】比較例6 実施例4と同様に調製した触媒エレメント1と触媒エレ
メント1’を得て、それらの突条部2、2’の稜線同士
を当接させて交互に1枚ずつ積層して150角×500
mm長さの図1(c)に示す構成の触媒構造体を得た。
このとき、触媒エレメント1の突条部2は排ガス6の流
れ方向と50度(角度θ=50°)となるように設け、
触媒エレメント1’の突条部2’は排ガス6の流れ方向
と130度(角度θ’=130°)となるように設けて
いる。
Comparative Example 6 A catalyst element 1 and a catalyst element 1 ′ prepared in the same manner as in Example 4 were obtained, and the ridges of the ridges 2, 2 ′ were brought into contact with each other and alternately laminated one by one. 150 x 500
A catalyst structure having a length shown in FIG. 1C and having a length of mm was obtained.
At this time, the ridge 2 of the catalyst element 1 is provided so as to be at an angle of 50 degrees (angle θ = 50 °) with the flow direction of the exhaust gas 6,
The projecting ridge 2 ′ of the catalyst element 1 ′ is provided so as to have an angle of 130 degrees (angle θ ′ = 130 °) with the flow direction of the exhaust gas 6.

【0052】表1に実施例及び比較例に示す触媒の仕様
をまとめたが、実施例1〜5の触媒及び比較例1〜6の
触媒構造体のそれぞれを反応器に充填し、LPG燃焼排
ガスを用いて表2の条件で脱硝、CO酸化性能及びSO
2酸化性能を測定するとともに触媒構造体の通風抵抗を
調べた。
Table 1 summarizes the specifications of the catalysts shown in Examples and Comparative Examples. The catalysts of Examples 1 to 5 and the catalyst structures of Comparative Examples 1 to 6 were each charged into a reactor, and the LPG combustion exhaust gas was charged. , CO oxidation performance and SO
(2) The oxidation performance was measured and the ventilation resistance of the catalyst structure was examined.

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【表2】 [Table 2]

【0055】得られた結果を試験した触媒の境膜物質移
動係数とともに表3に示す。表3から明らかなように本
発明の実施例1、2の触媒構造体は同一触媒仕様で調製
した比較例2、4、5の触媒構造体に比べて通風抵抗が
小さく、かつほぼ同様な脱硝性能とCO酸化性能が得ら
れることが分かる。これには、境膜物質移動係数が12
0m/hより高いことが必要条件となっているが、隣接
する触媒エレメント1の突条部2のガス流れ6との交差
角度が大きすぎると触媒構造体としての圧力損失が高く
なりすぎ、使用上問題になるため、表3に示したように
前記交差角度θが50゜未満、交差角度θ’が130゜
未満であることも必要である。すなわち、脱硝反応及び
脱CO反応は、境膜物質移動係数の増加とともに向上す
るが、その値にも限界があるのに対して、触媒構造体の
圧力損失は実用困難となる数値まで上昇するためであ
る。
The results obtained are shown in Table 3 together with the membrane mass transfer coefficients of the tested catalysts. As is clear from Table 3, the catalyst structures of Examples 1 and 2 of the present invention have lower ventilation resistance than the catalyst structures of Comparative Examples 2, 4 and 5 prepared with the same catalyst specifications, and have substantially the same denitration. It can be seen that performance and CO oxidation performance can be obtained. This includes a film mass transfer coefficient of 12
Although it is a necessary condition to be higher than 0 m / h, if the intersection angle between the ridge 2 of the adjacent catalyst element 1 and the gas flow 6 is too large, the pressure loss as the catalyst structure becomes too high, and Because of the above problem, it is necessary that the intersection angle θ is less than 50 ° and the intersection angle θ ′ is less than 130 ° as shown in Table 3. In other words, the denitration reaction and CO removal reaction improve with an increase in the membrane mass transfer coefficient, but their values are limited, whereas the pressure loss of the catalyst structure increases to a value that makes practical use difficult. It is.

【0056】[0056]

【表3】 [Table 3]

【0057】一方、SO2酸化性能は、実施例1、2及
び比較例2、4の触媒構造体は比較例3の触媒構造体に
比べて低く、比較例1に示す白金等貴金属を添加してい
ないパラレルフロー型ガス流路を有する従来の触媒構造
体と同等であった。
On the other hand, the SO 2 oxidation performance was lower in the catalyst structures of Examples 1 and 2 and Comparative Examples 2 and 4 than in the catalyst structure of Comparative Example 3, and the noble metal such as platinum shown in Comparative Example 1 was added. This was equivalent to a conventional catalyst structure having a parallel flow type gas flow path not provided.

【0058】言い換えると実施例1、2に示した触媒構
造体は同一触媒体積で比較した場合、白金等の貴金属を
添加している従来触媒(比較例2、4)に比べ、少ない
通風抵抗の増加で同等の脱硝性能とCO酸化性能を有
し、白金等の貴金属を添加していない従来触媒(比較例
1)と同様のSO2酸化性能となる。
In other words, when the catalyst structures shown in Examples 1 and 2 are compared with the same catalyst volume, they have lower ventilation resistance than the conventional catalysts to which a noble metal such as platinum is added (Comparative Examples 2 and 4). With the increase, the catalyst has the same denitration performance and CO oxidation performance, and has the same SO 2 oxidation performance as the conventional catalyst (Comparative Example 1) to which noble metals such as platinum are not added.

【0059】一方、図5には実施例1、3あるいは4と
比較例1あるいは3の触媒脱硝性能の流速特性を示す
が、比較例1あるいは3のパラレルフロー型ガス流路を
有する触媒構造体と比べ、実施例1、3あるいは4の触
媒ユニットはガス流速の増加に伴い急激に触媒性能が増
加することが分かる。実施例1、3あるいは4の触媒構
造体はガス空塔速度が2m/s近辺で比較例1あるいは
3とほぼ同程度まで性能が低下している。これは、実施
例1、3あるいは4の触媒構造体の各触媒エレメント1
の排ガス6の流れの方向に対してθ=30度(θ’=1
50度)の角度で存在する突条部2、2’の稜線が空塔
流速が速い場合には、乱流促進体として働くが、低流速
域では逆に流れのよどみを形成し、物質移動を阻害する
ためであると考えられる。
On the other hand, FIG. 5 shows the flow rate characteristics of the catalytic denitration performance of Examples 1, 3 and 4 and Comparative Examples 1 and 3. The catalytic structure having a parallel flow gas flow path of Comparative Examples 1 and 3 is shown. In comparison, it can be seen that the catalytic performance of the catalyst units of Examples 1, 3 and 4 increases sharply as the gas flow rate increases. The performance of the catalyst structures of Examples 1, 3 and 4 was reduced to almost the same level as Comparative Examples 1 and 3 when the gas superficial velocity was around 2 m / s. This corresponds to each catalyst element 1 of the catalyst structure of Example 1, 3 or 4.
Θ = 30 degrees (θ ′ = 1) with respect to the flow direction of the exhaust gas 6
The ridges of the ridges 2 and 2 'existing at an angle of 50 °) act as turbulence promoters when the superficial flow velocity is high, but conversely form flow stagnation in the low flow velocity area and cause mass transfer. It is considered to be because

【0060】従って本発明による板状触媒構造体は、2
m/s以上の排ガス流の流速域で、かつ、圧力損失の上
昇が実用上問題とならない10m/s未満とすることが
好ましい。
Accordingly, the plate-like catalyst structure according to the present invention
The flow rate is preferably in the range of an exhaust gas flow of at least m / s and less than 10 m / s, where an increase in pressure loss does not pose a practical problem.

【0061】次に、実施例1〜5及び比較例1、3及び
5について、都市ゴミ焼却炉の実排ガスを使用して各種
触媒によるダイオキシン類除去性能の比較を行った。表
4には試験条件を、また、表5には各種触媒のダイオキ
シン類の除去性能をそれぞれ示す。
Next, with respect to Examples 1 to 5 and Comparative Examples 1, 3 and 5, the performance of removing dioxins by various catalysts was compared using actual exhaust gas from a municipal waste incinerator. Table 4 shows the test conditions, and Table 5 shows the dioxin removal performance of each catalyst.

【0062】[0062]

【表4】 [Table 4]

【0063】[0063]

【表5】 [Table 5]

【0064】表5に示したように、同一触媒体積あたり
のダイオキシン類(PCDDS+PCDFS)の除去性能
を比較すると、実施例1〜5は比較例1、3及び5と同
等のダイオキシン類除去性能が得られることが分かる。
すなわち、表3に示した一酸化炭素(CO)の場合と同
様にダイオキシン類の各実施例1〜5に示す触媒の除去
率は比較例1、3及び5の結果と同等であるから、境膜
物質移動係数の増加により、より少ない表面積で、効率
よくダイオキシン類を除去できることが確認できた。
As shown in Table 5, when comparing the removal performance of dioxins (PCDD S + PCDF S ) per the same catalyst volume, Examples 1 to 5 showed the same dioxin removal as Comparative Examples 1, 3 and 5. It can be seen that performance is obtained.
That is, as in the case of carbon monoxide (CO) shown in Table 3, the removal rates of the dioxins in the catalysts shown in Examples 1 to 5 are equivalent to the results of Comparative Examples 1, 3 and 5, and It was confirmed that dioxins can be efficiently removed with a smaller surface area by increasing the membrane mass transfer coefficient.

【0065】さらに、実施例3と比較例1に示す触媒に
ついて、触媒入口のダイオキシン類濃度を変化させた場
合の触媒活性を図6に示す。図6から比較例1に比べて
実施例3の触媒は、低濃度領域でのダイオキシン類の除
去性能の低下が少ないことがわかる。つまり、実施例3
に示す触媒は反応物質の拡散(移動)がしやすく、よっ
て低濃度まで効率よくダイオキシン類を除去できるとい
うことである。通常、都市ゴミ焼却炉より排出する排ガ
ス中に含まれているダイオキシン類は非常に低濃度であ
り、この低濃度のダイオキシンをさらに低減することが
触媒に課せられることから、このように拡散が容易な触
媒形状は効果が大きいことになる。
FIG. 6 shows the catalytic activities of the catalysts of Example 3 and Comparative Example 1 when the concentration of dioxins at the catalyst inlet was changed. From FIG. 6, it can be seen that the catalyst of Example 3 has less decrease in the dioxin removal performance in the low concentration region as compared with Comparative Example 1. That is, the third embodiment
The catalyst shown in (1) is easy to diffuse (migrate) the reactants, so that dioxins can be efficiently removed up to a low concentration. Normally, dioxins contained in the exhaust gas discharged from municipal waste incinerators are extremely low in concentration, and the catalyst is required to further reduce this low concentration of dioxins, so that such diffusion is easy. A suitable catalyst shape has a large effect.

【0066】[0066]

【発明の効果】本発明によれば、触媒構造体での通風抵
抗を低く抑えてガスの乱れにより脱硝、COおよびダイ
オキシン類の分解除去を効率よく実現でき、コンパクト
な排ガス処理装置を提供することができる。
According to the present invention, it is possible to provide a compact exhaust gas treatment apparatus capable of efficiently realizing denitration and decomposition and removal of CO and dioxins by gas turbulence while suppressing the ventilation resistance in the catalyst structure. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1(a)、(b)は本発明の触媒エレメン
トの構造図であり、図1(c)は本発明の触媒エレメン
トの積層方法を示す図である。
1 (a) and 1 (b) are structural diagrams of a catalyst element of the present invention, and FIG. 1 (c) is a diagram showing a method of laminating a catalytic element of the present invention.

【図2】 本発明の触媒エレメントの突状部の構造例を
示す図である。
FIG. 2 is a diagram showing a structural example of a projecting portion of the catalyst element of the present invention.

【図3】 本発明の触媒のAV値とSO2酸化率の関係
を示す図である。
FIG. 3 is a diagram showing the relationship between the AV value and the SO 2 oxidation rate of the catalyst of the present invention.

【図4】 本発明の白金添加系触媒のAV値とCO酸化
率の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the AV value and the CO oxidation rate of the platinum-added catalyst of the present invention.

【図5】 本発明の実施例と比較例に示す触媒の流速特
性を示す図である。
FIG. 5 is a diagram showing flow velocity characteristics of catalysts shown in examples of the present invention and comparative examples.

【図6】 本発明の触媒入口ダイオキシン類濃度と実施
例と比較例の触媒の活性(性能)との関係を示す図であ
る。
FIG. 6 is a graph showing the relationship between the concentration of dioxins at the catalyst inlet of the present invention and the activity (performance) of the catalysts of Examples and Comparative Examples.

【図7】 従来技術における触媒エレメントの構造図で
ある。
FIG. 7 is a structural view of a catalyst element according to the related art.

【図8】 従来技術における触媒エレメントの構造図で
ある。
FIG. 8 is a structural view of a catalyst element according to the related art.

【図9】 図7又は図8の触媒エレメントを積層した触
媒構造体を示す図である。
FIG. 9 is a view showing a catalyst structure in which the catalyst elements of FIG. 7 or 8 are stacked.

【符号の説明】[Explanation of symbols]

1、11、21、1’、11’、21’ 触媒エレメン
ト 2、2’ 突条部 3、3’ 平面部 5 枠体 6 排ガス
1, 11, 21, 1 ', 11', 21 'Catalyst element 2, 2' Ridge 3, 3 'Flat part 5 Frame 6 Exhaust gas

フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 23/652 B01J 23/64 102A 103A (72)発明者 道本 孝司 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)発明者 伊藤 和典 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 23/652 B01J 23/64 102A 103A (72) Inventor Takashi Michimoto 6-9 Takara-cho, Kure-shi, Hiroshima Pref. 72) Inventor Kazunori Ito 6-9 Takara-cho, Kure-shi, Hiroshima Babcock-Hitachi Kure Factory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 表面に触媒活性を有する触媒成分を担持
し、排ガス流れに対する交差角度が0を超えて50度未
満である帯状突起からなる突条部と平坦部とを間隔を隔
てて交互に繰り返して構成される板状の第1触媒エレメ
ントと、表面に触媒活性を有する触媒成分を担持し、排
ガス流れに対する交差角度が0を超えて130度未満で
ある帯状突起からなる突条部と平坦部とを間隔を隔てて
交互に繰り返して構成される板状の第2触媒エレメント
とを交互に互いの突条部を当接させた状態で複数枚積層
してなる触媒構造体であって、触媒活性を有する触媒成
分の第一成分としてチタニア、シリカ、アルミナおよび
シリカ−アルミナから選ばれた少なくとも1種類の酸化
物ならびに第二成分としてバナジウム、タングステンお
よびモリブデンから選ばれた少なくとも1種類の酸化物
をそれぞれ含み、当該触媒の総括反応速度に関する係数
の内、反応物質の境膜物質移動係数が120m/h以
上、500m/h未満であることを特徴とする板状触媒
構造体。
1. A ridge and a flat portion, each of which has a catalyst component having catalytic activity on the surface and has a crossing angle with respect to the exhaust gas flow of more than 0 and less than 50 degrees, are alternately spaced apart from each other. A plate-like first catalyst element composed of repetitions, and a ridge formed of a strip-like projection carrying a catalytic component having catalytic activity on the surface and having an intersection angle with respect to the exhaust gas flow of more than 0 and less than 130 degrees. A catalyst structure comprising a plurality of plate-like second catalyst elements, which are alternately repeated at intervals, and a plurality of the plate-like second catalyst elements, which are alternately stacked in a state where the ridges are in contact with each other, At least one oxide selected from titania, silica, alumina and silica-alumina as a first component of a catalytic component having catalytic activity and vanadium, tungsten and molybdenum as a second component A plate containing at least one selected oxide and having a membrane mass transfer coefficient of a reactant of 120 m / h or more and less than 500 m / h among the coefficients relating to the overall reaction rate of the catalyst. Catalyst structure.
【請求項2】 触媒活性を有する触媒成分として前記第
一成分と第二成分の他に第三成分として白金、イリジウ
ム、ロジウム、パラジウムまたはこれらの酸化物の中か
ら選ばれた少なくとも1種類をそれぞれ含むことを特徴
とする請求項1記載の板状触媒構造体。
2. A catalyst component having catalytic activity, in addition to the first component and the second component, at least one selected from the group consisting of platinum, iridium, rhodium, palladium and oxides thereof as a third component. The plate-shaped catalyst structure according to claim 1, comprising:
【請求項3】 排ガス中の窒素酸化物、一酸化炭素(C
O)及び/またはダイオキシン(DXN)の除去用に用
いることを特徴とする請求項1記載の板状触媒構造体。
3. Nitrogen oxides and carbon monoxide (C) in exhaust gas
The plate-shaped catalyst structure according to claim 1, which is used for removing O) and / or dioxin (DXN).
【請求項4】 請求項1記載の板状触媒構造体を、被処
理ガスの空塔速度が2m/s以上、10m/s未満の範
囲である排ガス流路に配置することを特徴とする触媒反
応装置。
4. A catalyst, wherein the plate-like catalyst structure according to claim 1 is disposed in an exhaust gas flow path in which the superficial velocity of the gas to be treated is in the range of 2 m / s or more and less than 10 m / s. Reactor.
【請求項5】 ガス焚ボイラ、油焚ボイラ、石炭焚ボイ
ラ、ガスタービン、ディーゼルエンジン、都市ゴミ焼却
設備、焼結機または化学プラントから排出する排ガスの
流路に請求項1記載の触媒構造体を配置することを特徴
とする触媒反応装置。
5. The catalyst structure according to claim 1, wherein the catalyst structure is provided in a flow path of an exhaust gas discharged from a gas-fired boiler, an oil-fired boiler, a coal-fired boiler, a gas turbine, a diesel engine, a municipal garbage incinerator, a sintering machine, or a chemical plant. A catalytic reactor characterized by disposing.
【請求項6】 触媒構造体が配置されている排ガス流路
の前流側の排ガス流路に窒素酸化物の還元剤の注入部を
設けたことを特徴とする請求項5記載の触媒反応装置。
6. The catalytic reactor according to claim 5, wherein an injection portion for a reducing agent of nitrogen oxide is provided in an exhaust gas flow path on the upstream side of the exhaust gas flow path in which the catalyst structure is disposed. .
JP02731798A 1997-02-12 1998-02-09 Plate-shaped catalyst structure and catalytic reaction apparatus using the catalyst structure Expired - Lifetime JP3759832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02731798A JP3759832B2 (en) 1997-02-12 1998-02-09 Plate-shaped catalyst structure and catalytic reaction apparatus using the catalyst structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-27508 1997-02-12
JP2750897 1997-02-12
JP02731798A JP3759832B2 (en) 1997-02-12 1998-02-09 Plate-shaped catalyst structure and catalytic reaction apparatus using the catalyst structure

Publications (2)

Publication Number Publication Date
JPH10286469A true JPH10286469A (en) 1998-10-27
JP3759832B2 JP3759832B2 (en) 2006-03-29

Family

ID=26365232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02731798A Expired - Lifetime JP3759832B2 (en) 1997-02-12 1998-02-09 Plate-shaped catalyst structure and catalytic reaction apparatus using the catalyst structure

Country Status (1)

Country Link
JP (1) JP3759832B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100382050B1 (en) * 2000-12-29 2003-05-09 한국전력기술 주식회사 Catalyst for Removing Dioxin and Nitrogen Oxides in Flue Gas and Method for Treating Combustion Exhaust Gases Using the Same
KR100382051B1 (en) * 2000-12-29 2003-05-09 한국전력기술 주식회사 Catalyst for Selective Catalytic Reduction of Nitrogen Oxides Including Sulfur Dioxide at Low Temperature
KR100549777B1 (en) * 2002-03-28 2006-02-06 한국전력기술 주식회사 Vanadium/Titania-based Catalyst Containing Vanadium Trioxide for Removing Nitrogen Oxide and/or Dioxin at Wide Active Temperature Window
WO2021153539A1 (en) * 2020-01-28 2021-08-05 三菱パワー株式会社 Denitration catalyst structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100382050B1 (en) * 2000-12-29 2003-05-09 한국전력기술 주식회사 Catalyst for Removing Dioxin and Nitrogen Oxides in Flue Gas and Method for Treating Combustion Exhaust Gases Using the Same
KR100382051B1 (en) * 2000-12-29 2003-05-09 한국전력기술 주식회사 Catalyst for Selective Catalytic Reduction of Nitrogen Oxides Including Sulfur Dioxide at Low Temperature
KR100549777B1 (en) * 2002-03-28 2006-02-06 한국전력기술 주식회사 Vanadium/Titania-based Catalyst Containing Vanadium Trioxide for Removing Nitrogen Oxide and/or Dioxin at Wide Active Temperature Window
WO2021153539A1 (en) * 2020-01-28 2021-08-05 三菱パワー株式会社 Denitration catalyst structure
JP2021115538A (en) * 2020-01-28 2021-08-10 三菱パワー株式会社 Denitration catalyst structure
TWI803818B (en) * 2020-01-28 2023-06-01 日商三菱動力股份有限公司 Denitration catalyst sytucture

Also Published As

Publication number Publication date
JP3759832B2 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
Khodayari et al. Regeneration of commercial TiO2-V2O5-WO3 SCR catalysts used in bio fuel plants
EP0787521B1 (en) Method and apparatus for treating combustion exhaust gases
EP0488331B1 (en) Method and filter for removing nitrogen oxides and organic chlorine compounds from combustion waste gas
JPWO2006073083A1 (en) Cement kiln combustion exhaust gas treatment device and treatment method
JP2003053142A (en) Method and equipment for removing mercury in exhaust gas
JPH0775720A (en) Treatment of waste gas and catalyst for removing nitrogen oxide and dioxin
US10882031B2 (en) Catalyst for treating an exhaust gas, an exhaust system and a method
EP1293250A1 (en) A titanium, molybdenum and vanadium containing catalyst for removing organohalogen compounds, its process of production and use
JP4994008B2 (en) Purification equipment for exhaust gas containing nitrogen oxides and metallic mercury
JP3759832B2 (en) Plate-shaped catalyst structure and catalytic reaction apparatus using the catalyst structure
WO2009107729A1 (en) Catalyst for treating discharge gas
JP3474514B2 (en) Low temperature denitration catalyst and low temperature denitration method
JP3512454B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3212577B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
JP2609393B2 (en) Exhaust gas treatment method
JP5198744B2 (en) Catalyst structure
JP2000051648A (en) Method and apparatus for treating exhaust gas
KR100382051B1 (en) Catalyst for Selective Catalytic Reduction of Nitrogen Oxides Including Sulfur Dioxide at Low Temperature
JPH08290062A (en) Waste gas purifying catalyst, its manufacture and waste gas purifying method
JP2001038206A (en) Catalyst for treating exhaust gas and method and apparatus for treating exhaust gas
JP3790943B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP4864231B2 (en) Denitration catalyst structure and exhaust gas denitration method using the same
JP3388941B2 (en) Exhaust gas purification method
JP2000300959A (en) Method and apparatus for decomposing halogen- containing organic compound
JP3702398B2 (en) Exhaust gas purification catalyst and purification method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term