JP3759832B2 - Plate-shaped catalyst structure and catalytic reaction apparatus using the catalyst structure - Google Patents

Plate-shaped catalyst structure and catalytic reaction apparatus using the catalyst structure Download PDF

Info

Publication number
JP3759832B2
JP3759832B2 JP02731798A JP2731798A JP3759832B2 JP 3759832 B2 JP3759832 B2 JP 3759832B2 JP 02731798 A JP02731798 A JP 02731798A JP 2731798 A JP2731798 A JP 2731798A JP 3759832 B2 JP3759832 B2 JP 3759832B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
component
catalyst structure
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02731798A
Other languages
Japanese (ja)
Other versions
JPH10286469A (en
Inventor
良憲 永井
正人 向井
泰良 加藤
孝司 道本
和典 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP02731798A priority Critical patent/JP3759832B2/en
Publication of JPH10286469A publication Critical patent/JPH10286469A/en
Application granted granted Critical
Publication of JP3759832B2 publication Critical patent/JP3759832B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排ガス浄化用触媒構造体に係り、特に排ガス中に硫黄酸化物(SOx)が存在する場合に窒素酸化物(NOx)、一酸化炭素(CO)及び/又はダイオキシン(DXN)等の有機化合物を効率よく除去するための板状触媒を用いた触媒構造体と該触媒構造体を排ガス流路に配置した触媒反応装置に関する。
【0002】
【従来の技術】
発電所、各種工場、自動車などから排出される排煙中のNOxは、光化学スモッグや酸性雨の原因物質であり、その効果的な除去方法としてアンモニア(NH3)等を還元剤とした選択的接触還元による排煙脱硝法が火力発電所を中心に幅広く用いられている。
【0003】
触媒には、バナジウム(V)、モリブデン(Mo)あるいはタングステン(W)を活性成分にした酸化チタン(TiO2)系触媒が使用されており、特に活性成分の一つとしてバナジウムを含む触媒は活性が高いだけでなく、排ガス中に含まれている不純物による劣化が小さいこと、より低温から使用できることなどから現在の脱硝触媒の主流になっている(特開昭50−12868号公報等)。
【0004】
また、火力発電所等で発生する排ガス中には窒素酸化物(NOx)のみならず、その他にも有害なガス成分が含まれており、排出規制の対象となっていることから、これらガス状成分の効果的な除去も必要になってきている。
【0005】
例えば、前記有害なガス成分としてはガスタービン排ガス中の一酸化炭素(CO)や都市ゴミや産業廃棄物等の焼却設備から排出されるダイオキシン(DXN)等が挙げられる。
【0006】
こうした有害ガスの除去を行うにあたって、排ガス中の一酸化炭素(CO)については▲1▼上記した脱硝触媒に、白金、イリジウム、ロジウム、パラジウム等の貴金属を添加して窒素酸化物とともに除去する触媒(特開平5−329334号)などに記載されている。
【0007】
他方、都市ゴミや産業廃棄物等の焼却設備から排出される毒性の強いダイオキシン類が大きな社会問題になっており、その効果的な低減技術が望まれている。ダイオキシンとは、有機塩素化合物であるポリ塩化ジベンゾパラジオキシン
(Polychlorinated dibenzo-p-dioxins: PCDDs)のことで、極めて安定な物質であり、多くの異性体・同族体が存在する。また、これと同じような性質を持つ化合物としてポリ塩化ジベンゾフラン(Polychlorinated dibenzofurans: PCDFs)があり、ダイオキシンと合わせてダイオキシン類と総称されている。こうしたダイオキシン類の排出量を抑える動きとして、欧州では1980年代後半から都市ごみ焼却施設からの排出量を厳しく規制する動きがあり、日本においても最近、大気汚染防止法として法規制化されるに至っている。
【0008】
こうした排ガス中のダイオキシン類の除去に関しても、触媒による酸化分解が残さを生じない方法として注目されており、例えば▲2▼特開平2−35914号公報には廃棄物焼却炉から排出される排ガスを冷却後、集塵装置で除塵する排ガス処理方法において、除塵後の排ガスを150℃以上とすることで芳香族系塩素化合物を触媒により分解することが開示されており、触媒としては酸化チタン、酸化バナジウム、酸化タングステン、白金、パラジウムのうちから選ばれた少なくとも1種を使用するとしている。さらに、▲3▼特開平3−8415号公報には、排ガス中のダイオキシン類を触媒により除去する方法において、温度を250℃以上、SV(空間速度=処理ガス量/触媒量)を50,000 1/h未満、AV(面積速度=処理ガス量/触媒幾何学的表面積)を250m/h未満とすることが開示されており、触媒としてはハニカム形状のものがよいことも記載されている。
【0009】
一般に、上記のような排ガス中の有害物質の除去に使用する触媒は通常ハニカム状、板状に成形して用いられ、そのための各種製造法が発明考案されている。中でも▲4▼金属薄板をメタルラス加工後、アルミニウム溶射を施した網状物やセラミック繊維製織布あるいは不織布を基板に用い、これに前記触媒成分を塗布、圧着して得た板状触媒を図2の板状触媒エレメントの断面図に示すような波形を有する形状に加工後、図9(a)に示すように枠体5に組み込んだ触媒構造体(特開昭54−79188号公報、特願昭63−324676号公報など)は、▲5▼触媒成分のペーストを押出成形したハニカム形状の触媒構造体に比べて通風損失が小さく、煤塵や石炭の燃焼灰で閉塞されにくいなどの優れた特徴があり、現在火力発電用ボイラ排ガスの脱硝触媒として多数用いられている。
【0010】
【発明が解決しようとする課題】
上述した排ガス中に存在する有害物質は、一般に非常に低濃度である。例えば、ガスタービン排ガス中の一酸化炭素(CO)濃度は数ppmレベルであり、これを50%以上除去することが触媒には要求される。また、都市ゴミ焼却設備や産業廃棄物の焼却設備から排出される排ガス中にはダイオキシン類は、1m3N当たりナノグラム(10-9g)のオーダーで存在しており、したがってダイオキシン類の排出規制値もng/m3Nオーダーで規定されている。
前記排出規制法などで分かるように、排ガス浄化用の触媒にはこうした希薄濃度の有害物質を効率よく分解除去できるものが望まれる。
【0011】
ここで、上記従来技術▲4▼、▲5▼に用いる触媒構造体内のガスの通過流路はガスの流れ方向に対して平行であり、また、通常はRe(レイノルズ数)が2000以下の領域で使用されるため触媒層内のガスのフローパターンは層流となり、通風抵抗が非常に小さいという特徴を有する。しかし、その反面、触媒表面上での有害物質の分解反応により生じる反応物質(有害物質)は、触媒表面近傍でも、その濃度が低いので、触媒反応速度が低下するという問題がある。すなわち、反応により触媒表面と触媒表面から一定距離のあるガス相内(バルク)との間に濃度勾配が生じるが、反応ガス成分が希薄なために、バルクからの拡散が律速になり反応速度が小さくなる。
【0012】
一般に、触媒による反応速度は下式で示される。
1/K=1/Kr+1/Kf
K:総括反応速度係数(m/h)
Kr:単位表面積あたりの反応速度定数(m/h)
Kf:反応物質の境膜反応速度係数(m/h)
【0013】
触媒全体としての反応速度(総括反応速度定数K)は触媒の仕様(組成)が一定、すなわち係数Krが一定の場合には反応物質の触媒表面への移動(拡散)が促進されることにより高くなるため、いかに反応物質の触媒表面への拡散を促すかが触媒反応を効果的に行うために重要である。しかし、前記従来技術▲4▼、▲5▼にはこうした配慮はなされていない。
【0014】
すなわち、上記▲1▼〜▲5▼の従来技術においては、触媒上での希薄濃度の被処理物(反応ガス)の反応についての影響が考慮されてなく、前述した施設に排ガス処理装置として上記▲1▼〜▲5▼の従来技術の触媒法を適用した場合に使用する触媒の量が多くなるといった問題点があった。
【0015】
さらに、油焚きボイラまたは石炭焚きボイラや都市ゴミ焼却設備からの排ガスには、窒素酸化物(NOx)や一酸化炭素(CO)等だけでなく硫黄酸化物(SOx)も含有されているが、この硫黄酸化物(大半はSO2)は触媒により一部酸化されて下式に示す反応により、特に低温域で硫酸アンモニウム(NH42SO4や酸性硫安NH4HSO4を生成し、触媒の性能低下を招くばかりか触媒装置が配置されている箇所より後流側の排ガス流路にある機器に悪影響を及ぼすことになる。
2NH3+SO3+H2O→(NH42SO4
NH3+SO3+H2O→NH4HSO4
【0016】
ここで、この望ましくないSO2の酸化反応は通常の反応条件下においては比較的反応速度が低く、触媒の幾何学的な表面積に比例することが発明者らの研究で明らかとなっている。
【0017】
一方、排ガス中に存在する一酸化炭素(CO)ならびにダイオキシン(DXN)を酸化分解するためには白金等の貴金属添加系触媒が優れているが、この場合、上記SO2の酸化反応も促進されることとなり、触媒の単位表面積あたりの総括反応速度定数Kが小さい(言い換えれば表面積が多い)前記従来技術▲4▼、▲5▼では、この双方の事実を両立させることが困難であるという問題点があった。
【0018】
本発明の課題は、上記従来技術の有する問題点をなくし、ガスの乱れにより物質移動を促進する効果を利用しつつ、通風抵抗の比較的小さな触媒構造体を用いることにより硫黄酸化物(SOx)共存系の排ガスにおいても問題なく、効率よく一酸化炭素(CO)等と窒素酸化物(NOx)を分解除去する触媒構造体と該触媒構造体を用いる触媒反応装置を提供することである。
【0019】
【課題を解決するための手段】
上記課題は以下の手段(1)〜(5)により達成することができる。
(1)表面に触媒活性を有する触媒成分を担持し、排ガス流れに対する交差角度が0を超えて50度未満である帯状突起からなる突条部と平坦部とを間隔を隔てて交互に繰り返して構成される板状の第1触媒エレメントと、表面に触媒活性を有する触媒成分を担持し、排ガス流れに対する交差角度が130度を超えて180度未満である帯状突起からなる突条部と平坦部とを間隔を隔てて交互に繰り返して構成される板状の第2触媒エレメントとを交互に互いの突条部を当接させた状態で複数枚積層してなる触媒構造体であって、触媒活性を有する触媒成分の第一成分としてチタニア、シリカ、アルミナおよびシリカ−アルミナから選ばれた少なくとも1種類の酸化物ならびに第二成分としてバナジウム、タングステンおよびモリブデンから選ばれた少なくとも1種類の酸化物をそれぞれ含み、当該触媒の総括反応速度に関する係数の内、反応物質の境膜物質移動係数が120m/h以上、507m/h以下であり、硫黄酸化物(SOx)、窒素酸化物(NOx)、一酸化炭素(CO)及び/又はダイオキシン(DX)が存在する排ガス中の窒素酸化物(NOx)、一酸化炭素(CO)及び/又はダイオキシン(DX)を除去するための板状触媒構造体。
【0020】
(2)前記第一成分と第二成分の他に、さらに、第三成分として白金、イリジウム、ロジウムおよびパラジウムまたはこれらの酸化物の中から選ばれた少なくとも1種類をそれぞれ含む前記(1)の板状触媒構造体と同一の構造を備えた板状触媒構造体。
【0021】
(3)前記(1)又は(2)に記載の板状触媒構造体を、被処理ガスの空塔速度が2m/s以上、10m/s未満の範囲である排ガス流路に配置して使用する触媒反応装置。
【0022】
(4)前記(1)又は(2)に記載の板状触媒構造体を、ガス焚ボイラ、油焚ボイラ、石炭焚ボイラ、ガスタービン、ディーゼルエンジン、都市ゴミ焼却設備、焼結機または化学プラントから排出する排ガスの流路に配置する触媒反応装置。
【0023】
(5)前記(1)又は(2)に記載の触媒構造体が配置されている排ガス流路の前流側に窒素酸化物の還元剤の注入部を設けることによって排ガス中の窒素酸化物と、一酸化炭素及び/又はダイオキシン類を同時に除去する触媒反応装置。
【0024】
本発明の前記第2触媒エレメントは、その突条部と排ガス流れの交差角度は130度を超えて180度未満であれば、いかなる交差角度を有するものを用いて良いが、第1触媒エレメントを裏返したものを使用することで、触媒エレメントの作製コストが大幅に低減できる。
【0025】
【作用】
本発明の作用を図面を用いて説明する。
図3は、チタン−モリブデン−バナジウム系脱硝触媒と、チタン−モリブデン−バナジウム−白金系触媒を板状に成形し、一定の試験寸法(20×100mm)に切断した後、温度380℃で測定した各触媒のSO2酸化率を示したものである。図3からSO2酸化率はいずれの触媒においてもAV(面積速度)に反比例して、すなわち触媒の幾何学的表面積が大きくなるにつれて高くなることが分かり、またその増加傾向は白金添加系において顕著であることが明らかである。
【0026】
次に、図4は一定の温度(350℃)におけるチタン−モリブデン−バナジウム−白金系触媒のCO酸化率を示したものである。図4から、COの酸化率についてもAVに反比例して高くなることが分かる。
【0027】
すなわち、図3と図4に示す結果は、チタン−モリブデン−バナジウム−白金系触媒は脱硝触媒として用いる場合、好ましくないSO2酸化率を抑えるためには当該触媒の幾何学的な表面積を極力少なくすることが良く、一方では排ガス中に存在する一酸化炭素(CO)を酸化分解するためには表面積の大きな触媒とすることが良いという相異なる結果である。
【0028】
ところが、本発明者らは本発明の請求項1、2に示す第一成分と二成分を含む触媒または第一成分〜第三成分を含む触媒構造体において、当該触媒の総括反応速度のうち、反応物質の境膜物質移動係数Kfが120m/h以上、507m/h以下となる触媒構造体を製作して試験したところ、通風抵抗が比較的低く、従来技術(4)、(5)のようなパラレルフロー型の触媒と同等のSO2酸化性能で、同等以上の脱硝性能及びCOならびにダイオキシン類の酸化性能を達成できることを確認した。
【0029】
これは、前記本発明の触媒構造体を用いることで、非常に希薄な被処理ガスの触媒表面への拡散(物質移動)がしやすくなり、単位表面積あたりの総括反応速度が高くなり、触媒の脱硝反応及びCOなどの酸化反応が起こり易くなったことに由来するもので、逆にSO2酸化反応は、本来その反応速度が高くなく、加えてこうした板状触媒の構造体により上記脱硝性能およびCOなどの酸化性能の向上で、必要な触媒の幾何学的な表面積の減少が可能になったためと考えられる。
【0030】
他方、都市ゴミや産業廃棄物の焼却により生じる排ガス中のダイオキシン類についても一酸化炭素(CO)と同様に、触媒構造体の総括反応速度定数Kを増加させることにより、触媒全体の反応速度が向上することが認められた。特に前述のようにダイオキシン類は排ガス中の濃度が極めて低いため拡散を促進する本発明の効果は大きい。
【0031】
【発明の実施の形態】
以下本発明の実施の形態を詳細に説明する。
実施例1
メタチタン酸スラリ(TiO2含有量:30wt%、SO4含有量:8wt%)67kgにモリブデン酸アンモニウム((NH46・Mo724・4H2O)を2.7kg、メタバナジン酸アンモニウム(NH4VO3)を1.28kg加え、加熱ニーダを用いて水を蒸発させながら混練し、水分約36%のペーストを得た。これを3φの柱状に押し出し造粒後、流動層乾燥機で乾燥し、次に大気中250℃で2時間焼成した。得られた顆粒をハンマーミルで平均粒径5μmの粒径に粉砕し、本発明の第一成分と第二成分からなる触媒組成を得た。このときの組成はV/Mo/Ti=4/5/91(原子比)である。
【0032】
一方、塩化白金酸(H2[PtC16]・6H2O)0.665gを水1リットルに溶解したものに、微粉シリカ粉末500gを加え、砂浴上で蒸発乾固して白金を担持した。これを180℃で2時間乾燥後、空気中500℃で2時間焼成して0.05wt%Pt−シリカを調整し、本発明の第三成分からなる触媒成分からなる組成を得た。
【0033】
以上の方法で得られた第一成分と第二成分からなる粉末20kgと第三成分408gに、Al23・SiO2系無機繊維3kg、水10kgとをニーダを用いて1時間混練し、粘土状にした。この触媒ペーストを幅500mm、厚さ0.2mmのSUS304製メタルラス基板にアルミニウム溶射を施して粗面化した基板にローラを用いてラス目間及び表面に塗布して厚さ約0.9mm、長さ500mmの板状触媒を得た。この触媒にプレス成形により図1(a)に示すような平面部3に所定の間隔で互いに平行に設けられた複数の突条部2を形成し、風乾後大気中で500℃で2時間焼成した。
【0034】
得られた触媒エレメント1と該触媒エレメント1を裏返して得られる図1(bに示す突条部2’と平面部3’を備えた触媒エレメント1’とを、それらの突条部2、2’の稜線同士を当接させて交互に1枚ずつ積層して150角×500mm長さの図1(c)に示す構成の触媒構造体を得た。このとき、触媒エレメント1の突条部2は排ガス6の流れ方向と30度(角度θ=30°)となるように設け、触媒エレメント1’の突条部2’は排ガス6の流れ方向と150度(角度θ’=150°)となるように設けている。
【0035】
実施例2
実施例1と同様に調整した触媒エレメント1と触媒エレメント1’を、それらの突条部2、2’の稜線同士が当接するように交互に1枚ずつ積層して150角×500mm長さの図1(c)の構成の触媒構造体を得た。このとき、触媒エレメント1の突条部2は排ガス6の流れ方向と45度(角度θ=45°)となるように設け、触媒エレメント1’の突条部2’は排ガス6の流れ方向と135度(角度θ’=135°)となるように設けている。
【0036】
実施例3
本発明の第三成分である白金を担持しないこと以外は実施例1と同様に調製した触媒(本発明の第一成分、第二成分のみ)の粉末20kgに、Al23・SiO2系無機繊維3kg、水10kgとニーダを用いて1時間混練し、粘土状にした。この触媒ペーストを幅500mm、厚さ0.2mmのSUS304製メタルラス基板にアルミニウム溶射を施して粗面化した基板にローラを用いてラス目間及び表面に塗布して厚さ約0.9mm、長さ500mmの板状触媒を得た。この触媒にプレス成形により図1(a)に示す様な波形を形成し、風乾後大気中で500℃で2時間焼成した。
【0037】
得られた触媒エレメント1と該触媒エレメント1を裏返して得られる図1(bに示す突条部2’と平面部3’を備えた触媒エレメント1’とを、それらの突条部2、2’の稜線同士を当接させて交互に1枚ずつ積層して150角×500mm長さの図1(c)に示す構成の触媒構造体を得た。このとき、触媒エレメント1の突条部2は排ガス6の流れ方向と30度(角度θ=30°)となるように設け、触媒エレメント1’の突条部2’は排ガス6の流れ方向と150度(角度θ’=150°)となるように設けている。
【0038】
実施例4
酸化チタン粉末(TiO2含有量:90wt%、SO4含有量:3wt%)22kgにモリブデン酸アンモニウム((NH46・Mo724・4H2O)を2.8kg、メタバナジン酸アンモニウム(NH4VO3)を2.6kg加え、加熱ニーダを用いて混練し、水分約36%のペーストを得た。このときの組成はV/Mo/Ti=7/5/88(原子比)であり、本発明の第一成分と第二成分からなる触媒である。
以上の方法で得られた触媒ペーストに、Al23・SiO2系無機繊維10kgを加えて、約1時間混練した。この触媒ペーストを幅500mm、厚さ0.2mmのSUS304製メタルラス基板にアルミニウム溶射を施して粗面化した基板にローラを用いてラス目間及び表面に塗布して厚さ約0.9mm、長さ500mmの板状触媒を得た。
【0039】
この触媒にプレス成形により図1(a)のような波形を形成し、風乾後大気中で500℃で2時間焼成した。
得られた触媒エレメント1と該触媒エレメント1を裏返して得られる図1(bに示す突条部2’と平面部3’を備えた触媒エレメント1’とを、それらの突条部2、2’の稜線同士を当接させて交互に1枚ずつ積層して150角×500mm長さの図1(c)に示す構成の触媒構造体を得た。このとき、触媒エレメント1の突条部2は排ガス6の流れ方向と30度(角度θ=30°)となるように設け、触媒エレメント1’の突条部2’は排ガス6の流れ方向と150度(角度θ’=150°)となるように設けている。
【0040】
実施例5
突条部2の稜線が排ガス6の流れ方向と45度(θ=45°)、突条部2’の稜線が排ガス6の流れ方向と135度(θ’=135°)となるように成形した他は実施例4と同様に調製した触媒エレメント1と触媒エレメント1’を得た。得られた触媒エレメント1と該触媒エレメント1を裏返して得られる図1(b)に示す突条部2’と平面部3’を備えた触媒エレメント1’とを、それらの突条部2、2’の稜線同士を当接させて交互に1枚ずつ積層して150角×500mm長さの図1(c)に示す構成の触媒構造体を得た。このとき、触媒エレメント1の突条部2は排ガス6の流れ方向と45度(角度θ=45°)となるように設け、触媒エレメント1’の突条部2’は排ガス6の流れ方向と135度(角度θ’=135°)となるように設けている。
【0041】
実施例6
本発明の第三成分として実施例1のPtに代えて0.05wt%Irを添加することを除いては実施例1と同様に調製して触媒構造体を得た。
【0042】
実施例7
本発明の第三成分として実施例1のPtに代えて0.05wt%Rhを添加することを除いては実施例1と同様に調製して触媒構造体を得た。
【0043】
実施例8
本発明の第三成分として実施例1のPtに代えて0.05wt%Pdを添加することを除いては実施例1と同様に調製して触媒構造体を得た。
【0044】
実施例9
酸化チタン粉末(TiO2含有量:90wt%、SO4含有量:3wt%)22kgにメタタングステン酸アンモニウム3.6kgメタバナジン酸アンモニウム2.6kgをニーダを用いて混練し、水分約36%のペーストを得た。この時の組成はV/W/Ti=7/5/88(原子比)であり、上記以外は実施例4と同等にして触媒構造体を得た。
【0045】
実施例10
酸化チタン粉末に代えて酸化ケイ素粉末17kgを使用することを除いては、実施例1と同様に調製して触媒構造体を得た。
【0046】
比較例1
実施例1と同様に調製した本発明の第一成分と第二成分のみで、図7に示すような触媒エレメント11を成形し、その突起部12の稜線がガス流れ方向と平行になるように一枚ずつ積層して150mm角×500mm長さの図9(a)に示す触媒構造体(排ガス流の上流側から見た図)を得た。
【0047】
比較例2
実施例1と同様に調製した触媒エレメント1を得て、触媒エレメント1と該触媒エレメント1を裏返して得られる図1(b)に示す突条部2’と平面部3’を備えた触媒エレメント1’とを、それらの突条部2、2’の稜線同士を当接させて交互に1枚ずつ積層して150角×500mm長さの図1(c)に示す構成の触媒構造体を得た。このとき、触媒エレメント1の突条部2は排ガス6の流れ方向と50度(角度θ=50°)となるように設け、触媒エレメント1’の突条部2’は排ガス6の流れ方向と130度(角度θ’=130°)となるように設けている。
【0048】
比較例3
実施例1と同様に調製した触媒を、プレス成形により図7のような突条部12と平坦部13を有する波形を形成し、風乾後大気中で550℃で2時間焼成して触媒エレメント11を得た。
得られた触媒エレメント11を、その突条部12の稜線が排ガス6の流れ方向に全て平行になるように一枚ずつ積層して150mm角×500mm長さの図9(a)に示すような排ガス流の上流側から見た触媒構造体を得た。
【0049】
比較例4
実施例1と同様に調製した触媒を、プレス成形により図7のような突条部12と平坦部13を有する波形を形成し、風乾後大気中で550℃で2時間焼成して触媒エレメント11を得た。
得られた触媒エレメント11を、その突条部12の稜線が排ガス6の流れ方向と互いに直交するように配置したものと平行になるように配置したものとを交互に1枚ずつ積層して150角×500mm長さの図9(b)に示す構成の触媒構造体を得た。
【0050】
比較例5
実施例1と同様に調製した触媒を、プレス成形により図8(a)に示すような平坦部がなく、突条部22がある波板状に成形し、風乾後大気中で550℃で2時間焼成して、触媒エレメント21を得た。
得られた触媒エレメント21と該触媒エレメント21を裏返して得られる図8(b)に示す触媒エレメント21’とを、それらの突条部22、22’の稜線同士を当接させて交互に1枚ずつ積層して150角×500mm長さの図9(c)に示す構成の触媒構造体を得た。このとき、触媒エレメント21の突条部22は排ガス6の流れ方向と30度(角度θ=30°)となるように設け、触媒エレメント21’の突条部22’は排ガス6の流れ方向と160度(角度θ’=160°)となるように設けている。
【0051】
比較例6
実施例4と同様に調製した触媒エレメント1と触媒エレメント1’を得て、それらの突条部2、2’の稜線同士を当接させて交互に1枚ずつ積層して150角×500mm長さの図1(c)に示す構成の触媒構造体を得た。このとき、触媒エレメント1の突条部2は排ガス6の流れ方向と50度(角度θ=50°)となるように設け、触媒エレメント1’の突条部2’は排ガス6の流れ方向と130度(角度θ’=130°)となるように設けている。
【0052】
表1に実施例及び比較例に示す触媒の仕様をまとめたが、実施例1〜5の触媒及び比較例1〜6の触媒構造体のそれぞれを反応器に充填し、LPG燃焼排ガスを用いて表2の条件で脱硝、CO酸化性能及びSO2酸化性能を測定するとともに触媒構造体の通風抵抗を調べた。
【0053】
【表1】

Figure 0003759832
【0054】
【表2】
Figure 0003759832
【0055】
得られた結果を試験した触媒の境膜物質移動係数とともに表3に示す。表3から明らかなように本発明の実施例1、2の触媒構造体は同一触媒仕様で調製した比較例2、4、5の触媒構造体に比べて通風抵抗が小さく、かつほぼ同様な脱硝性能とCO酸化性能が得られることが分かる。これには、境膜物質移動係数が120m/hより高いことが必要条件となっているが、隣接する触媒エレメント1の突条部2のガス流れ6との交差角度が大きすぎると触媒構造体としての圧力損失が高くなりすぎ、使用上問題になるため、表3に示したように前記交差角度θが50゜未満、交差角度θ’が130゜を超える角度であることも必要である。すなわち、脱硝反応及び脱CO反応は、境膜物質移動係数の増加とともに向上するが、その値にも限界があるのに対して、触媒構造体の圧力損失は実用困難となる数値まで上昇するためである。
【0056】
【表3】
Figure 0003759832
【0057】
一方、SO2酸化性能は、実施例1、2及び比較例2、4の触媒構造体は比較例3の触媒構造体に比べて低く、比較例1に示す白金等貴金属を添加していないパラレルフロー型ガス流路を有する従来の触媒構造体と同等であった。
【0058】
言い換えると実施例1、2に示した触媒構造体は同一触媒体積で比較した場合、白金等の貴金属を添加している従来触媒(比較例2、4)に比べ、少ない通風抵抗の増加で同等の脱硝性能とCO酸化性能を有し、白金等の貴金属を添加していない従来触媒(比較例1)と同様のSO2酸化性能となる。
【0059】
一方、図5には実施例1、3あるいは4と比較例1あるいは3の触媒脱硝性能の流速特性を示すが、比較例1あるいは3のパラレルフロー型ガス流路を有する触媒構造体と比べ、実施例1、3あるいは4の触媒ユニットはガス流速の増加に伴い急激に触媒性能が増加することが分かる。実施例1、3あるいは4の触媒構造体はガス空塔速度が2m/s近辺で比較例1あるいは3とほぼ同程度まで性能が低下している。これは、実施例1、3あるいは4の触媒構造体の各触媒エレメント1の排ガス6の流れの方向に対してθ=30度(θ’=150度)の角度で存在する突条部2、2’の稜線が空塔流速が速い場合には、乱流促進体として働くが、低流速域では逆に流れのよどみを形成し、物質移動を阻害するためであると考えられる。
【0060】
従って本発明による板状触媒構造体は、2m/s以上の排ガス流の流速域で、かつ、圧力損失の上昇が実用上問題とならない10m/s未満とすることが好ましい。
【0061】
次に、実施例1〜5及び比較例1、3及び5について、都市ゴミ焼却炉の実排ガスを使用して各種触媒によるダイオキシン類除去性能の比較を行った。表4には試験条件を、また、表5には各種触媒のダイオキシン類の除去性能をそれぞれ示す。
【0062】
【表4】
Figure 0003759832
【0063】
【表5】
Figure 0003759832
【0064】
表5に示したように、同一触媒体積あたりのダイオキシン類(PCDDS+PCDFS)の除去性能を比較すると、実施例1〜5は比較例1、3及び5と同等のダイオキシン類除去性能が得られることが分かる。すなわち、表3に示した一酸化炭素(CO)の場合と同様にダイオキシン類の各実施例1〜5に示す触媒の除去率は比較例1、3及び5の結果と同等であるから、境膜物質移動係数の増加により、より少ない表面積で、効率よくダイオキシン類を除去できることが確認できた。
【0065】
さらに、実施例3と比較例1に示す触媒について、触媒入口のダイオキシン類濃度を変化させた場合の触媒活性を図6に示す。図6から比較例1に比べて実施例3の触媒は、低濃度領域でのダイオキシン類の除去性能の低下が少ないことがわかる。つまり、実施例3に示す触媒は反応物質の拡散(移動)がしやすく、よって低濃度まで効率よくダイオキシン類を除去できるということである。通常、都市ゴミ焼却炉より排出する排ガス中に含まれているダイオキシン類は非常に低濃度であり、この低濃度のダイオキシンをさらに低減することが触媒に課せられることから、このように拡散が容易な触媒形状は効果が大きいことになる。
【0066】
【発明の効果】
本発明によれば、触媒構造体での通風抵抗を低く抑えてガスの乱れにより脱硝、COおよびダイオキシン類の分解除去を効率よく実現でき、コンパクトな排ガス処理装置を提供することができる。
【図面の簡単な説明】
【図1】 図1(a)、(b)は本発明の触媒エレメントの構造図であり、図1(c)は本発明の触媒エレメントの積層方法を示す図である。
【図2】 本発明の触媒エレメントの突状部の構造例を示す図である。
【図3】 本発明の触媒のAV値とSO2酸化率の関係を示す図である。
【図4】 本発明の白金添加系触媒のAV値とCO酸化率の関係を示す図である。
【図5】 本発明の実施例と比較例に示す触媒の流速特性を示す図である。
【図6】 本発明の触媒入口ダイオキシン類濃度と実施例と比較例の触媒の活性(性能)との関係を示す図である。
【図7】 従来技術における触媒エレメントの構造図である。
【図8】 従来技術における触媒エレメントの構造図である。
【図9】 図7又は図8の触媒エレメントを積層した触媒構造体を示す図である。
【符号の説明】
1、11、21、1’、11’、21’ 触媒エレメント
2、2’ 突条部 3、3’ 平面部
5 枠体 6 排ガス[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification catalyst structure, and particularly when sulfur oxide (SOx) is present in exhaust gas, such as nitrogen oxide (NOx), carbon monoxide (CO) and / or dioxin (DXN). The present invention relates to a catalyst structure using a plate-like catalyst for efficiently removing an organic compound and a catalyst reaction apparatus in which the catalyst structure is disposed in an exhaust gas passage.
[0002]
[Prior art]
NOx in the flue gas emitted from power plants, various factories, automobiles, etc. is a causative substance of photochemical smog and acid rain, and ammonia (NHThreeThe flue gas denitration method by selective catalytic reduction using) etc. as a reducing agent is widely used mainly in thermal power plants.
[0003]
For the catalyst, titanium oxide (TiO2) containing vanadium (V), molybdenum (Mo) or tungsten (W) as an active component is used.2) Based catalysts are used, and in particular, catalysts containing vanadium as one of the active components are not only high in activity, but also have low deterioration due to impurities contained in the exhaust gas, and can be used at lower temperatures. The mainstream of the denitration catalyst is Japanese Patent Laid-Open No. 50-12868.
[0004]
In addition, exhaust gas generated at thermal power plants and the like contains not only nitrogen oxides (NOx) but also other harmful gas components, which are subject to emission regulations. Effective removal of components has also become necessary.
[0005]
For example, examples of the harmful gas component include carbon monoxide (CO) in gas turbine exhaust gas, dioxin (DXN) discharged from incineration facilities such as municipal waste and industrial waste.
[0006]
In removing such harmful gases, carbon monoxide (CO) in the exhaust gas is as follows: (1) Catalyst that removes nitrogen oxides by adding noble metals such as platinum, iridium, rhodium, palladium to the denitration catalyst described above (Japanese Patent Laid-Open No. 5-329334).
[0007]
On the other hand, highly toxic dioxins discharged from incineration facilities such as municipal waste and industrial waste have become a major social problem, and effective reduction techniques are desired. Dioxin is polychlorinated dibenzoparadoxine, an organic chlorine compound
(Polychlorinated dibenzo-p-dioxins: PCDDs) It is a very stable substance, and there are many isomers and homologues. Polychlorinated dibenzofurans (PCDFs) are compounds having similar properties, and are collectively called dioxins together with dioxins. As a movement to reduce the amount of dioxins emitted in Europe, there has been a movement to strictly regulate the amount of emissions from municipal waste incineration facilities since the latter half of the 1980s. Yes.
[0008]
With regard to the removal of dioxins in the exhaust gas, attention has been paid as a method in which oxidative decomposition by a catalyst does not produce a residue. For example, (2) JP-A-2-35914 discloses exhaust gas discharged from a waste incinerator. In an exhaust gas treatment method for removing dust with a dust collector after cooling, it is disclosed that an aromatic chlorine compound is decomposed by a catalyst by setting the exhaust gas after dust removal to 150 ° C. or higher. At least one selected from vanadium, tungsten oxide, platinum, and palladium is used. Further, (3) Japanese Patent Laid-Open No. 3-8415 discloses a method for removing dioxins in exhaust gas with a catalyst, in which the temperature is 250 ° C. or higher and the SV (space velocity = treatment gas amount / catalyst amount) is 50,000. It is disclosed that the ratio is less than 1 / h and the AV (area velocity = treatment gas amount / catalyst geometric surface area) is less than 250 m / h, and it is also described that a catalyst having a honeycomb shape is preferable.
[0009]
In general, the catalyst used for the removal of harmful substances in the exhaust gas as described above is usually formed into a honeycomb shape or a plate shape, and various production methods therefor have been invented. Among them, (4) a plate-like catalyst obtained by applying a metal-laser-processed net or a ceramic fiber woven or non-woven fabric to a substrate after applying a metal lath to the substrate, applying the catalyst component to this, and press-bonding it to the substrate is shown in FIG. A catalyst structure (see Japanese Patent Application Laid-Open No. 54-79188, Japanese Patent Application No. 54-79188) which is processed into a waveform having a waveform as shown in the sectional view of the plate-like catalyst element and incorporated in the frame 5 as shown in FIG. No. 63-324676, etc.) (5) Excellent characteristics such as a small ventilation loss compared to a honeycomb-shaped catalyst structure obtained by extruding a catalyst component paste and being not easily blocked by dust or coal combustion ash. It is currently used as a denitration catalyst for boiler exhaust gas for thermal power generation.
[0010]
[Problems to be solved by the invention]
The harmful substances present in the exhaust gas described above generally have a very low concentration. For example, the concentration of carbon monoxide (CO) in the gas turbine exhaust gas is on the order of several ppm, and the catalyst is required to remove this by 50% or more. In addition, 1m of dioxins are contained in exhaust gas discharged from municipal waste incineration facilities and industrial waste incineration facilities.ThreeNanogram per N (10-9g), and therefore the emission regulation value of dioxins is also ng / m.ThreeIt is specified in N order.
As can be seen from the Emission Control Law and the like, it is desirable that the exhaust gas purification catalyst be capable of efficiently decomposing and removing such dilute harmful substances.
[0011]
Here, the gas passage in the catalyst structure used in the prior arts (4) and (5) is parallel to the gas flow direction, and usually, Re (Reynolds number) is 2000 or less. Therefore, the gas flow pattern in the catalyst layer is a laminar flow, and the ventilation resistance is very small. However, on the other hand, there is a problem in that the reaction rate (hazardous substance) generated by the decomposition reaction of the harmful substance on the catalyst surface is low even in the vicinity of the catalyst surface, so that the catalytic reaction rate is lowered. That is, the reaction causes a concentration gradient between the catalyst surface and the gas phase (bulk) at a certain distance from the catalyst surface, but the reaction gas component is dilute, so that diffusion from the bulk becomes rate limiting, and the reaction rate is increased. Get smaller.
[0012]
Generally, the reaction rate by a catalyst is shown by the following formula.
1 / K = 1 / Kr + 1 / Kf
K: Overall reaction rate coefficient (m / h)
Kr: reaction rate constant per unit surface area (m / h)
Kf: reaction film reaction rate coefficient (m / h)
[0013]
The reaction rate (overall reaction rate constant K) of the catalyst as a whole is increased by promoting the movement (diffusion) of reactants to the catalyst surface when the specification (composition) of the catalyst is constant, that is, when the coefficient Kr is constant. Therefore, how to promote the diffusion of the reactants to the catalyst surface is important for effective catalytic reaction. However, such consideration is not made in the prior arts (4) and (5).
[0014]
That is, in the prior arts (1) to (5) above, the influence on the reaction of the diluted object to be treated (reactive gas) on the catalyst is not considered, and the above-mentioned facility is used as an exhaust gas treatment device. There has been a problem that the amount of the catalyst used increases when the prior art catalyst methods (1) to (5) are applied.
[0015]
Furthermore, exhaust gas from oil-fired boilers or coal-fired boilers and municipal waste incineration facilities contain not only nitrogen oxides (NOx) and carbon monoxide (CO), but also sulfur oxides (SOx). This sulfur oxide (mostly SO2) Is partly oxidized by the catalyst, and ammonium sulfate (NHFour)2SOFourAnd acidic ammonium sulfate NHFourHSOFourNot only causes the catalyst performance to deteriorate, but also adversely affects the equipment in the exhaust gas flow path on the downstream side of the location where the catalyst device is disposed.
2NHThree+ SOThree+ H2O → (NHFour)2SOFour
NHThree+ SOThree+ H2O → NHFourHSOFour
[0016]
Where this undesirable SO2It has been clarified by the inventors' studies that the oxidation reaction of is relatively slow under normal reaction conditions and is proportional to the geometric surface area of the catalyst.
[0017]
On the other hand, in order to oxidatively decompose carbon monoxide (CO) and dioxin (DXN) present in the exhaust gas, noble metal-added catalysts such as platinum are excellent.2In the conventional techniques (4) and (5), the overall reaction rate constant K per unit surface area of the catalyst is small (in other words, the surface area is large). There was a problem that it was difficult.
[0018]
An object of the present invention is to eliminate the problems of the above-described conventional technology, and to utilize a catalyst structure having a relatively low ventilation resistance while utilizing the effect of promoting mass transfer by gas turbulence. An object is to provide a catalyst structure for efficiently decomposing and removing carbon monoxide (CO) and the like and nitrogen oxides (NOx) without any problem even in coexisting exhaust gas, and a catalyst reaction apparatus using the catalyst structure.
[0019]
[Means for Solving the Problems]
  The said subject can be achieved by the following means (1)-(5).
(1) The catalyst component having catalytic activity is supported on the surface, and the crossing angle with respect to the exhaust gas flow is 0Every timeA plate-like first catalytic element constructed by alternately repeating protrusions and flat portions made of belt-like protrusions exceeding 50 ° and a flat portion, and a catalyst component having catalytic activity on the surface. The crossing angle for the exhaust gas flow is130 degreesBeyond180In a state where the projecting ridges composed of strip-shaped projections of less than a degree and the flat second portions are alternately repeated with a plate-like second catalytic element formed alternately and in contact with each other. A catalyst structure formed by laminating a plurality of sheets, wherein at least one oxide selected from titania, silica, alumina and silica-alumina as the first component of the catalyst component having catalytic activity, and vanadium as the second component, Each of the oxides contains at least one oxide selected from tungsten and molybdenum, and among the coefficients related to the overall reaction rate of the catalyst, the boundary film mass transfer coefficient of the reactant is 120 m / h or more,507m/ HLess thanAndSulfur oxide (SOx), nitrogen oxide (NOx), carbon monoxide (CO) and / or dioxin (DX) in the exhaust gas, nitrogen oxide (NOx), carbon monoxide (CO) and / or dioxin For removing (DX)Plate-shaped catalyst structure.
[0020]
(2) In addition to the first component and the second component, the third component further includes at least one selected from platinum, iridium, rhodium, palladium, and oxides thereof as the third component. A plate-like catalyst structure having the same structure as the plate-like catalyst structure.
[0021]
(3) The plate-like catalyst structure according to (1) or (2) is used by being disposed in an exhaust gas passage in which the superficial velocity of the gas to be treated is in the range of 2 m / s or more and less than 10 m / s. Catalytic reactor.
[0022]
(4) The plate-like catalyst structure according to (1) or (2) is used as a gas fired boiler, an oil fired boiler, a coal fired boiler, a gas turbine, a diesel engine, a municipal waste incinerator, a sintering machine, or a chemical plant. Catalytic reaction device placed in the flow path of exhaust gas discharged from
[0023]
(5) Nitrogen oxides in the exhaust gas by providing a nitrogen oxide reducing agent injection part on the upstream side of the exhaust gas flow path in which the catalyst structure according to (1) or (2) is disposed , A catalytic reaction apparatus for simultaneously removing carbon monoxide and / or dioxins.
[0024]
  In the second catalytic element of the present invention, the crossing angle between the protrusion and the exhaust gas flow is 130.180 degrees beyondIf it is less than 0 degree, what has what kind of crossing angle may be used, but the production cost of a catalyst element can be reduced significantly by using what turned the 1st catalyst element upside down.
[0025]
[Action]
The operation of the present invention will be described with reference to the drawings.
FIG. 3 shows a titanium-molybdenum-vanadium-based denitration catalyst and a titanium-molybdenum-vanadium-platinum-based catalyst formed into a plate shape, cut into a predetermined test size (20 × 100 mm), and then measured at a temperature of 380 ° C. SO of each catalyst2It shows the oxidation rate. From FIG.2It can be seen that the oxidation rate increases in inverse proportion to AV (area velocity) in any catalyst, that is, increases as the geometric surface area of the catalyst increases, and the increasing tendency is remarkable in the platinum addition system. It is.
[0026]
Next, FIG. 4 shows the CO oxidation rate of the titanium-molybdenum-vanadium-platinum catalyst at a constant temperature (350 ° C.). FIG. 4 shows that the oxidation rate of CO increases in inverse proportion to AV.
[0027]
That is, the results shown in FIG. 3 and FIG. 4 show that the titanium-molybdenum-vanadium-platinum-based catalyst is not preferable when used as a denitration catalyst.2In order to suppress the oxidation rate, it is better to reduce the geometric surface area of the catalyst as much as possible. On the other hand, in order to oxidatively decompose carbon monoxide (CO) present in the exhaust gas, the catalyst should have a large surface area. It is a different result that is good.
[0028]
  However, the present inventors have the first component shown in claims 1 and 2 of the present invention andFirstIn the catalyst containing two components or the catalyst structure containing the first component to the third component, of the overall reaction rate of the catalyst, the boundary material mass transfer coefficient Kf of the reactant is 120 m / h or more,507m / hLess thanAs a result, the resistance to ventilation was relatively low, and the SO structure equivalent to the parallel flow type catalysts as in the prior arts (4) and (5) was obtained.2As for oxidation performance, it was confirmed that denitration performance equivalent to or better than that and oxidation performance of CO and dioxins could be achieved.
[0029]
This is because the use of the catalyst structure of the present invention facilitates diffusion (mass transfer) of a very dilute gas to be treated onto the catalyst surface, and increases the overall reaction rate per unit surface area. It originates from the fact that denitration reaction and oxidation reaction such as CO are likely to occur.2The oxidation reaction is not inherently high in reaction rate. In addition, the plate-shaped catalyst structure improves the above-described denitration performance and oxidation performance such as CO, thereby reducing the required geometric surface area of the catalyst. It is thought that it was because of.
[0030]
On the other hand, as with carbon monoxide (CO), by increasing the overall reaction rate constant K of the catalyst structure for dioxins in exhaust gas generated by incineration of municipal waste and industrial waste, the reaction rate of the entire catalyst can be increased. It was observed to improve. In particular, as described above, since dioxins have a very low concentration in exhaust gas, the effect of the present invention for promoting diffusion is great.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
Example 1
Metatitanate slurry (TiO2Content: 30wt%, SOFourContent: 8 wt%) 67 kg and ammonium molybdate ((NHFour)6・ Mo7Otwenty four・ 4H2O) 2.7 kg, ammonium metavanadate (NHFourVOThree1.28 kg) was added and kneaded while evaporating water using a heating kneader to obtain a paste having a water content of about 36%. This was extruded and granulated into 3φ columnar shapes, dried in a fluidized bed dryer, and then calcined in the atmosphere at 250 ° C. for 2 hours. The obtained granule was pulverized to a particle size of 5 μm in average particle size with a hammer mill to obtain a catalyst composition comprising the first component and the second component of the present invention. The composition at this time is V / Mo / Ti = 4/5/91 (atomic ratio).
[0032]
On the other hand, chloroplatinic acid (H2[PtC16] 6H2O) To a solution obtained by dissolving 0.665 g in 1 liter of water, 500 g of fine silica powder was added and evaporated to dryness on a sand bath to carry platinum. This was dried at 180 ° C. for 2 hours and then calcined in air at 500 ° C. for 2 hours to prepare 0.05 wt% Pt-silica to obtain a composition comprising a catalyst component comprising the third component of the present invention.
[0033]
To 20 kg of the powder composed of the first component and the second component obtained by the above method and 408 g of the third component, Al2OThreeSiO23 kg of system inorganic fiber and 10 kg of water were kneaded for 1 hour using a kneader to make a clay. This catalyst paste was applied to the surface and the surface of the lath using a roller on a SUS304 metal lath substrate having a width of 500 mm and a thickness of 0.2 mm, which had been roughened by aluminum spraying, and a thickness of about 0.9 mm. A plate-shaped catalyst having a thickness of 500 mm was obtained. A plurality of protrusions 2 provided in parallel to each other at a predetermined interval are formed on the flat portion 3 as shown in FIG. 1A by press molding on this catalyst, and after air drying, it is fired at 500 ° C. for 2 hours in the atmosphere. did.
[0034]
The obtained catalyst element 1 and the catalyst element 1 ′ provided with the protrusion 2 ′ and the flat surface 3 ′ shown in FIG. The ridges of 'are brought into contact with each other and alternately stacked one by one to obtain a catalyst structure having a structure of 150 squares x 500 mm in length as shown in Fig. 1 (c). 2 is provided to be 30 degrees (angle θ = 30 °) with the flow direction of the exhaust gas 6, and the protrusion 2 ′ of the catalyst element 1 ′ is 150 degrees with respect to the flow direction of the exhaust gas 6 (angle θ ′ = 150 °). It is provided to become.
[0035]
Example 2
The catalyst element 1 and the catalyst element 1 ′ prepared in the same manner as in Example 1 are stacked one by one alternately so that the ridges of the protrusions 2 and 2 ′ are in contact with each other, and have a length of 150 × 500 mm. A catalyst structure having the structure shown in FIG. 1C was obtained. At this time, the protrusion 2 of the catalyst element 1 is provided to be 45 degrees (angle θ = 45 °) with the flow direction of the exhaust gas 6, and the protrusion 2 ′ of the catalyst element 1 ′ is with the flow direction of the exhaust gas 6. It is provided to be 135 degrees (angle θ ′ = 135 °).
[0036]
Example 3
A catalyst prepared in the same manner as in Example 1 except that platinum, which is the third component of the present invention, is not supported, is added to 20 kg of powder of the catalyst (only the first component and the second component of the present invention).2OThree・ SiO2The mixture was kneaded for 1 hour using 3 kg of inorganic fiber, 10 kg of water and a kneader to make a clay. This catalyst paste was applied to the surface and the surface of the lath using a roller on a SUS304 metal lath substrate having a width of 500 mm and a thickness of 0.2 mm, which had been roughened by aluminum spraying, and a thickness of about 0.9 mm. A plate-shaped catalyst having a thickness of 500 mm was obtained. The catalyst was formed into a waveform as shown in FIG. 1A by press molding, and then air-dried and then calcined at 500 ° C. for 2 hours in the air.
[0037]
The obtained catalyst element 1 and the catalyst element 1 ′ provided with the protrusion 2 ′ and the flat surface 3 ′ shown in FIG. The ridges of 'are brought into contact with each other and alternately stacked one by one to obtain a catalyst structure having a structure of 150 squares x 500 mm in length as shown in Fig. 1 (c). 2 is provided to be 30 degrees (angle θ = 30 °) with the flow direction of the exhaust gas 6, and the protrusion 2 ′ of the catalyst element 1 ′ is 150 degrees with respect to the flow direction of the exhaust gas 6 (angle θ ′ = 150 °). It is provided to become.
[0038]
Example 4
Titanium oxide powder (TiO2Content: 90wt%, SOFourContent: 3 wt%) 22 kg and ammonium molybdate ((NHFour)6・ Mo7Otwenty four・ 4H2O) 2.8 kg, ammonium metavanadate (NHFourVOThree2.6 kg) was added and kneaded using a heating kneader to obtain a paste with a moisture content of about 36%. The composition at this time is V / Mo / Ti = 7/5/88 (atomic ratio), and is a catalyst comprising the first component and the second component of the present invention.
To the catalyst paste obtained by the above method, Al2OThreeSiO210 kg of inorganic fiber was added and kneaded for about 1 hour. This catalyst paste was applied to the surface and the surface of the lath using a roller on a SUS304 metal lath substrate having a width of 500 mm and a thickness of 0.2 mm, which had been roughened by aluminum spraying, and a thickness of about 0.9 mm. A plate-shaped catalyst having a thickness of 500 mm was obtained.
[0039]
The catalyst was formed into a waveform as shown in FIG. 1A by press molding, and then air-dried and then calcined in the atmosphere at 500 ° C. for 2 hours.
The obtained catalyst element 1 and the catalyst element 1 ′ provided with the protrusion 2 ′ and the flat surface 3 ′ shown in FIG. The ridges of 'are brought into contact with each other and alternately stacked one by one to obtain a catalyst structure having a structure of 150 squares x 500 mm in length as shown in Fig. 1 (c). 2 is provided to be 30 degrees (angle θ = 30 °) with the flow direction of the exhaust gas 6, and the protrusion 2 ′ of the catalyst element 1 ′ is 150 degrees with respect to the flow direction of the exhaust gas 6 (angle θ ′ = 150 °). It is provided to become.
[0040]
Example 5
The ridgeline of the ridge 2 is 45 degrees (θ = 45 °) with the flow direction of the exhaust gas 6, and the ridgeline of the ridge 2 ′ is 135 degrees (θ ′ = 135 °) with the flow direction of the exhaust gas 6. The catalyst element 1 and catalyst element 1 ′ prepared in the same manner as in Example 4 were obtained. The obtained catalyst element 1 and the catalyst element 1 ′ provided with the projection 2 ′ and the flat surface 3 ′ shown in FIG. 2 ′ ridge lines were brought into contact with each other and alternately stacked one by one to obtain a catalyst structure having a configuration shown in FIG. 1C having a length of 150 × 500 mm. At this time, the protrusion 2 of the catalyst element 1 is provided to be 45 degrees (angle θ = 45 °) with the flow direction of the exhaust gas 6, and the protrusion 2 ′ of the catalyst element 1 ′ is with the flow direction of the exhaust gas 6. It is provided to be 135 degrees (angle θ ′ = 135 °).
[0041]
Example 6
A catalyst structure was obtained in the same manner as in Example 1 except that 0.05 wt% Ir was added instead of Pt in Example 1 as the third component of the present invention.
[0042]
Example 7
A catalyst structure was obtained in the same manner as in Example 1 except that 0.05 wt% Rh was added instead of Pt in Example 1 as the third component of the present invention.
[0043]
Example 8
A catalyst structure was obtained in the same manner as in Example 1 except that 0.05 wt% Pd was added as a third component of the present invention instead of Pt in Example 1.
[0044]
Example 9
Titanium oxide powder (TiO2Content: 90wt%, SOFour(Content: 3 wt%) 22 kg was kneaded with 3.6 kg ammonium metatungstate 2.6 kg ammonium metavanadate using a kneader to obtain a paste having a water content of about 36%. The composition at this time was V / W / Ti = 7/5/88 (atomic ratio), and a catalyst structure was obtained in the same manner as in Example 4 except for the above.
[0045]
Example 10
A catalyst structure was obtained in the same manner as in Example 1 except that 17 kg of silicon oxide powder was used instead of titanium oxide powder.
[0046]
Comparative Example 1
A catalyst element 11 as shown in FIG. 7 is formed using only the first component and the second component of the present invention prepared in the same manner as in Example 1, and the ridge line of the projection 12 is parallel to the gas flow direction. One by one was laminated to obtain a 150 mm square × 500 mm long catalyst structure shown in FIG. 9A (viewed from the upstream side of the exhaust gas flow).
[0047]
Comparative Example 2
A catalyst element 1 prepared in the same manner as in Example 1 and obtained by turning the catalyst element 1 and the catalyst element 1 upside down is provided. A catalyst structure having the structure shown in FIG. 1 (c) having a length of 150 squares × 500 mm is obtained by laminating 1 ′ and the ridges 2 and 2 ′ of the ridges 2 and 2 ′ alternately one by one. Obtained. At this time, the protrusion 2 of the catalyst element 1 is provided to be 50 degrees (angle θ = 50 °) with the flow direction of the exhaust gas 6, and the protrusion 2 ′ of the catalyst element 1 ′ is with the flow direction of the exhaust gas 6. It is provided to be 130 degrees (angle θ ′ = 130 °).
[0048]
Comparative Example 3
A catalyst prepared in the same manner as in Example 1 was formed into a corrugated shape having protrusions 12 and flat portions 13 as shown in FIG. 7 by press molding, air-dried and then calcined in the atmosphere at 550 ° C. for 2 hours to form catalyst element 11. Got.
The obtained catalyst elements 11 are laminated one by one so that the ridges of the ridges 12 are all parallel to the flow direction of the exhaust gas 6, and as shown in FIG. 9A having a length of 150 mm × 500 mm. A catalyst structure viewed from the upstream side of the exhaust gas stream was obtained.
[0049]
Comparative Example 4
A catalyst prepared in the same manner as in Example 1 was formed into a corrugated shape having protrusions 12 and flat portions 13 as shown in FIG. 7 by press molding, air-dried and then calcined in the atmosphere at 550 ° C. for 2 hours to form catalyst element 11. Got.
The obtained catalyst elements 11 are alternately laminated one by one so that the ridges of the protrusions 12 are arranged so that the ridgelines of the ridges 12 are orthogonal to the flow direction of the exhaust gas 6, one by one. A catalyst structure having a configuration shown in FIG. 9B having a length of 500 mm was obtained.
[0050]
Comparative Example 5
A catalyst prepared in the same manner as in Example 1 was formed into a corrugated plate with no protrusions as shown in FIG. The catalyst element 21 was obtained by firing for a period of time.
The obtained catalyst element 21 and the catalyst element 21 ′ shown in FIG. 8B obtained by turning the catalyst element 21 upside down are alternately 1 by bringing the ridges of the ridges 22 and 22 ′ into contact with each other. The catalyst structure of the structure shown in FIG.9 (c) of 150 square x 500 mm length was obtained by laminating | stacking one by one. At this time, the protrusion 22 of the catalyst element 21 is provided so as to be 30 degrees (angle θ = 30 °) with the flow direction of the exhaust gas 6, and the protrusion 22 ′ of the catalyst element 21 ′ is with the flow direction of the exhaust gas 6. It is provided to be 160 degrees (angle θ ′ = 160 °).
[0051]
Comparative Example 6
The catalyst element 1 and the catalyst element 1 ′ prepared in the same manner as in Example 4 were obtained, and the ridges of the protrusions 2 and 2 ′ were brought into contact with each other and alternately stacked one by one, and 150 square × 500 mm long A catalyst structure having the structure shown in FIG. 1C was obtained. At this time, the protrusion 2 of the catalyst element 1 is provided to be 50 degrees (angle θ = 50 °) with the flow direction of the exhaust gas 6, and the protrusion 2 ′ of the catalyst element 1 ′ is with the flow direction of the exhaust gas 6. It is provided to be 130 degrees (angle θ ′ = 130 °).
[0052]
Table 1 summarizes the specifications of the catalysts shown in the Examples and Comparative Examples. The reactors of Examples 1 to 5 and Comparative Examples 1 to 6 were filled in the reactor, and the LPG combustion exhaust gas was used. Denitration, CO oxidation performance and SO under the conditions in Table 22The oxidation performance was measured and the ventilation resistance of the catalyst structure was investigated.
[0053]
[Table 1]
Figure 0003759832
[0054]
[Table 2]
Figure 0003759832
[0055]
  The results obtained are shown in Table 3 together with the film transfer coefficient of the tested catalyst. As is apparent from Table 3, the catalyst structures of Examples 1 and 2 of the present invention have lower ventilation resistance than the catalyst structures of Comparative Examples 2, 4, and 5 prepared with the same catalyst specifications, and almost the same denitration. It can be seen that performance and CO oxidation performance can be obtained. For this, it is a necessary condition that the film mass transfer coefficient is higher than 120 m / h, but if the angle of intersection with the gas flow 6 of the protrusion 2 of the adjacent catalyst element 1 is too large, the catalyst structure Therefore, the crossing angle θ is less than 50 ° and the crossing angle θ ′ is 130 ° as shown in Table 3.More than angleIt is also necessary to be. That is, the denitration reaction and the de-CO reaction are improved with an increase in the mass transfer coefficient of the membrane, but the value of the denitration reaction is limited, but the pressure loss of the catalyst structure increases to a value that is difficult to use practically. It is.
[0056]
[Table 3]
Figure 0003759832
[0057]
On the other hand, SO2The oxidation performance of the catalyst structures of Examples 1 and 2 and Comparative Examples 2 and 4 is lower than that of Comparative Example 3, and the parallel flow type gas flow to which noble metals such as platinum shown in Comparative Example 1 are not added. It was equivalent to a conventional catalyst structure having a channel.
[0058]
In other words, when the catalyst structures shown in Examples 1 and 2 are compared at the same catalyst volume, they are the same with a small increase in ventilation resistance compared to the conventional catalysts (Comparative Examples 2 and 4) to which noble metals such as platinum are added. The same SO as the conventional catalyst (Comparative Example 1) that has NOx removal performance and CO oxidation performance and does not contain noble metals such as platinum2It becomes oxidation performance.
[0059]
On the other hand, FIG. 5 shows the flow rate characteristics of the catalyst denitration performance of Example 1, 3 or 4 and Comparative Example 1 or 3, but compared with the catalyst structure having the parallel flow type gas flow path of Comparative Example 1 or 3. It can be seen that the catalyst performance of the catalyst unit of Example 1, 3 or 4 increases rapidly as the gas flow rate increases. The performance of the catalyst structure of Example 1, 3 or 4 is reduced to about the same level as that of Comparative Example 1 or 3 when the gas superficial velocity is around 2 m / s. This is because the protrusion 2 exists at an angle of θ = 30 degrees (θ ′ = 150 degrees) with respect to the flow direction of the exhaust gas 6 of each catalyst element 1 of the catalyst structure of Example 1, 3 or 4. When the superficial velocity of the 2 ′ ridge is high, it acts as a turbulent flow promoter, but conversely in the low flow velocity region, it is thought that this is because flow stagnation is formed and mass transfer is inhibited.
[0060]
Therefore, it is preferable that the plate-like catalyst structure according to the present invention has an exhaust gas flow velocity range of 2 m / s or more, and less than 10 m / s at which an increase in pressure loss does not cause a practical problem.
[0061]
Next, about Examples 1-5 and Comparative Examples 1, 3, and 5, the actual exhaust gas of a municipal waste incinerator was used and the dioxin removal performance by various catalysts was compared. Table 4 shows the test conditions, and Table 5 shows the dioxin removal performance of various catalysts.
[0062]
[Table 4]
Figure 0003759832
[0063]
[Table 5]
Figure 0003759832
[0064]
As shown in Table 5, dioxins per PCD volume (PCDD)S+ PCDFS), The dioxins removal performance equivalent to that of Comparative Examples 1, 3 and 5 can be obtained in Examples 1-5. That is, as in the case of carbon monoxide (CO) shown in Table 3, the catalyst removal rates shown in Examples 1 to 5 for dioxins are equivalent to the results of Comparative Examples 1, 3 and 5, so It was confirmed that dioxins can be efficiently removed with a smaller surface area by increasing the membrane mass transfer coefficient.
[0065]
Further, FIG. 6 shows the catalytic activity of the catalysts shown in Example 3 and Comparative Example 1 when the dioxin concentration at the catalyst inlet is changed. From FIG. 6, it can be seen that the catalyst of Example 3 is less deteriorated in the removal performance of dioxins in the low concentration region than in Comparative Example 1. That is, the catalyst shown in Example 3 is easy to diffuse (move) the reactants, and thus can efficiently remove dioxins to a low concentration. Normally, dioxins contained in the exhaust gas discharged from municipal waste incinerators are very low in concentration, and since it is imposed on the catalyst to further reduce this low concentration dioxin, diffusion is easy in this way. Such a catalyst shape has a great effect.
[0066]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the ventilation resistance in a catalyst structure can be suppressed low, denitration, decomposition | disassembly removal of CO and dioxins can be efficiently implement | achieved by gas disturbance, and a compact waste gas treatment apparatus can be provided.
[Brief description of the drawings]
1 (a) and 1 (b) are structural diagrams of a catalyst element of the present invention, and FIG. 1 (c) is a diagram showing a method for stacking catalyst elements of the present invention.
FIG. 2 is a view showing a structural example of a projecting portion of a catalyst element of the present invention.
FIG. 3 shows the AV value and SO of the catalyst of the present invention.2It is a figure which shows the relationship of an oxidation rate.
FIG. 4 is a graph showing the relationship between the AV value of the platinum-added catalyst of the present invention and the CO oxidation rate.
FIG. 5 is a graph showing flow rate characteristics of catalysts shown in Examples and Comparative Examples of the present invention.
FIG. 6 is a graph showing the relationship between the catalyst inlet dioxins concentration of the present invention and the activity (performance) of the catalysts of Examples and Comparative Examples.
FIG. 7 is a structural diagram of a catalyst element in the prior art.
FIG. 8 is a structural diagram of a catalyst element in the prior art.
9 is a view showing a catalyst structure in which the catalyst elements of FIG. 7 or FIG. 8 are stacked.
[Explanation of symbols]
1, 11, 21, 1 ', 11', 21 'catalytic element
2, 2 'ridge 3, 3' plane
5 Frame 6 Exhaust gas

Claims (5)

表面に触媒活性を有する触媒成分を担持し、排ガス流れに対する交差角度が0を超えて50度未満である帯状突起からなる突条部と平坦部とを間隔を隔てて交互に繰り返して構成される板状の第1触媒エレメントと、表面に触媒活性を有する触媒成分を担持し、排ガス流れに対する交差角度が130度を超えて180度未満である帯状突起からなる突条部と平坦部とを間隔を隔てて交互に繰り返して構成される板状の第2触媒エレメントとを交互に互いの突条部を当接させた状態で複数枚積層してなる触媒構造体であって、触媒活性を有する触媒成分の第一成分としてチタニア、シリカ、アルミナおよびシリカ−アルミナから選ばれた少なくとも1種類の酸化物ならびに第二成分としてバナジウム、タングステンおよびモリブデンから選ばれた少なくとも1種類の酸化物をそれぞれ含み、当該触媒の総括反応速度に関する係数の内、反応物質の境膜物質移動係数が120m/h以上、507m/h以下であり、硫黄酸化物(SOx)、窒素酸化物(NOx)、一酸化炭素(CO)及び/又はダイオキシン(DX)が存在する排ガス中の窒素酸化物(NOx)、一酸化炭素(CO)及び/又はダイオキシン(DX)を除去するための板状触媒構造体。It is configured by carrying a catalytic component having catalytic activity on the surface, and repeating the protrusions and strips composed of strip-shaped protrusions having a crossing angle with respect to the exhaust gas flow of more than 0 degrees and less than 50 degrees, with an interval. A plate-shaped first catalyst element, a projecting portion having a catalytic activity on the surface, and a ridge portion and a flat portion made of strip-shaped projections having an intersection angle with respect to the exhaust gas flow of more than 130 degrees and less than 180 degrees A catalyst structure formed by laminating a plurality of plate-like second catalyst elements that are alternately repeated at intervals, with the protrusions alternately contacting each other, and having catalytic activity. At least one oxide selected from titania, silica, alumina, and silica-alumina as the first component of the catalyst component, and vanadium, tungsten, and molybdenum as the second component Wherein the at least one oxide, respectively, of the coefficients for overall reaction speed of the catalyst, laminar film mass transfer coefficient of the reactant 120 m / h or more and less 507m / h, sulfur oxides (SOx), To remove nitrogen oxides (NOx), carbon monoxide (CO) and / or dioxins (DX) in exhaust gas in which nitrogen oxides (NOx), carbon monoxide (CO) and / or dioxins (DX) are present plate-form catalyst structure. 触媒活性を有する触媒成分として前記第一成分と第二成分の他に第三成分として白金、イリジウム、ロジウム、パラジウムまたはこれらの酸化物の中から選ばれた少なくとも1種類をそれぞれ含むことを特徴とする請求項1記載の板状触媒構造体。 In addition to the first component and the second component, the catalyst component having catalytic activity includes, as the third component, at least one selected from platinum, iridium, rhodium, palladium, or an oxide thereof. The plate-like catalyst structure according to claim 1. 請求項1記載の板状触媒構造体を、被処理ガスの空塔速度が2m/s以上、10m/s未満の範囲である排ガス流路に配置することを特徴とする触媒反応装置。 A catalytic reaction apparatus, wherein the plate-like catalyst structure according to claim 1 is disposed in an exhaust gas flow path in which a superficial velocity of a gas to be treated is in a range of 2 m / s or more and less than 10 m / s. ガス焚ボイラ、油焚ボイラ、石炭焚ボイラ、ガスタービン、ディーゼルエンジン、都市ゴミ焼却設備、焼結機または化学プラントから排出する排ガスの流路に請求項1記載の触媒構造体を配置することを特徴とする触媒反応装置。 The catalyst structure according to claim 1 is disposed in a flow path of exhaust gas discharged from a gas fired boiler, an oil fired boiler, a coal fired boiler, a gas turbine, a diesel engine, a municipal waste incineration facility, a sintering machine or a chemical plant. A characteristic catalytic reaction apparatus. 触媒構造体が配置されている排ガス流路の前流側の排ガス流路に窒素酸化物の還元剤の注入部を設けたことを特徴とする請求項記載の触媒反応装置。5. The catalytic reaction apparatus according to claim 4 , wherein a nitrogen oxide reducing agent injection portion is provided in the exhaust gas flow channel upstream of the exhaust gas flow channel in which the catalyst structure is disposed.
JP02731798A 1997-02-12 1998-02-09 Plate-shaped catalyst structure and catalytic reaction apparatus using the catalyst structure Expired - Lifetime JP3759832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02731798A JP3759832B2 (en) 1997-02-12 1998-02-09 Plate-shaped catalyst structure and catalytic reaction apparatus using the catalyst structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-27508 1997-02-12
JP2750897 1997-02-12
JP02731798A JP3759832B2 (en) 1997-02-12 1998-02-09 Plate-shaped catalyst structure and catalytic reaction apparatus using the catalyst structure

Publications (2)

Publication Number Publication Date
JPH10286469A JPH10286469A (en) 1998-10-27
JP3759832B2 true JP3759832B2 (en) 2006-03-29

Family

ID=26365232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02731798A Expired - Lifetime JP3759832B2 (en) 1997-02-12 1998-02-09 Plate-shaped catalyst structure and catalytic reaction apparatus using the catalyst structure

Country Status (1)

Country Link
JP (1) JP3759832B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100382051B1 (en) * 2000-12-29 2003-05-09 한국전력기술 주식회사 Catalyst for Selective Catalytic Reduction of Nitrogen Oxides Including Sulfur Dioxide at Low Temperature
KR100382050B1 (en) * 2000-12-29 2003-05-09 한국전력기술 주식회사 Catalyst for Removing Dioxin and Nitrogen Oxides in Flue Gas and Method for Treating Combustion Exhaust Gases Using the Same
KR100549777B1 (en) * 2002-03-28 2006-02-06 한국전력기술 주식회사 Vanadium/Titania-based Catalyst Containing Vanadium Trioxide for Removing Nitrogen Oxide and/or Dioxin at Wide Active Temperature Window
JP7244444B2 (en) * 2020-01-28 2023-03-22 三菱重工業株式会社 Denitration catalyst structure

Also Published As

Publication number Publication date
JPH10286469A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US7393511B2 (en) Ammonia oxidation catalyst for the coal fired utilities
US8470273B2 (en) Device and method for processing cement kiln combustion exhaust
KR101298305B1 (en) Apparatus for removing of trace of toxic substance from exhaust gas and method of operating the same
KR101634390B1 (en) CATALYSTS FOR DUAL OXIDATION OF AMMONIA AND CARBON MONOXIDE WITH LOW TO NO NOx FORMATION
JP4293569B2 (en) Catalyst structure and gas purification device
JP5051977B2 (en) Device for removing trace harmful substances in exhaust gas and operation method thereof
EP0488331B1 (en) Method and filter for removing nitrogen oxides and organic chlorine compounds from combustion waste gas
WO2005061103A1 (en) Multi-stage heat absorbing reactor and process for scr of nox and for oxidation of elemental mercury
JP2003053142A (en) Method and equipment for removing mercury in exhaust gas
US10882031B2 (en) Catalyst for treating an exhaust gas, an exhaust system and a method
KR102625031B1 (en) Catalysts, exhaust systems and methods for exhaust gas treatment
Jung et al. Pilot-scale evaluation of a novel TiO2-supported V2O5 catalyst for DeNOx at low temperatures at a waste incinerator
JP3759832B2 (en) Plate-shaped catalyst structure and catalytic reaction apparatus using the catalyst structure
Chung et al. Oxidative decomposition of o-dichlorobenzene over V2O5/TiO2 catalyst washcoated onto wire-mesh honeycombs
JP4994008B2 (en) Purification equipment for exhaust gas containing nitrogen oxides and metallic mercury
JP3474514B2 (en) Low temperature denitration catalyst and low temperature denitration method
JP5198744B2 (en) Catalyst structure
JP3512454B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
KR100382051B1 (en) Catalyst for Selective Catalytic Reduction of Nitrogen Oxides Including Sulfur Dioxide at Low Temperature
JP2000051648A (en) Method and apparatus for treating exhaust gas
JP2609393B2 (en) Exhaust gas treatment method
JPH08290062A (en) Waste gas purifying catalyst, its manufacture and waste gas purifying method
JP4864231B2 (en) Denitration catalyst structure and exhaust gas denitration method using the same
JP3388941B2 (en) Exhaust gas purification method
JPH09150039A (en) Apparatus and method for purifying exhaust gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term