JPH10270078A - Electrolyte for secondary lithium battery - Google Patents

Electrolyte for secondary lithium battery

Info

Publication number
JPH10270078A
JPH10270078A JP9075534A JP7553497A JPH10270078A JP H10270078 A JPH10270078 A JP H10270078A JP 9075534 A JP9075534 A JP 9075534A JP 7553497 A JP7553497 A JP 7553497A JP H10270078 A JPH10270078 A JP H10270078A
Authority
JP
Japan
Prior art keywords
lithium
solute
electrolyte
lithium salt
organic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9075534A
Other languages
Japanese (ja)
Inventor
Shigeki Yasukawa
栄起 安川
Kenichi Ishigaki
憲一 石垣
Kenmei Ou
献明 王
Asao Kominato
あさを 小湊
Kunihisa Shima
邦久 島
Shoichiro Mori
彰一郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP9075534A priority Critical patent/JPH10270078A/en
Publication of JPH10270078A publication Critical patent/JPH10270078A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide electrolyte for a secondary lithium battery, for which organic acid lithium salt is used with high conductivity and excellent safety and reliability to restrict the corrosion of a positive electrode aluminum collector for good charging/discharging property. SOLUTION: For solute, an organic acid lithium salt as shown in the formula, (n) and (m) are each integers, 1 through 4} and at least one type of an inorganic acid lithium salt selected out of LiX (X is PF6 , AsF6 , SbF6 or BF4 ) groups are used at a mol or ratio of 95:5-60:40. Carbonic ester compound is contained as an organic solvent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池用
の電解液に関するものであり、リチウム二次電池用の有
機溶媒電解液の導電率及び電気化学的安定性等の改良に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyte for a lithium secondary battery, and more particularly to an improvement in the conductivity and electrochemical stability of an organic solvent electrolyte for a lithium secondary battery.

【0002】[0002]

【従来の技術】負極活物質として、リチウムあるいはリ
チウム合金等、または炭素材等を用い、正極活物質とし
て、リチウム遷移金属複合酸化物(LiCoO2 、Li
NiO 2 、LiMn2 4 )等を用いた電池は、特に高
エネルギー密度を有するために注目されており、活発な
研究が行われている。しかしながら、この種の電池の電
圧は4V以上と高く、特に、リチウム金属を負極に用い
るリチウム二次電池では充放電の際、リチウム負極に発
生する樹枝状のリチウムのデンドライト等により、電解
液中の溶質あるいは有機溶媒と反応して電解液が劣化し
ていくため良好な充放電特性を得ることが困難であり、
安全性、信頼性に優れた安定な電解液の開発が望まれて
いる。
2. Description of the Related Art Lithium or lithium is used as a negative electrode active material.
Using a lithium alloy or carbon material, etc., as the positive electrode active material
And a lithium transition metal composite oxide (LiCoOTwo, Li
NiO Two, LiMnTwoOFour) Etc. are especially high
Attracting attention because of its energy density,
Research is being done. However, this type of battery power
The pressure is as high as 4V or more.
Lithium rechargeable batteries generate a lithium anode during charging and discharging.
Electrolysis using dendritic dendrites
The electrolyte reacts with solutes or organic solvents in the
It is difficult to obtain good charge and discharge characteristics because
Development of stable electrolyte with excellent safety and reliability is desired
I have.

【0003】近年、溶質としてLiPF6 を用いる有機
電解液を使用したリチウム二次電池が提案されている
が、リチウム金属を負極に用いるリチウム二次電池で
は、充電時の電析リチウム等との反応性が高いため、リ
チウム負極の充放電効率が低い問題があった。このた
め、より高性能な電池の開発を目的として、電気化学的
安定性及び熱的安定性に優れた溶質としてLiN(SO
2 CF3 2 を用いる電解液が開発され提案されてい
る。
In recent years, a lithium secondary battery using an organic electrolyte using LiPF 6 as a solute has been proposed. In a lithium secondary battery using lithium metal as a negative electrode, a reaction with electrodeposited lithium or the like during charging is performed. Therefore, there is a problem that the charge / discharge efficiency of the lithium negative electrode is low due to high performance. Therefore, for the purpose of developing a higher performance battery, LiN (SO 2) is used as a solute having excellent electrochemical stability and thermal stability.
An electrolyte using 2 CF 3 ) 2 has been developed and proposed.

【0004】しかしながら、溶質としてLiN(SO2
CF3 2 のような有機酸リチウム塩を用いた電解液で
は正極集電体として用いるアルミニウム又はアルミニウ
ム合金を腐食し、実用可能な電池容量やサイクル特性が
得られず信頼性に欠けるという問題があった。特開平5
−62690号公報には、溶質として特定の無機酸リチ
ウム塩と特定の有機酸リチウム塩を併用することについ
て記載されている。しかしながら、いまだ性能的に十分
なものは得られていない。
[0004] However, LiN (SO 2
Electrolyte using an organic lithium salt such as CF 3 ) 2 corrodes aluminum or an aluminum alloy used as a positive electrode current collector, and fails to provide a practicable battery capacity or cycle characteristics and lacks reliability. there were. JP 5
JP-A-62690 describes the use of a specific lithium inorganic acid salt and a specific lithium organic acid salt as solutes. However, sufficient performance has not yet been obtained.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、リチ
ウム金属を負極に用いるリチウム二次電池系に最適な電
解液として、導電率が高く、正極集電体の腐食を抑制
し、充放電特性に優れ、安全性、信頼性の向上されたリ
チウム二次電池用電解液を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an electrolyte which is optimal for a lithium secondary battery system using lithium metal for a negative electrode, has high conductivity, suppresses corrosion of a positive electrode current collector, and performs charge / discharge. An object of the present invention is to provide an electrolyte for a lithium secondary battery having excellent characteristics, safety and reliability.

【0006】[0006]

【課題を解決するための手段】本発明は、溶質として下
記一般式(1)で示される有機酸リチウム塩
According to the present invention, a lithium salt of an organic acid represented by the following general formula (1) is used as a solute.

【0007】[0007]

【化2】 Embedded image

【0008】(式中、n及びmは夫々1〜4の整数を示
す。)及びLiX(ただし、XはPF6 、AsF6 、S
bF6 又はBF4 を示す。)の群より選ばれた少なくと
も1種以上の無機酸リチウム塩をモル比95:5〜6
0:40で併用し、有機溶媒として炭酸エステル化合物
を含有することを特徴とするリチウム二次電池用電解液
に存する。
(Where n and m each represent an integer of 1 to 4) and LiX (where X is PF 6 , AsF 6 , S
Indicates bF 6 or BF 4 . )) At least one lithium inorganic acid salt selected from the group consisting of
0:40 in combination with an electrolyte solution for a lithium secondary battery, characterized by containing a carbonate compound as an organic solvent.

【0009】[0009]

【作用】溶質として、前記一般式(1)で示される有機
酸リチウム塩(以下、有機酸リチウム塩と略記する。)
とLiX(ただし、XはPF6 、AsF6 、SbF6
BF4 を示す)の群より選ばれた少なくとも1種以上の
無機酸リチウム塩(以下、無機酸リチウム塩と略記す
る。)を特定の比率で用いることによって、アルミニウ
ムの酸化電位が、正常充電時の正極電位よりも高くな
り、正極アルミニウム集電体の電解液中への溶解が殆ど
起こらないため良好な充電がなされる。特に、負極活物
質として、リチウムあるいはリチウム合金等、または炭
素材等を用い、正極活物質として、リチウム遷移金属複
合酸化物(LiCoO2 、LiNiO2、LiMn2
4 )等を用いた4V以上の電圧を有する電池において、
導電率に優れ、充放電特性、安全性、信頼性の高い電解
液が実現できる。
The organic acid lithium salt represented by the general formula (1) (hereinafter abbreviated as lithium organic acid salt) is used as a solute.
And LiX (where X is PF 6 , AsF 6 , SbF 6 ,
BF 4 ) is used, at a specific ratio, at least one kind of lithium inorganic acid salt (hereinafter abbreviated as lithium inorganic acid salt) selected from the group of BF 4 ), so that the oxidation potential of aluminum during normal charging is reduced. , And the positive electrode aluminum current collector hardly dissolves in the electrolytic solution, so that good charging is performed. In particular, lithium or a lithium alloy or a carbon material is used as a negative electrode active material, and a lithium transition metal composite oxide (LiCoO 2 , LiNiO 2 , LiMn 2 O) is used as a positive electrode active material.
4 ) In a battery having a voltage of 4 V or more using, for example,
An electrolyte having excellent conductivity, high charge / discharge characteristics, safety, and high reliability can be realized.

【0010】[0010]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

溶質:一般式(1)で示される有機酸リチウム塩として
は、具体的にはLiN(SO 2 CF3 2 、LiN(S
2 2 5 2 、LiN(SO2 3 7 2 、Li
N(SO2 4 9 2 、LiN(SO2 CF3 )(S
2 2 5 )、LiN(SO2 CF3 )(SO2 3
7 )、LiN(SO2 CF3 )(SO2 49 )、
LiN(SO2 2 5 )(SO2 3 7 )、LiN
(SO2 2 5 )(SO2 4 9 )及びLiN(S
2 3 7 )(SO2 4 9 )等が例示される。
 Solute: as a lithium salt of an organic acid represented by the general formula (1)
Is specifically LiN (SO TwoCFThree)Two, LiN (S
OTwoCTwoFFive)Two, LiN (SOTwoCThreeF7)Two, Li
N (SOTwoCFourF9)Two, LiN (SOTwoCFThree) (S
OTwoCTwoFFive), LiN (SOTwoCFThree) (SOTwoCThree
F7), LiN (SOTwoCFThree) (SOTwoCFourF9),
LiN (SOTwoCTwoFFive) (SOTwoCThreeF7), LiN
(SOTwoCTwoF Five) (SOTwoCFourF9) And LiN (S
OTwoCThreeF7) (SOTwoCFourF9) Are exemplified.

【0011】また、無機酸リチウム塩としては、LiP
6 、LiAsF6 、LiSbF6及びLiBF4 が例
示される。本発明において、前記式(1)で示される有
機酸リチウム塩と無機酸リチウム塩とのモル比の値が9
5:5〜60:40の範囲内の混合溶質に限定されるの
は、アルミニウムの酸化電位が、正常充電時の正極電位
よりも高く、かつ良好なリチウム充放電効率を得るため
である。
[0011] Lithium inorganic acid salts include LiP
Examples are F 6 , LiAsF 6 , LiSbF 6 and LiBF 4 . In the present invention, the molar ratio between the organic acid lithium salt and the inorganic acid lithium salt represented by the formula (1) is 9
The reason for the limitation to the mixed solute within the range of 5: 5 to 60:40 is that the oxidation potential of aluminum is higher than the positive electrode potential at the time of normal charging, and good lithium charge / discharge efficiency is obtained.

【0012】すなわち、有機酸リチウム塩と無機酸リチ
ウム塩とのモル比の値が、95/5を越えた場合は、有
機酸リチウム塩が多すぎるため、アルミニウムの酸化電
位が不十分となり、正極集電体のアルミニウムの腐食
(溶解)や電解液の導電率が低くなる等により、実用可
能な程度の充放電容量を有する電池が得られなくなる。
また、同モル比が60/40未満の場合は、無機酸リチ
ウム塩が多すぎるためリチウム金属負極との反応の増加
により、リチウム負極の充放電効率が低下するためであ
る。
That is, when the value of the molar ratio between the lithium organic acid salt and the lithium inorganic acid salt exceeds 95/5, the oxidation potential of aluminum becomes insufficient due to too much lithium organic acid salt, and Due to the corrosion (dissolution) of aluminum in the current collector and the decrease in the conductivity of the electrolyte, a battery having a practically usable charge / discharge capacity cannot be obtained.
Further, when the molar ratio is less than 60/40, the amount of the lithium inorganic acid salt is too large, and the charge / discharge efficiency of the lithium anode decreases due to an increase in the reaction with the lithium metal anode.

【0013】また、有機酸リチウム塩は、一般式(1)
においてn+mが4〜8であるものが好ましい。この範
囲にすることにより溶質の分子量増大による導電率の低
下をおさえながら、有機酸リチウム塩のアルミニウムの
酸化電位が正常充電時の正極電位よりも高いものとする
ことができる。また、有機酸リチウム塩及び無機酸リチ
ウム塩は、後述する有機溶媒に溶解され、電解液中の溶
質濃度として合計で0.5〜1.5M(モル/リット
ル)が使用される。
The organic acid lithium salt is represented by the general formula (1)
In which n + m is 4 to 8 is preferred. By setting the content in this range, the oxidation potential of aluminum of the lithium organic acid salt can be made higher than the positive electrode potential during normal charging while suppressing the decrease in conductivity due to the increase in the molecular weight of the solute. The organic acid lithium salt and the inorganic acid lithium salt are dissolved in an organic solvent described below, and a total of 0.5 to 1.5 M (mol / liter) is used as a solute concentration in the electrolytic solution.

【0014】有機溶媒:電解液の溶媒としては、従来リ
チウム二次電池用電解液として提案及び使用されている
炭酸エステル化合物を含有するが、導電率等の性能を改
善するために、他の非水溶媒に混合して用いることが好
ましい。炭酸エステル化合物としては、炭酸エチレン、
炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸エ
チルメチル、炭酸ジエチルが使用され、他の非水溶媒と
しては、通常、酢酸メチル、酢酸エチル、プロピオン酸
メチル、プロピオン酸エチル、γ−ブチロラクトンなど
のエステル、1,2−ジメトキシエタン、1,2−ジエ
トキシエタン、テトラヒドロフラン、2−メチルテトラ
ヒドロフランなどのエーテルから選ばれた溶媒あるいは
これらの複数の混合溶媒が使用される。炭酸エステル化
合物と他の非水溶媒を混合する場合の混合比率(体積比
率)は通常、1/9〜9/1、好ましくは3/7〜7/
3である。
Organic solvent: As a solvent for the electrolytic solution, a carbonate compound conventionally proposed and used as an electrolytic solution for a lithium secondary battery is contained. In order to improve performance such as conductivity, other non-solvents are used. It is preferable to use a mixture with a water solvent. As the carbonate compound, ethylene carbonate,
Propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate is used, as other non-aqueous solvents, usually, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, esters such as γ-butyrolactone, A solvent selected from ethers such as 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, and 2-methyltetrahydrofuran, or a mixed solvent of a plurality thereof is used. The mixing ratio (volume ratio) when the carbonate compound and another non-aqueous solvent are mixed is usually 1/9 to 9/1, preferably 3/7 to 7 /.
3.

【0015】[0015]

【実施例】以下、本発明を実施例により詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments.

【0016】実施例1〜4 有機溶媒として、炭酸エチレン(EC)と1,2−ジメ
トキシエタン(DME)との等体積混合溶媒を用いて、
有機酸リチウム塩の溶質としてLiN(SO2CF3
2 を、無機酸リチウム塩の溶質としてLiPF6 を第1
表に示すモル比で溶解して、溶質濃度が1mol/リッ
トルの電解液を調製した。電解液の導電率、リチウムの
充放電効率、アルミニウムの酸化電位及びコインセルに
よる充放電容量を下記の方法で測定した。結果を第1表
に示す。
Examples 1 to 4 Using an equal volume mixed solvent of ethylene carbonate (EC) and 1,2-dimethoxyethane (DME) as an organic solvent,
LiN (SO 2 CF 3 ) as solute of lithium organic acid salt
2 is LiPF 6 as the solute of lithium inorganic acid salt.
The electrolytes were dissolved at the molar ratios shown in the table to prepare an electrolyte having a solute concentration of 1 mol / liter. The conductivity of the electrolytic solution, the charge / discharge efficiency of lithium, the oxidation potential of aluminum, and the charge / discharge capacity of a coin cell were measured by the following methods. The results are shown in Table 1.

【0017】(導電率の測定)有機電解液の導電率の測
定をつぎの方法で行った。東亜電波工業(株)製の導電
率計CM−30S及び電導度セルCG−511Bを用い
て、25℃における導電率を測定した。
(Measurement of Conductivity) The conductivity of the organic electrolyte was measured by the following method. The conductivity at 25 ° C. was measured using a conductivity meter CM-30S manufactured by Toa Denpa Kogyo KK and a conductivity cell CG-511B.

【0018】(リチウムの充放電効率の測定)リチウム
の充放電効率(Eff)の測定は乾燥空気雰囲気下のドラ
イボックス内で、有機電解液を3極式セル内に設置(電
解液量:15ml)して、ポテンショスタット/ガルバ
ノスタット(ソーラートロン社製1287)を用いて、
作用極にニッケル電極(有効電極面積:0.44c
2 )、対極にリチウム金属(有効電極面積:0.79
cm2 )、参照極にリチウム金属を使用し、定電流放電
(電流密度:0.5mA/cm2 )に伴う作用極の電位
変化より下記式を用いて算出した。また、放電終止点は
+1.0V vs Li/Li+ とした。 Eff=Qs/Qp×100(%) 上記の式において、QpはNi作用極にリチウムを析出
させるのに要した電気量を表し、Qsは析出したリチウ
ムをリチウムイオンとして溶解するのに要した電気量
(放電量)を意味する。
(Measurement of Lithium Charge / Discharge Efficiency) The measurement of lithium charge / discharge efficiency (Eff) was performed by placing an organic electrolyte in a three-electrode cell in a dry box under a dry air atmosphere (amount of electrolyte: 15 ml). ) And using a potentiostat / galvanostat (1287 manufactured by Solartron)
Nickel electrode for working electrode (effective electrode area: 0.44c
m 2 ), lithium metal as the counter electrode (effective electrode area: 0.79
cm 2 ), using lithium metal as the reference electrode, and calculating from the potential change of the working electrode accompanying the constant current discharge (current density: 0.5 mA / cm 2 ) using the following equation. The discharge end point was +1.0 V vs Li / Li + . Eff = Qs / Qp × 100 (%) In the above equation, Qp represents the amount of electricity required to deposit lithium on the Ni working electrode, and Qs represents the amount of electricity required to dissolve the deposited lithium as lithium ions. Amount (discharge amount).

【0019】(アルミニウムの酸化電位の測定)アルミ
ニウム酸化電位の測定は乾燥アルゴン雰囲気下のドライ
ボックス内で、有機電解液を3極式セル内に設置(電解
液量:15ml)して、ポテンショスタット/ガルバノ
スタット(ソーラートロン社製1287)を用いて、作
用極にアルミニウム電極(電極面積:7.0mm2 )を
使用し、対極及び参照極にリチウム金属を使用して行っ
た。アルミニウムの酸化電位は、50mV/secで電
位を走査した時の酸化反応に相当する反応電流密度が2
0μA/cm2 に達した時のリチウム基準の電位とし
た。
(Measurement of Aluminum Oxidation Potential) The aluminum oxidation potential was measured by placing an organic electrolytic solution in a three-electrode cell (amount of electrolytic solution: 15 ml) in a dry box under a dry argon atmosphere. Using a galvanostat (1287 manufactured by Solartron), an aluminum electrode (electrode area: 7.0 mm 2 ) was used as a working electrode, and lithium metal was used as a counter electrode and a reference electrode. The oxidation potential of aluminum is such that the reaction current density corresponding to the oxidation reaction when scanning the potential at 50 mV / sec is 2.
The potential was defined as the lithium reference potential when the voltage reached 0 μA / cm 2 .

【0020】(コイン型セルによる充放電容量の測定)
図1は、実施例及び比較例において作製したリチウム二
次電池(コイン型;直径20mm、厚さ1.6mm)の
断面図を示す。このコイン型セルは、正極端子を兼ねた
ステンレス製ケース1、負極端子を兼ねたステンレス製
封口板2とがポリプロピレン製ガスケット3で絶縁シー
ルされている。正極4は正極活物質としてのリチウムコ
バルト複合酸化物(LiCoO2 )に、導電剤としての
アセチレンブラックと、結着剤としてのフッ素樹脂と
を、重量比90:5:5の比率で混合し、これを溶剤
(N−メチルピロリドン)に分散させてスラリーとした
後、正極集電体としてのアルミニウム箔に塗布し、乾燥
した後、直径12.5mmの正極を作製した。負極5は
直径16mm、厚さ0.5mmのリチウム金属箔を用
い、有機溶媒電解液に浸された多孔性ポリプロピレンフ
ィルムのセパレータ6とから構成されている。電池の容
量は4.2Vから2.5Vまでの電圧範囲で1.7mA
hである。
(Measurement of charge / discharge capacity by coin cell)
FIG. 1 is a cross-sectional view of the lithium secondary batteries (coin type; diameter: 20 mm, thickness: 1.6 mm) manufactured in Examples and Comparative Examples. In this coin-type cell, a stainless steel case 1 also serving as a positive electrode terminal and a stainless steel sealing plate 2 also serving as a negative electrode terminal are insulated and sealed with a polypropylene gasket 3. The positive electrode 4 is obtained by mixing lithium cobalt composite oxide (LiCoO 2 ) as a positive electrode active material, acetylene black as a conductive agent, and a fluororesin as a binder in a weight ratio of 90: 5: 5, This was dispersed in a solvent (N-methylpyrrolidone) to form a slurry, which was then applied to an aluminum foil as a positive electrode current collector, dried, and then a positive electrode having a diameter of 12.5 mm was produced. The negative electrode 5 is made of a lithium metal foil having a diameter of 16 mm and a thickness of 0.5 mm, and includes a porous polypropylene film separator 6 immersed in an organic solvent electrolyte. The capacity of the battery is 1.7 mA in a voltage range from 4.2 V to 2.5 V.
h.

【0021】比較例1 溶質として、有機酸リチウム塩がLiN(SO2
3 2 の単独を用いた他は実施例1と同様にして、電
解液の導電率、リチウムの充放電効率、アルミニウムの
酸化電位及びコインセルによる充放電容量を測定した。
得られた結果を第1表に示す。
Comparative Example 1 As a solute, a lithium salt of an organic acid was LiN (SO 2 C
In the same manner as in Example 1 except that F 3 ) 2 was used alone, the conductivity of the electrolytic solution, the charge / discharge efficiency of lithium, the oxidation potential of aluminum, and the charge / discharge capacity of a coin cell were measured.
Table 1 shows the obtained results.

【0022】比較例2 溶質として、無機酸リチウム塩がLiPF6 の単独を用
いた他は実施例1と同様にして、電解液の導電率、リチ
ウムの充放電効率、アルミニウムの酸化電位及びコイン
セルによる充放電容量を測定した。得られた結果を第1
表に示す。
Comparative Example 2 In the same manner as in Example 1 except that LiPF 6 was used alone as the inorganic acid lithium salt as the solute, the conductivity of the electrolytic solution, the charge and discharge efficiency of lithium, the oxidation potential of aluminum, and the The charge / discharge capacity was measured. The obtained result is
It is shown in the table.

【0023】実施例5〜7 有機溶媒として、炭酸エチレン(EC)と1,2−ジメ
トキシエタン(DME)との等体積混合溶媒を用いて、
有機酸リチウム塩の溶質がLiN(SO2 CF 3 )(S
2 4 9 )と無機酸リチウム塩の溶質がLiPF6
との混合溶質のモル比が95:5〜70:30の割合で
混合し溶解して、溶質濃度が1mol/dm3 の有機電
解液を調製した他は実施例1と同様にして、電解液の導
電率、リチウムの充放電効率、アルミニウムの酸化電位
及びコインセルによる充放電容量を測定した。得られた
結果を第2表に示す。
Examples 5 to 7 Ethylene carbonate (EC) and 1,2-dimethyl
Using an equal volume mixed solvent with toxicethane (DME),
The solute of the organic acid lithium salt is LiN (SOTwoCF Three) (S
OTwoCFourF9) And the solute of lithium inorganic acid salt is LiPF6
At a molar ratio of the mixed solute with 95: 5 to 70:30
Mix and dissolve, solute concentration is 1mol / dmThreeOrganic electricity
Except for preparing the lysate, the procedure of Example 1 was repeated to prepare the electrolyte solution.
Power, lithium charge / discharge efficiency, aluminum oxidation potential
And the charge / discharge capacity of the coin cell was measured. Got
The results are shown in Table 2.

【0024】実施例8〜10 有機酸リチウム塩の溶質がLiN(SO2 2 5 2
と無機酸リチウム塩の溶質がLiPF6 との混合溶質の
モル比が95:5〜70:30を用いた他は実施例1と
同様にして、電解液の導電率、リチウムの充放電効率、
アルミニウムの酸化電位及びコインセルによる充放電容
量を測定した。得られた結果を第2表に示す。
Examples 8 to 10 The solute of the lithium organic acid salt is LiN (SO 2 C 2 F 5 ) 2
In the same manner as in Example 1 except that the mixed solute of LiPF 6 and the solute of the lithium salt of inorganic acid and LiPF 6 were used in the same manner as in Example 1, the conductivity of the electrolytic solution, the charge and discharge efficiency of lithium,
The oxidation potential of aluminum and the charge / discharge capacity of the coin cell were measured. Table 2 shows the obtained results.

【0025】実施例11 有機酸リチウム塩の溶質がLiN(CF3 SO2 )(C
4 9 SO2 )と無機酸リチウム塩の溶質がLiBF4
との混合溶質のモル比が60:40を用いた他は実施例
1と同様にして、電解液の導電率、リチウムの充放電効
率、アルミニウムの酸化電位及びコインセルによる充放
電容量を測定した。得られた結果を第2表に示す。
Example 11 The solute of a lithium salt of an organic acid was LiN (CF 3 SO 2 ) (C
4 F 9 SO 2 ) and the lithium salt of inorganic acid are solutes of LiBF 4
The conductivity of the electrolytic solution, the charging and discharging efficiency of lithium, the oxidation potential of aluminum, and the charging and discharging capacity of a coin cell were measured in the same manner as in Example 1 except that the molar ratio of the mixed solute with the mixture was 60:40. Table 2 shows the obtained results.

【0026】実施例12 有機酸リチウム塩の溶質がLiN(CF3 SO2 )(C
4 9 SO2 )と無機酸リチウム塩の溶質がLiSbF
6 との混合溶質のモル比が60:40を用いた他は実施
例1と同様にして、電解液の導電率、リチウムの充放電
効率、アルミニウムの酸化電位及びコインセルによる充
放電容量を測定した。得られた結果を第2表に示す。
Example 12 The solute of the lithium salt of an organic acid is LiN (CF 3 SO 2 ) (C
4 F 9 SO 2) and solute lithium inorganic salt is LiSbF
The conductivity of the electrolytic solution, the charge and discharge efficiency of lithium, the oxidation potential of aluminum, and the charge and discharge capacity of the coin cell were measured in the same manner as in Example 1 except that the molar ratio of the mixed solute with 6 was 60:40. . Table 2 shows the obtained results.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【発明の効果】本発明のリチウム二次電池用電解液は、
導電率に優れ、充電時に正極集電体のアルミニウムの腐
食(溶解)がなく、高いリチウム充放電効率が得られる
ため、良好な充放電特性が得られるとともに、安全性、
信頼性が高いなど、本発明は優れた特有の効果を奏す
る。
The electrolytic solution for a lithium secondary battery of the present invention comprises:
It has excellent electrical conductivity, does not corrode (dissolve) aluminum in the positive electrode current collector during charging, and provides high lithium charge / discharge efficiency.
The present invention has excellent unique effects such as high reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例及び比較例で用いたコイン型セルを模式
的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a coin-type cell used in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1:ステンレス製ケース 2:ステンレス製封口板 3:ポリプロピレン製ガスケット 4:正極 5:負極 6:セパレータ 1: stainless steel case 2: stainless steel sealing plate 3: polypropylene gasket 4: positive electrode 5: negative electrode 6: separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小湊 あさを 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 (72)発明者 島 邦久 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 (72)発明者 森 彰一郎 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Asato Kominato 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Prefecture Within the Tsukuba Research Laboratory, Mitsubishi Chemical Corporation (72) Kunihisa Shima, Chuo-Hachi, Ami-cho, Inashiki-gun, Ibaraki Mitsubishi Chemical Co., Tsukuba Research Laboratories (72) Shoichiro Mori 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Pref. Mitsubishi Chemical Corporation Tsukuba Research Laboratories

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶質として下記一般式(1)で示される
有機酸リチウム塩 【化1】 (式中、n及びmは夫々1〜4の整数を示す。)及びL
iX(ただし、XはPF6 、AsF6 、SbF6 又はB
4 を示す。)の群より選ばれた少なくとも1種以上の
無機酸リチウム塩をモル比95:5〜60:40で併用
し、有機溶媒として炭酸エステル化合物を含有すること
を特徴とするリチウム二次電池用電解液。
1. A lithium salt of an organic acid represented by the following general formula (1) as a solute: (Where n and m each represent an integer of 1 to 4) and L
iX (where X is PF 6 , AsF 6 , SbF 6 or B
Shows the F 4. A) using at least one lithium salt of an inorganic acid selected from the group of) in a molar ratio of 95: 5 to 60:40, and containing a carbonate compound as an organic solvent. liquid.
【請求項2】 一般式(1)で示される有機酸リチウム
塩としてnとmの合計が4〜8であるものを用いること
を特徴とする請求項1に記載のリチウム二次電池用電解
液。
2. The electrolyte for a lithium secondary battery according to claim 1, wherein a lithium salt of an organic acid represented by the general formula (1) is used in which the sum of n and m is 4 to 8. .
JP9075534A 1997-03-27 1997-03-27 Electrolyte for secondary lithium battery Pending JPH10270078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9075534A JPH10270078A (en) 1997-03-27 1997-03-27 Electrolyte for secondary lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9075534A JPH10270078A (en) 1997-03-27 1997-03-27 Electrolyte for secondary lithium battery

Publications (1)

Publication Number Publication Date
JPH10270078A true JPH10270078A (en) 1998-10-09

Family

ID=13578986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9075534A Pending JPH10270078A (en) 1997-03-27 1997-03-27 Electrolyte for secondary lithium battery

Country Status (1)

Country Link
JP (1) JPH10270078A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307774A (en) * 2000-04-21 2001-11-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2009016362A (en) * 2008-10-20 2009-01-22 Sony Corp Nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307774A (en) * 2000-04-21 2001-11-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2009016362A (en) * 2008-10-20 2009-01-22 Sony Corp Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JP3760540B2 (en) Electrolyte for lithium secondary battery
CN109449487A (en) A kind of lithium ion battery high concentration electrolyte and preparation method thereof and lithium ion battery
JP2001043895A (en) Nonaqueous electrolytic solution and lithium secondary battery using same
JP4626020B2 (en) Non-aqueous electrolyte secondary battery
CN108736065B (en) Electrolyte and lithium ion battery containing electrolyte and/or anode
CN108288728A (en) It is a kind of adaptation silicon carbon material lithium-ion battery electrolytes and its application
CN110249469A (en) Lithium secondary battery
JP3728791B2 (en) Electrolyte for lithium secondary batteries
JPH10189041A (en) Electrolyte for lithium secondary battery
JPH1126016A (en) Electrolyte for lithium secondary battery
JPH08115742A (en) Lithium secondary battery
CN103782418A (en) Nonaqueous electrolyte secondary battery
JP3418446B2 (en) Electrolyte for electrochemical cell and battery
JPH09245833A (en) Electrolytic solution for lithium secondary battery
JP2000021448A (en) High polymer electrolyte secondary battery
CN112467218B (en) Lithium metal battery based on copper nitrate electrolyte additive
JP2008084766A (en) Non-aqueous electrolyte secondary battery
JPH07220756A (en) Nonaqueous electrolyte lithium secondary battery
JPH10270078A (en) Electrolyte for secondary lithium battery
JPH1131528A (en) Lithium secondary battery electrolyte
CN102834954B (en) Nonaqueous electrolyte secondary battery
WO2020070391A1 (en) Improved rechargeable batteries and production thereof
JP2000040524A (en) Electrolyte for lithium secondary battery and secondary battery
JP2001028272A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same