JPH1131528A - Lithium secondary battery electrolyte - Google Patents
Lithium secondary battery electrolyteInfo
- Publication number
- JPH1131528A JPH1131528A JP9184929A JP18492997A JPH1131528A JP H1131528 A JPH1131528 A JP H1131528A JP 9184929 A JP9184929 A JP 9184929A JP 18492997 A JP18492997 A JP 18492997A JP H1131528 A JPH1131528 A JP H1131528A
- Authority
- JP
- Japan
- Prior art keywords
- compound
- lithium
- carbonate
- cyclic ether
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はリチウム二次電池用
の電解液に関するものである。更に詳しくは、導電率及
び電気化学的安定性等が改良されたリチウム二次電池用
の有機溶媒電解液に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyte for a lithium secondary battery. More specifically, the present invention relates to an organic solvent electrolyte for a lithium secondary battery having improved conductivity and electrochemical stability.
【0002】[0002]
【従来の技術】負極活物質として、リチウムあるいはリ
チウム合金等を用い、正極活物質として、リチウム遷移
金属複合酸化物(LiCoO2 、LiNiO2 、LiM
n2 O 4 )等を用いた電池は、特に高エネルギー密度を
有するために注目されており、活発な研究が行われてい
る。しかしながら、この種電池の電圧は4V以上と高
く、特に、リチウム金属を負極に用いるリチウム二次電
池では充放電の際、リチウム負極に発生する樹枝状のリ
チウムのデンドライト等により、電解液中の溶質あるい
は有機溶媒と反応して電解液が劣化していくため良好な
充放電特性を得ることが困難であり、安全性、信頼性に
優れた安定な電解液の開発が望まれている。近年、溶質
としてLiPF6を用いる有機電解液を使用したリチウ
ム二次電池が提案されているが、リチウム金属を負極に
用いるリチウム二次電池では、充電時の電析リチウム等
との反応性が高いため、リチウム負極のサイクル効率が
低い問題があった。2. Description of the Related Art Lithium or lithium is used as a negative electrode active material.
Lithium transition as a positive electrode active material
Metal composite oxide (LiCoOTwo, LiNiOTwo, LiM
nTwoO Four), Etc., have a particularly high energy density.
Has been attracting attention and is being actively researched.
You. However, the voltage of this type of battery is as high as 4 V or more.
In particular, lithium secondary batteries using lithium metal for the negative electrode
In the pond, a dendritic recharge generated on the lithium negative electrode during charging and discharging
The solute or electrolyte in the electrolyte is
Is good because the electrolytic solution deteriorates by reacting with the organic solvent
It is difficult to obtain charge / discharge characteristics, and safety and reliability
The development of an excellent and stable electrolyte is desired. In recent years, solutes
As LiPF6Lithium using organic electrolyte
Battery has been proposed, but lithium metal is used as the negative electrode.
Lithium secondary battery used, such as deposited lithium during charging
High reactivity with the lithium
There was a low problem.
【0003】[0003]
【発明が解決しようとする課題】本発明は、リチウム金
属を負極に用いるリチウム二次電池系に最適な電解液と
して、導電率が高く、リチウムサイクル効率、充放電特
性に優れ、安全性、信頼性の向上されたリチウム二次電
池用電解液を提供することにある。DISCLOSURE OF THE INVENTION The present invention provides an electrolyte which is suitable for a lithium secondary battery system using lithium metal as a negative electrode, has high conductivity, excellent lithium cycle efficiency, excellent charge / discharge characteristics, safety and reliability. An object of the present invention is to provide an electrolyte solution for a lithium secondary battery having improved properties.
【0004】[0004]
【課題を解決するための手段】本発明は、溶質としての
リチウム塩が下記一般式(1)で示される有機酸リチウ
ム塩According to the present invention, a lithium salt as a solute is an organic acid lithium salt represented by the following general formula (1):
【0005】[0005]
【化2】 Embedded image
【0006】(式中、n及びmは1〜4の整数を示し、
nとmの合計が3〜8である。)を用い、有機溶媒とし
て、環状エーテル化合物及び炭酸エステル化合物の混合
溶媒を用いることを特徴とするリチウム二次電池用電解
液を提供するものである。(Where n and m are integers of 1 to 4,
The sum of n and m is 3-8. ), And using a mixed solvent of a cyclic ether compound and a carbonate compound as an organic solvent.
【0007】[0007]
【作用】溶質として、前記一般式(1)で示される有機
酸リチウム塩(以下、有機酸リチウム塩と略記する。)
を環状エーテル化合物と炭酸エステル化合物との混合溶
媒と組み合わせることによって、良好な充放電特性を有
するリチウム二次電池用電解液が実現できる。特に、負
極活物質として、リチウムあるいはリチウム合金等を用
い、正極活物質として、リチウム遷移金属複合酸化物
(LiCoO2 、LiNiO2 、LiMn2 O4 )等を
用いた4V以上の電圧を有する電池に適用した場合にお
いて、導電率が高く、リチウムサイクル効率、充放電特
性、安全性、信頼性の優れた電解液が実現できる。The organic acid lithium salt represented by the general formula (1) (hereinafter abbreviated as lithium organic acid salt) is used as a solute.
Is combined with a mixed solvent of a cyclic ether compound and a carbonate compound, whereby an electrolyte for a lithium secondary battery having good charge / discharge characteristics can be realized. In particular, a battery having a voltage of 4 V or more using lithium or a lithium alloy or the like as a negative electrode active material and using a lithium transition metal composite oxide (LiCoO 2 , LiNiO 2 , LiMn 2 O 4 ) or the like as a positive electrode active material. When applied, an electrolyte having high conductivity, excellent lithium cycle efficiency, charge / discharge characteristics, safety and reliability can be realized.
【0008】[0008]
溶質:一般式(1)で示される有機酸リチウム塩として
は、具体的にはLiN(SO 2 C2 F5 )2 、LiN
(SO2 C3 F7 )2 、LiN(SO2 C4 F9 )2 、
LiN(SO2 CF3 )(SO2 C2 F5 )、LiN
(SO2 CF3 )(SO2C3 F7 )、LiN(SO2
CF3 )(SO2 C4 F9 )、LiN(SO2 C
2F5 )(SO2 C3 F7 )、LiN(SO2 C
2 F5 )(SO2 C4 F9 )、LiN(SO2 C
3 F7 )(SO2 C4 F9 )が例示される。 Solute: as a lithium salt of an organic acid represented by the general formula (1)
Is specifically LiN (SO TwoCTwoFFive)Two, LiN
(SOTwoCThreeF7)Two, LiN (SOTwoCFourF9)Two,
LiN (SOTwoCFThree) (SOTwoCTwoFFive), LiN
(SOTwoCFThree) (SOTwoCThreeF7), LiN (SOTwo
CFThree) (SOTwoCFourF9), LiN (SOTwoC
TwoFFive) (SOTwoCThreeF7), LiN (SOTwoC
TwoFFive) (SOTwoCFourF9), LiN (SOTwoC
ThreeF7) (SOTwoCFourF9) Is exemplified.
【0009】また、この際、無機酸リチウム塩を該有機
酸リチウム塩と混合して用いることもできる。この場合
の無機酸リチウム塩としては、LiPF6 、LiClO
4 、LiBF4 、LiAsF6 、LiSbF6 が例示さ
れる。また、該有機酸リチウム塩は、後述する有機溶媒
に溶解され、電解液中の溶質濃度として0.5〜1.5
M(モル/リットル)が使用される。At this time, a lithium inorganic acid salt may be used in combination with the lithium organic acid salt. In this case, the inorganic acid lithium salt includes LiPF 6 , LiClO
4, LiBF 4, LiAsF 6, LiSbF 6 is exemplified. The organic acid lithium salt is dissolved in an organic solvent described below, and the solute concentration in the electrolytic solution is 0.5 to 1.5.
M (mol / liter) is used.
【0010】有機溶媒:電解液の溶媒としては、導電率
の性能を改善し、アルミニウムの腐食を抑制し、良好な
充放電容量と良好なリチウムサイクル効率を得るため
に、環状エーテル化合物及び炭酸エステル化合物との混
合溶媒を用いる。環状エーテル化合物と炭酸エステル化
合物の使用量としては、好ましくは体積混合比率で9
9:1〜20:80であり、更に好ましくは95:5〜
30:70の範囲である。Organic solvents: As solvents for the electrolyte, cyclic ether compounds and carbonates are used to improve the performance of electric conductivity, suppress the corrosion of aluminum, and obtain good charge / discharge capacity and good lithium cycle efficiency. A mixed solvent with the compound is used. The amount of the cyclic ether compound and the carbonate compound used is preferably 9 by volume mixing ratio.
9: 1 to 20:80, more preferably 95: 5
The range is 30:70.
【0011】環状エーテル化合物としては、テトラヒド
ロフラン、2−メチルテトラヒドロフラン、3−メチル
テトラヒドロフラン、2,5−ジメチルテトラヒドロフ
ラン、テトラヒドロピラン、2−メチルテトラヒドロピ
ラン、3−メチルテトラヒドロピラン、フラン、2−メ
チルフラン、3−メチルフラン、ピラン、2−メチルピ
ラン、3−メチルピランなどから選ばれた溶媒あるいは
これらの複数の混合溶媒が使用される。Examples of the cyclic ether compound include tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, tetrahydropyran, 2-methyltetrahydropyran, 3-methyltetrahydropyran, furan, 2-methylfuran, A solvent selected from 3-methylfuran, pyran, 2-methylpyran, 3-methylpyran and the like, or a mixed solvent of a plurality thereof is used.
【0012】炭酸エステル溶媒としては、炭酸エチレ
ン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭
酸エチルメチル、炭酸ジエチルなどから選ばれた溶媒あ
るいはこれらの複数の混合溶媒が使用される。また、こ
の際、従来からリチウム二次電池用電解液として提案及
び使用されている有機溶媒を混合して用いることもでき
る。有機溶媒としては、酢酸メチル、酢酸エチル、プロ
ピオン酸メチル、プロピオン酸エチル、γ―ブチロラク
トンなどのカルボン酸エステル化合物、1,2―ジメト
キシエタン、1,2―ジエトキシエタン、1,3−ジオ
キソラン、4−メチル−1,3−ジオキソランなどのエ
ーテルから選ばれた溶媒を該混合溶媒に対して体積混合
比率で30%以下で混合して用いることも可能である。As the carbonate ester solvent, a solvent selected from ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate and the like, or a mixed solvent of a plurality thereof is used. In this case, an organic solvent which has been conventionally proposed and used as an electrolyte for a lithium secondary battery can be mixed and used. As the organic solvent, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, carboxylic acid ester compounds such as γ-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,3-dioxolane, It is also possible to use a solvent selected from ethers such as 4-methyl-1,3-dioxolane by mixing the mixed solvent at a volume mixing ratio of 30% or less.
【0013】本発明の前記式(1)で示される有機酸リ
チウム塩を環状エーテル化合物と炭酸エステル化合物と
の混合溶媒に溶解し電解液は、極集電体のアルミニウム
を腐食しないので導電率、リチウムサイクル効率、充放
電容量の高い電解液を得るためである。溶質として無機
酸リチウム塩を用いた場合は、後述する比較例に示すよ
うに、リチウム金属負極との反応の増加により、リチウ
ムサイクル効率が低下する。The lithium salt of the organic acid represented by the formula (1) of the present invention is dissolved in a mixed solvent of a cyclic ether compound and a carbonate compound, and the electrolytic solution does not corrode the aluminum of the current collector. This is for obtaining an electrolytic solution having high lithium cycle efficiency and high charge / discharge capacity. When a lithium salt of an inorganic acid is used as a solute, as shown in a comparative example described later, the lithium cycle efficiency decreases due to an increase in the reaction with a lithium metal anode.
【0014】[0014]
【実施例】以下、本発明を実施例により詳細に説明す
る。 実施例1〜5 有機酸リチウム塩の溶質としてLiN(SO2 C
2 F5 )2 を用い、有機溶媒として、テトラヒドロフラ
ン(THF)と炭酸エチレン(EC)との体積混合比率
が99:5〜30:70の混合溶媒を用いて、溶質濃度
が1mol/dm3 の有機電解液を調製した。電解液の
導電率、コインセルを用いたリチウムサイクル効率及び
充放電容量を測定した結果を第1表に示す。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. Examples 1 to 5 LiN (SO 2 C) as a solute of a lithium organic acid salt
2 F 5 ) 2 and a mixed solvent of tetrahydrofuran (THF) and ethylene carbonate (EC) having a volume mixing ratio of 99: 5 to 30:70 as an organic solvent and a solute concentration of 1 mol / dm 3 . An organic electrolyte was prepared. Table 1 shows the results of measuring the conductivity of the electrolyte, the lithium cycle efficiency using a coin cell, and the charge / discharge capacity.
【0015】(導電率の測定)有機電解液の導電率の測
定をつぎの方法で行った。東亜電波工業(株)製の導電
率計CM−30S及び電導度セルCG−511Bを用い
て、25℃における導電率を測定した。(Measurement of Conductivity) The conductivity of the organic electrolyte was measured by the following method. The conductivity at 25 ° C. was measured using a conductivity meter CM-30S manufactured by Toa Denpa Kogyo KK and a conductivity cell CG-511B.
【0016】(リチウムサイクル効率の測定)リチウム
サイクル効率の測定は乾燥アルゴン雰囲気下のドライボ
ックス内で、有機電解液をコインセル内に設置して、ポ
テンショスタット/ガルバノスタット(ソーラートロン
社製1287)を用いて、作用極に厚さ100μmのリ
チウム金属箔(有効電極面積:1.23cm2 )、対極
に厚さ1mmのリチウム金属箔(有効電極面積:1.2
3cm2 )を用いて、定電流密度(電流密度:0.6m
A/cm2 )による20サイクルの充放電試験(電析電
気量:6C/cm2 )を行い、作用極に残った電気化学
的に活性なリチウム容量を測定し、次式を用いてリチウ
ムサイクル効率を算出した。(Measurement of Lithium Cycle Efficiency) In a measurement of lithium cycle efficiency, an organic electrolyte was placed in a coin cell in a dry box under a dry argon atmosphere, and a potentiostat / galvanostat (1287 manufactured by Solartron) was used. Using a 100 μm thick lithium metal foil (effective electrode area: 1.23 cm 2 ) for the working electrode and a 1 mm thick lithium metal foil (effective electrode area: 1.2
3 cm 2 ) and a constant current density (current density: 0.6 m)
A / cm 2 ), a 20-cycle charge / discharge test (electrodeposition amount: 6 C / cm 2 ) was performed, and the electrochemically active lithium capacity remaining at the working electrode was measured. The efficiency was calculated.
【0017】[0017]
【数1】リチウムサイクル効率(%)=100×(1―
1/FOM) ## EQU1 ## Lithium cycle efficiency (%) = 100 × (1-
1 / FOM)
【0018】(コイン型セルによる充放電容量の測定)
図1は、実施例及び比較例において作製したリチウム二
次電池(コイン型;直径20mm、厚さ1.6mm)の
断面図を示す。このコイン型セルは、正極端子を兼ねた
ステンレス製ケース1、負極端子を兼ねたステンレス製
封口板2とがポリプロピレン製ガスケット3で絶縁シー
ルされている。正極4は正極活物質としてのリチウムコ
バルト複合酸化物( LiCoO2 )に、導電剤として
のアセチレンブラックと、結着剤としてのフッ素樹脂と
を、重量比90:5:5の比率で混合し、これを溶剤
(N−メチルピロリドン)に分散させてスラリーとした
後、正極集電体としてのアルミニウム箔に塗布し、乾燥
した後、直径12.5mmの正極を作製した。負極5は
直径16mm、厚さ1.0mmのリチウム金属箔を用
い、有機溶媒電解液に浸された多孔性ポリプロピレンフ
ィルムのセパレータ6とから構成されている。電池の容
量は4.2Vから2.5Vまでの電圧範囲で0.54m
Ahである。(Measurement of charge / discharge capacity by coin cell)
FIG. 1 is a cross-sectional view of the lithium secondary batteries (coin type; diameter: 20 mm, thickness: 1.6 mm) manufactured in Examples and Comparative Examples. In this coin-type cell, a stainless steel case 1 also serving as a positive electrode terminal and a stainless steel sealing plate 2 also serving as a negative electrode terminal are insulated and sealed with a polypropylene gasket 3. The positive electrode 4 is obtained by mixing lithium cobalt composite oxide (LiCoO 2 ) as a positive electrode active material, acetylene black as a conductive agent, and a fluororesin as a binder in a weight ratio of 90: 5: 5, This was dispersed in a solvent (N-methylpyrrolidone) to form a slurry, which was then applied to an aluminum foil as a positive electrode current collector, dried, and then a positive electrode having a diameter of 12.5 mm was produced. The negative electrode 5 is made of a lithium metal foil having a diameter of 16 mm and a thickness of 1.0 mm, and includes a porous polypropylene film separator 6 immersed in an organic solvent electrolyte. The battery capacity is 0.54m in the voltage range from 4.2V to 2.5V
Ah.
【0019】比較例1 有機酸リチウム塩の溶質としてLiN(SO2 CF3 )
2 を用い、有機溶媒としてジメトキシエタン(DME)
と炭酸エチレンとの体積混合比率が50:50を用いた
他は実施例1と同様にして、電解液の導電率、リチウム
サイクル効率及びコインセルによる充放電容量を測定し
た。得られた結果を第1表に示す。Comparative Example 1 LiN (SO 2 CF 3 ) as a solute of lithium organic acid salt
2 , using dimethoxyethane (DME) as the organic solvent
The conductivity of the electrolytic solution, the lithium cycle efficiency, and the charge / discharge capacity of the coin cell were measured in the same manner as in Example 1 except that the volume mixing ratio between the solvent and ethylene carbonate was 50:50. Table 1 shows the obtained results.
【0020】比較例2 溶質としてLiPF6 を用いた他は実施例4と同様にし
て、電解液の導電率、リチウムサイクル効率及びコイン
セルによる充放電容量を測定した。得られた結果を第1
表に示す。Comparative Example 2 The conductivity of the electrolytic solution, the lithium cycle efficiency, and the charge / discharge capacity of a coin cell were measured in the same manner as in Example 4 except that LiPF 6 was used as the solute. The obtained result is
It is shown in the table.
【0021】比較例3 有機溶媒として炭酸ジエチル(DEC)と炭酸エチレン
の等体積混合溶媒を用いた他は比較例2と同様にして、
電解液の導電率、リチウムサイクル効率及びコインセル
による充放電容量を測定した。得られた結果を第1表に
示す。Comparative Example 3 The same procedure as in Comparative Example 2 was carried out except that an equal volume mixed solvent of diethyl carbonate (DEC) and ethylene carbonate was used as the organic solvent.
The conductivity of the electrolyte, the lithium cycle efficiency, and the charge / discharge capacity of the coin cell were measured. Table 1 shows the obtained results.
【0022】実施例6 有機溶媒として、2−メチルテトラヒドロフラン(Me
THF)と炭酸エチレンとの体積混合比率50:50の
混合溶媒を用いた他は実施例1と同様にして、電解液の
導電率、リチウムサイクル効率及びコインセルによる充
放電容量を測定した。得られた結果を第1表に示す。Example 6 As an organic solvent, 2-methyltetrahydrofuran (Me
The conductivity of the electrolytic solution, the lithium cycle efficiency, and the charge / discharge capacity of a coin cell were measured in the same manner as in Example 1 except that a mixed solvent of THF) and ethylene carbonate at a volume mixing ratio of 50:50 was used. Table 1 shows the obtained results.
【0023】実施例7 有機溶媒として、テトラヒドロピラン(THP)と炭酸
エチレンとの体積混合比率50:50の混合溶媒を用い
た他は実施例1と同様にして、電解液の導電率、リチウ
ムサイクル効率及びコインセルによる充放電容量を測定
した。得られた結果を第1表に示す。Example 7 The same procedure as in Example 1 was carried out except that a mixed solvent of tetrahydropyran (THP) and ethylene carbonate at a volume mixing ratio of 50:50 was used as the organic solvent, and the conductivity of the electrolyte and the lithium cycle The efficiency and the charge / discharge capacity of the coin cell were measured. Table 1 shows the obtained results.
【0024】実施例8 有機酸リチウム塩の溶質がLiN(SO2 CF3 )(S
O2 C4 F9 )を用い、有機溶媒として、テトラヒドロ
フラン(THF)と炭酸エチレンとの体積混合比率8
0:20の混合溶媒を用いた他は実施例1と同様にし
て、電解液の導電率、リチウムサイクル効率及びコイン
セルによる充放電容量を測定した。得られた結果を第1
表に示す。Example 8 The solute of the organic acid lithium salt was LiN (SO 2 CF 3 ) (S
O 2 C 4 F 9 ), and as an organic solvent, a volume mixing ratio of tetrahydrofuran (THF) and ethylene carbonate of 8
The conductivity of the electrolyte, the lithium cycle efficiency, and the charge / discharge capacity of the coin cell were measured in the same manner as in Example 1 except that the mixed solvent of 0:20 was used. The obtained result is
It is shown in the table.
【0025】実施例8 有機溶媒として、テトラヒドロピラン(THP)と炭酸
エチレンとの体積混合比率30:70の混合溶媒を用い
た他は実施例8と同様にして、電解液の導電率、リチウ
ムサイクル効率及びコインセルによる充放電容量を測定
した。得られた結果を第1表に示す。Example 8 The same procedure as in Example 8 was carried out except that a mixed solvent of tetrahydropyran (THP) and ethylene carbonate at a volume ratio of 30:70 was used as the organic solvent, and the conductivity of the electrolyte and the lithium cycle were determined. The efficiency and the charge / discharge capacity of the coin cell were measured. Table 1 shows the obtained results.
【0026】[0026]
【表1】 [Table 1]
【0027】[0027]
【発明の効果】本発明のリチウム二次電池用電解液は、
導電率に優れ、充電時に正極集電体のアルミニウムの腐
食(溶解)がなく、高いリチウム充放電効率が得られる
ため、良好な充放電特性が得られるとともに、安全性、
信頼性が高い。The electrolytic solution for a lithium secondary battery of the present invention comprises:
It has excellent electrical conductivity, does not corrode (dissolve) aluminum in the positive electrode current collector during charging, and provides high lithium charge / discharge efficiency.
High reliability.
【図1】コイン型セルの断面図である。FIG. 1 is a sectional view of a coin cell.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小湊 あさを 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 (72)発明者 島 邦久 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 (72)発明者 森 彰一郎 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Asato Kominato 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Prefecture Within the Tsukuba Research Laboratory, Mitsubishi Chemical Corporation (72) Kunihisa Shima, Chuo-Hachi, Ami-cho, Inashiki-gun, Ibaraki Mitsubishi Chemical Co., Tsukuba Research Laboratories (72) Shoichiro Mori 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Pref. Mitsubishi Chemical Corporation Tsukuba Research Laboratories
Claims (3)
(1)で示される有機酸リチウム塩 【化1】 (式中、n及びmは1〜4の整数を示し、nとmの合計
が3〜8である。)を用い、有機溶媒として、環状エー
テル化合物及び炭酸エステル化合物の混合溶媒を用いる
ことを特徴とするリチウム二次電池用電解液。1. A lithium salt as a solute, wherein the lithium salt is an organic acid lithium salt represented by the following general formula (1): (Wherein, n and m each represent an integer of 1 to 4, and the sum of n and m is 3 to 8.), and using a mixed solvent of a cyclic ether compound and a carbonate compound as an organic solvent. Characteristic electrolyte for lithium secondary batteries.
エステル化合物の体積混合比率99:1〜20:80の
範囲であることを特徴とする請求項1に記載のリチウム
二次電池用電解液。2. The electrolytic solution for a lithium secondary battery according to claim 1, wherein the mixed solvent has a volume mixing ratio of the cyclic ether compound and the carbonate compound in the range of 99: 1 to 20:80.
ラン化合物及び/又はテトラヒドロピラン化合物であ
り、炭酸エステルが炭酸エチレンであることを特徴とす
る請求項1又は2に記載のリチウム二次電池用電解液。3. The electrolytic solution for a lithium secondary battery according to claim 1, wherein the cyclic ether compound is a tetrahydrofuran compound and / or a tetrahydropyran compound, and the carbonate is ethylene carbonate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9184929A JPH1131528A (en) | 1997-07-10 | 1997-07-10 | Lithium secondary battery electrolyte |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9184929A JPH1131528A (en) | 1997-07-10 | 1997-07-10 | Lithium secondary battery electrolyte |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1131528A true JPH1131528A (en) | 1999-02-02 |
Family
ID=16161821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9184929A Pending JPH1131528A (en) | 1997-07-10 | 1997-07-10 | Lithium secondary battery electrolyte |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1131528A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001148257A (en) * | 1999-11-22 | 2001-05-29 | Denso Corp | Non-water electrolytic solution and lithium secondary battery |
JP2009537936A (en) * | 2006-05-18 | 2009-10-29 | 中信国安盟固利新能源科技有限公司 | Small and medium capacity high power lithium ion battery |
FR3044830A1 (en) * | 2015-12-08 | 2017-06-09 | Commissariat Energie Atomique | ELECTROCHEMICAL CELL FOR LITHIUM BATTERY COMPRISING A SPECIFIC ELECTROLYTE |
JP2020091985A (en) * | 2018-12-04 | 2020-06-11 | 株式会社豊田自動織機 | Secondary battery |
JP2020091984A (en) * | 2018-12-04 | 2020-06-11 | 株式会社豊田自動織機 | Electrolyte and power storage device |
-
1997
- 1997-07-10 JP JP9184929A patent/JPH1131528A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001148257A (en) * | 1999-11-22 | 2001-05-29 | Denso Corp | Non-water electrolytic solution and lithium secondary battery |
JP4599639B2 (en) * | 1999-11-22 | 2010-12-15 | 株式会社デンソー | Non-aqueous electrolyte secondary battery |
JP2009537936A (en) * | 2006-05-18 | 2009-10-29 | 中信国安盟固利新能源科技有限公司 | Small and medium capacity high power lithium ion battery |
FR3044830A1 (en) * | 2015-12-08 | 2017-06-09 | Commissariat Energie Atomique | ELECTROCHEMICAL CELL FOR LITHIUM BATTERY COMPRISING A SPECIFIC ELECTROLYTE |
WO2017097766A1 (en) * | 2015-12-08 | 2017-06-15 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Electrochemical cell for a lithium battery, comprising a specific electrolyte |
JP2020091985A (en) * | 2018-12-04 | 2020-06-11 | 株式会社豊田自動織機 | Secondary battery |
JP2020091984A (en) * | 2018-12-04 | 2020-06-11 | 株式会社豊田自動織機 | Electrolyte and power storage device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3760540B2 (en) | Electrolyte for lithium secondary battery | |
JP3213459B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2003282055A (en) | Non-aqueous electrolyte secondary battery | |
JP3369583B2 (en) | Non-aqueous electrolyte battery | |
JP3728791B2 (en) | Electrolyte for lithium secondary batteries | |
KR20180025581A (en) | Electrolyte comprising lithium polysulfide for lithium air battery, and lithium air battery | |
JP2000228216A (en) | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery | |
JPH10189041A (en) | Electrolyte for lithium secondary battery | |
JPH1126016A (en) | Electrolyte for lithium secondary battery | |
CN106159207B (en) | A kind of preparation method of positive electrode active materials, positive plate and lithium ion battery | |
JP2000243437A (en) | Solute for nonaqueous electrolyte battery and nonaqueous electrolyte battery | |
JP2005285492A (en) | Nonaqueous electrolyte solution and lithium secondary battery using it | |
JPH09147910A (en) | Lithium secondary battery | |
JP2002324550A (en) | Non-aqueous electrolyte secondary battery | |
JPH1131528A (en) | Lithium secondary battery electrolyte | |
JP2001052698A (en) | Lithium secondary battery | |
JPH09245833A (en) | Electrolytic solution for lithium secondary battery | |
JP2002313416A (en) | Non-aqueous electrolyte secondary battery | |
JP2001297750A (en) | Power-generating element for lithium secondary battery and lithium secondary battery using same | |
JPH10149840A (en) | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery | |
JP2000040524A (en) | Electrolyte for lithium secondary battery and secondary battery | |
JP2654553B2 (en) | Electrolyte for lithium secondary battery | |
JP2011096520A (en) | Negative electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using this negative electrode plate | |
JPH1126017A (en) | Electrolytic solution for lithium secondary battery | |
JPH08162155A (en) | Nonaqueous electrolytic battery |