JPH10270673A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPH10270673A
JPH10270673A JP9092956A JP9295697A JPH10270673A JP H10270673 A JPH10270673 A JP H10270673A JP 9092956 A JP9092956 A JP 9092956A JP 9295697 A JP9295697 A JP 9295697A JP H10270673 A JPH10270673 A JP H10270673A
Authority
JP
Japan
Prior art keywords
light
layer
pickup device
image pickup
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9092956A
Other languages
Japanese (ja)
Inventor
Koichi Sato
公一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP9092956A priority Critical patent/JPH10270673A/en
Publication of JPH10270673A publication Critical patent/JPH10270673A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an image pickup device requiring no image processing for expanding a dynamic range. SOLUTION: In the solid-state image pickup device, two n-layers 13, 15 are formed onto a p-type substrate 22, a photo-diode as a photoelectric conversion section and a vertical transfer section 16 are formed, and insulating films 26 and transfer gate electrodes 28 are shaped onto the substrate 22. In the solid- state image pickup device 10, a high molecular liquid crystal layer 30 and a transparent electrode 32 are formed onto the image sensing device. Accordingly, since the light transmissivity of the PDLC layer 30 is lowered with the intensified incident light and the quantity of light projected to a PD 12 is limited, a dynamic range is expanded.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば電子スチル
カメラに設けられる撮像素子に関し、特に撮像素子のダ
イナミックレンジの拡大に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image pickup device provided in, for example, an electronic still camera, and more particularly to an expansion of a dynamic range of the image pickup device.

【0002】[0002]

【従来の技術】近年ハイビジョンの実用化に伴い、ビデ
オシステムの解像度は大きく改善されたが、輝度の階調
の分解能、即ちダイナミックレンジの改善は十分ではな
い。例えば画角の中に屋内と屋外が同時に存在する場合
や、逆行条件下の場合には飽和や黒ずみが発生し、人間
の視覚系に比べるとダイナミックレンジの不足が明らか
である。
2. Description of the Related Art With the practical use of high-definition television in recent years, the resolution of video systems has been greatly improved, but the resolution of luminance gradation, that is, the dynamic range has not been sufficiently improved. For example, when indoors and outdoors are present at the same time in the angle of view, or under the condition of retrograde, saturation or darkening occurs, and it is obvious that the dynamic range is insufficient as compared with the human visual system.

【0003】[0003]

【発明が解決しようとする課題】一般に、ビデオカメラ
の撮像素子としてCCD(Charge Coupled Device ,電
荷結合素子)などが用いられる。CCD形撮像素子のダ
イナミックレンジは一般的に狭いといわれるが、その改
善する方法として、例えば光電変換時の蓄積時間が異な
る2種類の画像データを得ることにより、ダイナミック
レンジを拡大する構成が考えられている。
Generally, a CCD (Charge Coupled Device) or the like is used as an image pickup device of a video camera. It is generally said that the dynamic range of a CCD type imaging device is narrow. As a method for improving the dynamic range, for example, a configuration that expands the dynamic range by obtaining two types of image data having different storage times during photoelectric conversion is considered. ing.

【0004】しかし、このように2種類の画像データに
よりダイナミックレンジが拡大された画像信号は、CC
Dからの読み取り後に、それぞれの信号レベルに応じて
合成する処理を必要とするため、画像処理が複雑にな
る。
However, the image signal whose dynamic range has been expanded by the two types of image data as described above is a CC signal.
After reading from D, a process of synthesizing according to each signal level is required, so that image processing becomes complicated.

【0005】本発明は、この様な点に鑑みてなされたも
のであり、ダイナミックレンジ拡大のための画像処理を
必要としない撮像素子を得ることが目的である。
The present invention has been made in view of the above points, and an object thereof is to obtain an image pickup device which does not require image processing for expanding a dynamic range.

【0006】[0006]

【課題を解決するための手段】本発明による撮像素子
は、形成される画像の各画素に対応した受光面への入射
光に応じた電荷が蓄積する電荷蓄積部と、蓄積された電
荷量に応じて受光面への入射光の光透過率を変化させる
光量制御層とを備えたことを特徴としている。
According to the present invention, there is provided an image pickup device comprising: a charge accumulating portion for accumulating electric charges according to light incident on a light receiving surface corresponding to each pixel of an image to be formed; And a light amount control layer that changes the light transmittance of incident light to the light receiving surface in accordance with the light amount.

【0007】撮像素子において、好ましくは、光量制御
層が初期状態において光透過率が最大であり、電荷蓄積
部から電荷が除去されることにより光透過率が初期状態
に復元する。さらに好ましくは、光量制御層が高分子分
散型液晶を備える。
In the image pickup device, preferably, the light amount control layer has the maximum light transmittance in the initial state, and the light transmittance is restored to the initial state by removing charges from the charge storage portion. More preferably, the light quantity control layer comprises a polymer dispersed liquid crystal.

【0008】撮像素子において、好ましくは、電荷蓄積
部に電圧をかけた状態で電荷が蓄積され、電荷蓄積部に
電圧をかけるための電極が設けられる。さらに好ましく
は、この電極が光量制御層の表面に設けられた透明電極
を備える。
[0008] In the image pickup device, preferably, electric charges are accumulated in a state where a voltage is applied to the charge accumulating portion, and an electrode for applying a voltage to the charge accumulating portion is provided. More preferably, the electrode comprises a transparent electrode provided on the surface of the light quantity control layer.

【0009】[0009]

【発明の実施の形態】以下、本発明による撮像素子の実
施形態について添付図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the image pickup device according to the present invention will be described with reference to the accompanying drawings.

【0010】図1は実施形態である撮像素子の信号転送
経路の構成を模式的に示すブロック図である。図2は、
撮像素子の1画素分の部分断面図である。
FIG. 1 is a block diagram schematically showing a configuration of a signal transfer path of an image sensor according to an embodiment. FIG.
FIG. 3 is a partial cross-sectional view of one pixel of the image sensor.

【0011】図1に示すように、撮像素子10は画素に
対応して格子状に配列された複数のフォトダイオード
(以下PDという)12を備える。各PD12は撮像素
子10に結像された光学像を電気信号に変換し、信号電
荷として蓄積する。縦1ライン毎のPD12の右方に
は、PD12からの信号電荷が転送される垂直転送CC
D16が設けられる。各PD12と垂直転送CCD16
の間には転送ゲート14が設けられ、この転送ゲート1
4により各PD12からの信号電荷が図中右方向に転送
される。
As shown in FIG. 1, the image pickup device 10 includes a plurality of photodiodes (hereinafter referred to as PD) 12 arranged in a grid corresponding to pixels. Each PD 12 converts the optical image formed on the image sensor 10 into an electric signal and accumulates it as a signal charge. A vertical transfer CC to which the signal charge from the PD 12 is transferred is provided to the right of the PD 12 for each vertical line.
D16 is provided. Each PD 12 and vertical transfer CCD 16
A transfer gate 14 is provided between the transfer gate 1 and the transfer gate 1.
4, the signal charge from each PD 12 is transferred rightward in the figure.

【0012】各PD12と垂直転送CCD16の図中下
方には水平転送CCD18が設けられ、各垂直転送CC
D16と接続される。垂直転送CCD16はPD12か
らの信号電荷を水平1ライン毎に、図中下方向に向かっ
て水平転送CCD18に転送する。さらに、水平転送C
CD18は、各垂直転送CCD16からの信号電荷を図
中左方向に向かって出力端20に転送する。このよう
に、各PD12から順序転送されてきた信号電荷は、出
力端20から外部へ出力される。
A horizontal transfer CCD 18 is provided below the PD 12 and the vertical transfer CCD 16 in the figure, and each vertical transfer CC 18 is provided.
Connected to D16. The vertical transfer CCD 16 transfers the signal charges from the PD 12 to the horizontal transfer CCD 18 downward in the drawing for each horizontal line. Further, horizontal transfer C
The CD 18 transfers the signal charges from each of the vertical transfer CCDs 16 to the output terminal 20 toward the left in the figure. Thus, the signal charges sequentially transferred from each PD 12 are output from the output terminal 20 to the outside.

【0013】次に、図2を参照して撮像素子の画素単位
の構成を説明する。撮像素子は、Si(ケイ素)から成
るp形基板(電荷キャリアが正孔のp形半導体)22を
備え、このp形基板22上に2つのn層(電荷キャリア
が電子のn形半導体)13、15が設けられる。p形基
板22と図中左方のn層13との接合はpn接合であ
り、このpn接合によりPD12が形成される。同様
に、p形基板22と図中右方のn層15との接合により
垂直転送CCD16が形成される。p形基板22の2つ
のn層13、15の間の領域は転送ゲート14である。
Next, referring to FIG. 2, a description will be given of a pixel unit configuration of the image sensor. The image sensor includes a p-type substrate (charge-carrier p-type semiconductor) 22 made of Si (silicon), and two n-layers (charge-carrier n-type semiconductor) 13 on the p-type substrate 22. , 15 are provided. The junction between the p-type substrate 22 and the n-layer 13 on the left side in the figure is a pn junction, and the PD 12 is formed by the pn junction. Similarly, a vertical transfer CCD 16 is formed by joining the p-type substrate 22 and the n-layer 15 on the right side in the figure. The region between the two n layers 13 and 15 of the p-type substrate 22 is the transfer gate 14.

【0014】信号電荷は所定の条件下でn層13、転送
ゲート14、n層15の順に転送される。2つのn層1
3、15の両側には、2つのn層13、15から隣り合
うn層への信号電荷の流出を防止するためにp+ 領域が
形成される。p+ 領域はチャネルストッパー24とい
い、隣り合う画素部間を区切っている。
The signal charges are transferred in the order of the n-layer 13, the transfer gate 14, and the n-layer 15 under predetermined conditions. Two n-layers 1
P + regions are formed on both sides of 3, 15 in order to prevent outflow of signal charges from the two n layers 13, 15 to the adjacent n layers. The p + region is called a channel stopper 24 and separates adjacent pixel portions.

【0015】PD12のn層13を除いた基板22の表
面には、SiO2 (二酸化ケイ素)から成る絶縁膜26
が形成される。絶縁膜26のさらに上に転送ゲート電極
28が設けられる。転送ゲート電極28は、垂直転送C
CD16と、転送ゲート14の上方に位置し、転送ゲー
ト14をON/OFFする。なおこの転送ゲート電極2
8は、外光の垂直転送CCD16への入射を遮断する役
割を有する。
On the surface of the substrate 22 excluding the n-layer 13 of the PD 12, an insulating film 26 made of SiO 2 (silicon dioxide) is formed.
Is formed. A transfer gate electrode 28 is provided further on the insulating film 26. The transfer gate electrode 28 has a vertical transfer C
The transfer gate 14 is located above the CD 16 and the transfer gate 14, and is turned on / off. This transfer gate electrode 2
Reference numeral 8 has a role of blocking the incidence of external light on the vertical transfer CCD 16.

【0016】基板22の表面全体には例えばITO(in
dium-tin oxide; In2 3 −SnO2 )から成る透明
電極32が設けられ、制御電源34を介して基板22側
の電極33と連結される。電極32、33が配置される
方向は電荷キャリアの転送路に対して直角であり、2つ
の電極32、33によって発生する電界により、電荷キ
ャリアの生成、及び後述する液晶の配向の制御が行なわ
れる。
On the entire surface of the substrate 22, for example, ITO (in
A transparent electrode 32 made of dium-tin oxide; In 2 O 3 —SnO 2 ) is provided, and is connected to an electrode 33 on the substrate 22 side via a control power supply 34. The direction in which the electrodes 32 and 33 are arranged is perpendicular to the transfer path of the charge carriers, and the electric fields generated by the two electrodes 32 and 33 generate the charge carriers and control the alignment of the liquid crystal described later. .

【0017】基板22と透明電極32との間には、光量
制御層である高分子型液晶(Polymer Dispersed Liquid
Crystal,以下PDLCという)層30が形成される。
PDLCはポリマーの高分子膜に液晶が点在した構成を
有しており、ポリマーと液晶との境界面において光が反
射されることにより、入射光が拡散する。液晶の分子配
列は初期状態、即ち電界が印加されない状態では、様々
な方向を向いており、電界の印加により液晶の分子配列
は一定方向に変化する。この液晶の作用により、PDL
Cは電界が大きくなるにつれ光の透過率が上昇するとい
う性質を有する。また、PDLCは電界が印加されてい
る間は分子配列は変化するが、その後電界がなくなれば
液晶の分子配列が初期状態に戻る。
Between the substrate 22 and the transparent electrode 32, a polymer type liquid crystal (Polymer Dispersed Liquid) which is a light amount control layer is provided.
A layer 30 (crystal, hereinafter referred to as PDLC) is formed.
PDLC has a configuration in which liquid crystals are scattered in a polymer film of a polymer, and incident light is diffused by reflecting light at a boundary surface between the polymer and the liquid crystal. The molecular arrangement of the liquid crystal is oriented in various directions in an initial state, that is, in a state where no electric field is applied, and the molecular arrangement of the liquid crystal changes in a fixed direction by the application of the electric field. By the action of this liquid crystal, PDL
C has a property that the light transmittance increases as the electric field increases. In PDLC, while the electric field is applied, the molecular arrangement changes, but when the electric field disappears, the molecular arrangement of the liquid crystal returns to the initial state.

【0018】図3はPDLCの電界と光透過率との関係
を示したグラフである。電界値E1まで光透過率Tは最
小値Tmin で一定であるが、電界値E1を超えると上昇
し始め、電界値E2(E1<E2)で最大値Tmax とな
る。電界EがE2以上になっても光透過率TはTmax で
一定のままである。なお、光透過率TはPDLCの厚み
などにより異なるが、例えばTmin は約60〜70%、Tma
x は約100 %程度である。所定の光透過率変化は、厚み
などの条件により決定される。
FIG. 3 is a graph showing the relationship between the electric field and the light transmittance of the PDLC. The light transmittance T is constant at the minimum value Tmin up to the electric field value E1, but starts to rise when the electric field value E1 is exceeded, and reaches the maximum value Tmax at the electric field value E2 (E1 <E2). Even when the electric field E becomes equal to or higher than E2, the light transmittance T remains constant at Tmax. Although the light transmittance T varies depending on the thickness of the PDLC, for example, Tmin is about 60 to 70%,
x is about 100%. The predetermined light transmittance change is determined by conditions such as the thickness.

【0019】次に、撮像素子の動作について説明する。
図2において、上方からの入射光Bは透明電極32、P
DLC層30を透過して各PD12のn層13に照射さ
れる。PD12のpn接合部では電子−正孔の対が発生
し、n層13内では正孔がp形基板22に流出して電子
が残る。入射光Bの強弱に応じて各n層13内に蓄えら
れる電荷の量はそれぞれ異なり、この蓄積された電荷が
信号電荷である。撮像素子10の表面に撮影光学系(図
示しない)を用いて被写体像を結像させると、この光学
像に応じて各画素に蓄積される信号電荷の量が変化し、
電荷パターンができる。この信号電荷を順次転送するこ
とにより、被写体像の画像信号が得られる。
Next, the operation of the image sensor will be described.
In FIG. 2, incident light B from above is transmitted by the transparent electrodes 32, P.
The light passes through the DLC layer 30 and irradiates the n-layer 13 of each PD 12. Electron-hole pairs are generated at the pn junction of the PD 12, and the holes flow into the p-type substrate 22 in the n-layer 13 to leave electrons. The amount of electric charge stored in each n layer 13 differs depending on the intensity of the incident light B, and the stored electric charge is a signal charge. When a subject image is formed on the surface of the image sensor 10 using a photographing optical system (not shown), the amount of signal charges accumulated in each pixel changes according to the optical image,
A charge pattern is created. By sequentially transferring the signal charges, an image signal of a subject image is obtained.

【0020】詳述すると、まず転送ゲート電極28がO
FFの状態で、透明電極32に所定の電圧が印加され
る。電圧が印加されると、PD12のn層13の電子と
p層22の正孔はお互いに接合面から遠ざかるため、p
n接合部には電荷キャリアの存在しない部分である空乏
層が形成される。空乏層は印加電圧の大きさによって幅
が変化し、n層13は信号電荷に対してエネルギー準位
の低い電位の井戸となっている。このときp+ 層24は
n層13に比べ電位準位が高く、電荷のストッパーの役
割をしている。
More specifically, first, the transfer gate electrode 28 is O
In the state of the FF, a predetermined voltage is applied to the transparent electrode 32. When a voltage is applied, the electrons in the n-layer 13 of the PD 12 and the holes in the p-layer 22 move away from the junction surface, so p
A depletion layer is formed at the n-junction, where charge carriers do not exist. The width of the depletion layer changes according to the magnitude of the applied voltage, and the n-layer 13 serves as a well having a low energy level with respect to the signal charge. At this time, the p + layer 24 has a higher potential level than the n layer 13 and serves as a charge stopper.

【0021】図4は、PD12から垂直転送部16へ信
号電荷を転送する動作を模式的に示す電位図である。P
D12に光が入射すると、pn接合部では光励起により
電子−正孔の対が発生し、図4(a) に示すようにn層1
3内では正孔がp形基板22に流出してn層13に電子
が残る。このように電子すなわち信号電荷の蓄積量は、
n層13において入射光量に対応している。
FIG. 4 is a potential diagram schematically showing the operation of transferring the signal charges from the PD 12 to the vertical transfer section 16. P
When light is incident on D12, an electron-hole pair is generated by photoexcitation at the pn junction, and as shown in FIG.
In 3, holes flow out to the p-type substrate 22 and electrons remain in the n-layer 13. In this way, the accumulated amount of electrons or signal charges is
It corresponds to the amount of incident light in the n-layer 13.

【0022】次に外部からの転送パルスにより転送ゲー
ト電極28がONになり、図4(b)に示すように、転送
ゲート電極28の下方に位置する転送ゲート14および
垂直転送CCD15の電位障壁が下がる。そしてPD1
2のn層13の信号電荷は引き出されて、図4(c) に示
すように、垂直転送CCD16のn層15へ転送され
る。
Next, the transfer gate electrode 28 is turned on by a transfer pulse from the outside, and as shown in FIG. 4B, the potential barriers of the transfer gate 14 and the vertical transfer CCD 15 located below the transfer gate electrode 28 are changed. Go down. And PD1
The signal charge of the second n-layer 13 is extracted and transferred to the n-layer 15 of the vertical transfer CCD 16 as shown in FIG.

【0023】以上のように、各画素のPD12で光電変
換された画像信号は、所定の転送パルスにより転送ゲー
ト14を介して縦一列毎に垂直転送部16に転送され
る。再び図1を参照すると、さらに位相の異なる転送パ
ルスにより、画像信号は垂直転送CCD16から水平転
送CCD18に転送された後、水平転送CCD18から
出力端20を介して外部に出力される。
As described above, the image signal photoelectrically converted by the PD 12 of each pixel is transferred to the vertical transfer unit 16 for each vertical column via the transfer gate 14 by a predetermined transfer pulse. Referring to FIG. 1 again, the image signals are transferred from the vertical transfer CCD 16 to the horizontal transfer CCD 18 by the transfer pulses having further different phases, and then output from the horizontal transfer CCD 18 via the output terminal 20 to the outside.

【0024】図5は、図2のI−I線断面におけるPD
の電位分布を示した図である。正の電圧Voを印加した
状態で、光が入射せずn層13に電子が蓄積していない
時は、PDLC層30の電界値はE2であり、その時P
DLC層30の光透過率は高く(図3参照)、実線で示
される電位分布を示す。
FIG. 5 is a PD taken along the line II of FIG.
It is a figure showing the potential distribution of. When light is not incident and electrons are not accumulated in the n layer 13 with the positive voltage Vo applied, the electric field value of the PDLC layer 30 is E2, and at that time, P
The light transmittance of the DLC layer 30 is high (see FIG. 3), and shows a potential distribution indicated by a solid line.

【0025】前述のように、光が入射してn層13に電
子が蓄積するに従い、電子は負であるためn層13の電
位Vは下がり、PDLC層30の電界Eも小さくなる。
即ち、入射光が強いほどPDLC層30の光透過率は下
がる。従って図3を参照して説明したようにPDLC層
30の光透過率が減少し、n層13に入射する光量は減
少して、例えば電界値E3(E3<E2)のとき破線で
示される電位分布となる。
As described above, as light is incident and electrons are accumulated in the n-layer 13, the potential of the n-layer 13 decreases because the electrons are negative, and the electric field E of the PDLC layer 30 also decreases.
That is, the light transmittance of the PDLC layer 30 decreases as the incident light increases. Therefore, as described with reference to FIG. 3, the light transmittance of the PDLC layer 30 decreases, the amount of light incident on the n layer 13 decreases, and, for example, when the electric field value E3 (E3 <E2), the potential indicated by the broken line. Distribution.

【0026】このように、入射光は、強い光ほどPDL
C層30で拡散されるので、PDLC層30を設けない
従来のPD12に比べ、PD12に蓄積される信号電荷
量は高照度まで飽和しない。従って本願発明の撮像素子
を用いれば、蓄積時間の異なる2枚の画像を合成すると
いう複雑な画像処理を必要とせず、容易にダイナミック
レンジの広い画像が得られる。
As described above, the stronger the incident light, the more the PDL
Since it is diffused in the C layer 30, the amount of signal charges accumulated in the PD 12 is not saturated until high illuminance, as compared with the conventional PD 12 in which the PDLC layer 30 is not provided. Therefore, by using the image pickup device of the present invention, an image having a wide dynamic range can be easily obtained without requiring complicated image processing of combining two images having different accumulation times.

【0027】[0027]

【発明の効果】本発明によると、ダイナミックレンジ拡
大のための画像処理を必要としない撮像素子が得られ
る。
According to the present invention, an image pickup device which does not require image processing for expanding a dynamic range can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による撮像素子の実施形態の電荷通路構
成を模式的に示す図である。
FIG. 1 is a diagram schematically showing a charge passage structure of an embodiment of an image sensor according to the present invention.

【図2】図1に示す撮像素子を模式的に示す部分断面図
である。
FIG. 2 is a partial cross-sectional view schematically showing the imaging device shown in FIG.

【図3】図2に示す撮像素子の、PDLC部における電
界と光透過率との関係を示す図である。
FIG. 3 is a diagram illustrating a relationship between an electric field and a light transmittance in a PDLC section of the imaging device illustrated in FIG. 2;

【図4】図2に示す撮像素子の、信号電荷の転送動作を
模式的に示す電位図である。
FIG. 4 is a potential diagram schematically showing a signal charge transfer operation of the image sensor shown in FIG.

【図5】図2に示す撮像素子の、フォトダイオードにお
ける電位の分布を示す図である。
5 is a diagram showing a potential distribution in a photodiode of the image pickup device shown in FIG.

【符号の説明】[Explanation of symbols]

10 撮像素子 12 PD(フォトダイオード) 13、15 n層 14 転送ゲート 16 垂直転送CCD 22 p形基板 26 絶縁膜 28 転送ゲート電極 30 PDLC(光量制御層) 32 透明電極 Reference Signs List 10 imaging device 12 PD (photodiode) 13, 15 n layer 14 transfer gate 16 vertical transfer CCD 22 p-type substrate 26 insulating film 28 transfer gate electrode 30 PDLC (light quantity control layer) 32 transparent electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 形成される画像の各画素に対応した受光
面への入射光に応じた電荷が蓄積する電荷蓄積部と、 蓄積された電荷量に応じて、前記受光面への前記入射光
の光透過率を変化させる光量制御層とを備えたことを特
徴とする撮像素子。
1. A charge accumulating portion for accumulating electric charges according to light incident on a light receiving surface corresponding to each pixel of an image to be formed, and the incident light on the light receiving surface according to an amount of accumulated electric charges. And a light amount control layer for changing the light transmittance of the image pickup device.
【請求項2】 前記光量制御層が初期状態において前記
光透過率が最大であり、前記電荷蓄積部から電荷が除去
されることにより光透過率が初期状態に復元することを
特徴とする請求項1に記載の撮像素子。
2. The light transmittance is maximum in the initial state of the light amount control layer, and the light transmittance is restored to the initial state by removing charges from the charge storage portion. 1. The image sensor according to 1.
【請求項3】 前記光量制御層が高分子分散型液晶を備
えることを特徴とする請求項2に記載の撮像素子。
3. The imaging device according to claim 2, wherein the light amount control layer includes a polymer dispersed liquid crystal.
【請求項4】 前記電荷蓄積部に電圧をかけた状態で前
記電荷が蓄積され、前記電荷蓄積部に電圧をかけるため
の電極が設けられることを特徴とする請求項1に記載の
撮像素子。
4. The imaging device according to claim 1, wherein the charge is stored while a voltage is applied to the charge storage unit, and an electrode for applying a voltage to the charge storage unit is provided.
【請求項5】 前記電極が前記光量制御層の表面に設け
られた透明電極を備えることを特徴とする請求項4に記
載の撮像素子。
5. The imaging device according to claim 4, wherein the electrode includes a transparent electrode provided on a surface of the light quantity control layer.
JP9092956A 1997-03-27 1997-03-27 Image pickup device Withdrawn JPH10270673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9092956A JPH10270673A (en) 1997-03-27 1997-03-27 Image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9092956A JPH10270673A (en) 1997-03-27 1997-03-27 Image pickup device

Publications (1)

Publication Number Publication Date
JPH10270673A true JPH10270673A (en) 1998-10-09

Family

ID=14068917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9092956A Withdrawn JPH10270673A (en) 1997-03-27 1997-03-27 Image pickup device

Country Status (1)

Country Link
JP (1) JPH10270673A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079784A1 (en) * 1999-06-04 2000-12-28 The Trustees Of Columbia University In The City Of New York Apparatus and method for high dynamic range imaging using spatially varying exposures
JP2014135452A (en) * 2013-01-11 2014-07-24 Fujifilm Corp Solid state image pickup device
JP2014135451A (en) * 2013-01-11 2014-07-24 Fujifilm Corp Solid state image pickup device
US9100514B2 (en) 2009-10-28 2015-08-04 The Trustees Of Columbia University In The City Of New York Methods and systems for coded rolling shutter

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079784A1 (en) * 1999-06-04 2000-12-28 The Trustees Of Columbia University In The City Of New York Apparatus and method for high dynamic range imaging using spatially varying exposures
JP2010110004A (en) * 1999-06-04 2010-05-13 Trustees Of Columbia Univ In The City Of New York Apparatus and method for high dynamic range imaging using spatially varying exposures
JP4657365B2 (en) * 1999-06-04 2011-03-23 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク Apparatus and method for high dynamic range imaging using spatially varying exposures
US7924321B2 (en) 1999-06-04 2011-04-12 The Trustees Of Columbia University In The City Of New York Apparatus and method for high dynamic range imaging using spatially varying exposures
US8934029B2 (en) 1999-06-04 2015-01-13 The Trustees Of Columbia University In The City Of New York Apparatus and method for high dynamic range imaging using spatially varying exposures
US9363447B2 (en) 1999-06-04 2016-06-07 The Trustees Of Columbia University In The City Of New York Apparatus and method for high dynamic range imaging using spatially varying exposures
US9100514B2 (en) 2009-10-28 2015-08-04 The Trustees Of Columbia University In The City Of New York Methods and systems for coded rolling shutter
US9736425B2 (en) 2009-10-28 2017-08-15 Sony Corporation Methods and systems for coded rolling shutter
JP2014135452A (en) * 2013-01-11 2014-07-24 Fujifilm Corp Solid state image pickup device
JP2014135451A (en) * 2013-01-11 2014-07-24 Fujifilm Corp Solid state image pickup device

Similar Documents

Publication Publication Date Title
US11902678B2 (en) Solid-state imaging device, method of driving the same, and electronic apparatus
US8901618B2 (en) Solid-state image pickup element, method of manufacturing the same, and electronic apparatus
JP5016941B2 (en) Solid-state imaging device
JP2006246450A (en) Imaging apparatus and imaging system
KR20080113398A (en) Method and apparatus for providing a rolling double reset timing for global storage in image sensors
US7172922B2 (en) CMOS image sensor array with black pixel using negative-tone resist support layer
US4688098A (en) Solid state image sensor with means for removing excess photocharges
JPH10505724A (en) Method of operating a CCD imager and a CCD imager suitable for implementing the method
JPH02168670A (en) Solid-state image sensing device and manufacture thereof
US5923370A (en) Image smear and dark signal reduction device and method
JPH0965217A (en) Solid-state image pickup device and its drive method
JPH08294059A (en) Image pickup device
US6760073B1 (en) Solid-state image sensor
JPH10270673A (en) Image pickup device
JP3590158B2 (en) MOS amplification type imaging device
JPH0430192B2 (en)
JPS6160592B2 (en)
JP2003153084A (en) Controller of solid-state image pickup device and control method thereof
JPH04274367A (en) Solid-state image sensing device
JP3366634B2 (en) Integrated electronic shutter for charge-coupled devices
JP2758739B2 (en) Driving method of solid-state imaging device
JP2884195B2 (en) Solid-state imaging device
JP2001177769A (en) Drive method for solid-state image sensing device
JP2002344818A (en) Method for driving solid-state imaging device and imaging unit
JPS6079773A (en) Solid-state image pickup device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050811