JP3728791B2 - Electrolyte for lithium secondary batteries - Google Patents

Electrolyte for lithium secondary batteries Download PDF

Info

Publication number
JP3728791B2
JP3728791B2 JP05608596A JP5608596A JP3728791B2 JP 3728791 B2 JP3728791 B2 JP 3728791B2 JP 05608596 A JP05608596 A JP 05608596A JP 5608596 A JP5608596 A JP 5608596A JP 3728791 B2 JP3728791 B2 JP 3728791B2
Authority
JP
Japan
Prior art keywords
electrolyte
lithium secondary
methanesulfonate
electrolytic solution
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05608596A
Other languages
Japanese (ja)
Other versions
JPH09245834A (en
Inventor
邦久 島
あさを 小湊
栄起 安川
彰一郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP05608596A priority Critical patent/JP3728791B2/en
Publication of JPH09245834A publication Critical patent/JPH09245834A/en
Application granted granted Critical
Publication of JP3728791B2 publication Critical patent/JP3728791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はリチウム二次電池用の電解液に関するものであり、リチウム二次電池用の有機溶媒電解液のサイクル特性の改良に関するものである。
【0002】
【従来の技術】
近年、電子機器の小型化、携帯化にともない、高エネルギー密度の電池の開発が求められている。その有力候補として、コークス、黒鉛等の炭素材料が、デンドライト状の電析リチウムの成長による内部短絡の危険性がないため、以前から提案されていた金属リチウム負極を用いたリチウム二次電池に変わる新しい負極材料として注目されている。
【0003】
【発明が解決しようとする課題】
しかしながら、このような炭素材料を負極に用いた場合でも、充放電サイクルの進行とともに炭素負極上で電解液が分解して電池容量が次第に低下するという問題があった。また、炭素材料の黒鉛化度が高くなると、容量が大きくなる反面、電解液を分解しやすくなり、サイクル特性が悪くなるという傾向がある。
本発明は、以上の課題を解決するものであり、充放電サイクルの進行にともなう炭素電極上の分解が少ないリチウム二次電池用電解液を提供するものである。
【0004】
【課題を解決するための手段】
本発明は、リチウム塩を溶質とし、これを溶解する有機溶媒および下式(I)で示されるメタンスルホン酸アルキル
【0005】
【化2】

Figure 0003728791
【0006】
〔ただし、式中のR はメチル基、は炭素数1〜6のアルキル基を表す。〕
を含有するリチウム二次電池用電解液であって、電解液中に占める前式(I)で示されるメタンスルホン酸アルキルの濃度が0.1〜50重量%であるリチウム二次電池用電解液を提供するものである。
【0007】
【作用】
本発明においては、黒鉛等の炭素材料を電極材料として用いた場合に問題となる電解液の分解劣化を、当該電解液にメタンスルホン酸アルキルを所定量含有させ、電極表面上に皮膜を生成させて、電解液の分解を抑制し、サイクル特性の改善が実現できる。
【0008】
【発明の実施の形態】
メタンスルホン酸アルキル:
本発明において、リチウム二次電池用電解液は、前記式(I)で示されるメタンスルホン酸アルキルを0.1〜50重量%、好ましくは0.3〜10重量%含有しており、このメタンスルホン酸アルキルが炭素負極と反応して、リチウムイオン透過性の高い皮膜を炭素電極表面に形成し、この皮膜が電解液の分解を抑制する。
かかるメタンスルホン酸アルキルとしては、メタンスルホン酸メチル、メタンスルホン酸エチル、メタンスルホン酸プロピル、メタンスルホン酸ブチルが例示される。
【0009】
本発明において、メタンスルホン酸アルキルの電解液中に占める含有量が0.1〜50重量%と限定されるのは、同含有量が0.1重量%未満の場合は、十分な厚さの皮膜が形成されないため、炭素電極表面上における電解液の分解を抑制できず、サイクル特性が十分に改善できないためである。一方、同含有量が50重量%を越えた場合は、皮膜が厚くなりすぎてリチウムイオン透過性が悪くなるため、極板の反応抵抗が増大し、サイクル特性が低下するためである。
【0010】
有機溶媒と溶質:
電解液の溶質及び溶媒については従来二次電池用電解液として提案及び使用されている種々の材料を用いることが可能である。
(有機溶媒)
有機溶媒としては、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、γ−ブチロラクトン、1,2−ジメトキシエタン、1,2−ジエトキシエタンから選ばれた単一溶媒あるいはこれらの複数の混合溶液が使用される。
(溶質)
溶質のリチウム塩としては、LiPF、LiClO、LiBF、CFSOLi、(CFSONLi、LiAsFなどが利用できる。リチウム塩は、前記有機溶媒に溶解される。このリチウム塩よりなる溶質の電解液中の濃度は0.5〜1.5M(モル/リットル)である。
【0011】
リチウム二次電池:
図1は、実施例及び比較例において作製した炭素電極を正極とするリチウム二次電池(コイン型;直径20mm、厚さ16mm)の断面図である。このコイン型セルは、ステンレス製ケース1、ステンレス製封口板2、天然黒鉛を銅シートに敷いた正極3、金属リチウムシートの負極4、有機溶媒電解液に浸された多孔性ポリプロピレンフィルムのセパレータ5、絶縁ガスケット6とから構成されている。
【0012】
【実施例】
以下、本発明を実施例により詳細に説明する。
実施例1
図1に示すコイン型セル(リチウム二次電池)を作製した。
ここで、有機溶媒電解液は、炭酸エチレン(EC)22.9gと炭酸プロピレン(PC)21.0gを体積比5:5で混合した混合溶媒に、LiPF 5.6gを電解質として溶解させ、さらにメタンスルホン酸メチルを電解液中に0.5g含有させたものを用いた。
電解液中のLiPF濃度は、1.0M(モル/リットル)で、メタンスルホン酸メチルの濃度は1重量%である。
【0013】
実施例2
メタンスルホン酸アルキルとしてメタンスルホン酸エチルを用いたこと以外は実施例1と同様にしてコイン型セルを作製した。
比較例1
メタンスルホン酸アルキルを含有しない電解液として炭酸エチレン(EC)23.1gと炭酸プロピレン(PC)21.2gを体積比5:5で混合した混合溶媒に、LiPF 5.7gを溶解させたものを用いた外は、実施例1と同様にしてコイン型セルを作製した。
【0014】
(サイクル特性の測定)
実施例1〜2および比較例1で得たコイン型セルについて、0.613mAで放電終止電圧0.0Vまで放電した後、0.613mAで充電終止電圧1.0Vまで充電して、各電解液を用いたコイン型セルのサイクル特性を調べた。その結果を図2に示す。
図2には、各電解液を用いたコイン型セルのサイクル特性を、縦軸に炭素材料1g当たりの容量である炭素負極容量(mAh/g)を、横軸にサイクル数(回)をとったグラフを示した。同図が示すように本発明の電解液を用いたコイン型セルの炭素電極容量は、比較電解液を用いた場合と比べ、初期サイクルから大きい。
【0015】
また図3で示すように、本発明の電解液を用いたコイン型セルの容量維持率(実施例1:97%、実施例2:99%)は、比較用の電解液を用いた場合の容量維持率(85%)と比較して小さい。このことから、電解液に添加したメタンスルホン酸アルキルにより、炭素電極表面にリチウムイオン透過性の高い皮膜が生成し、充放電時の電解液の分解による容量低下が抑制されることがわかる。
上記実施例では、メタンスルホン酸アルキルとしてメタンスルホン酸メチル及びメタンスルホン酸エチルを用いた場合を例に説明したが、メタンスルホン酸プロピル、メタンスルホン酸ブチルなどの他のメタンスルホン酸アルキルを用いた場合にも同様な優れたサイクル特性を示す電解液を得ることができる。
【0016】
【発明の効果】
リチウム二次電池用電解液に含まれるメタンスルホン酸アルキルが炭素電極の表面で反応し、リチウムイオン透過性の高い皮膜(保護膜)が形成され、電極表面における電解液の分解劣化が抑制される。そのため本発明の電解液を用いたコイン型セルは、充放電サイクルの進行と共に起きる容量劣化が小さいなど、優れた特有の効果を発現する。
【図面の簡単な説明】
【図1】 コイン型セルの断面図である。
【図2】 コイン型セルのサイクル特性を示すグラフである。
【図3】 コイン型セルの容量維持率を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolyte for a lithium secondary battery, and more particularly to an improvement in cycle characteristics of an organic solvent electrolyte for a lithium secondary battery.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the miniaturization and portability of electronic devices, development of batteries with high energy density has been required. As a promising candidate, carbon materials such as coke and graphite have no risk of internal short circuit due to the growth of dendritic electrodeposited lithium, so they have been replaced with lithium secondary batteries using metal lithium negative electrodes that have been proposed previously. It attracts attention as a new negative electrode material.
[0003]
[Problems to be solved by the invention]
However, even when such a carbon material is used for the negative electrode, there is a problem that the battery capacity gradually decreases due to decomposition of the electrolyte solution on the carbon negative electrode as the charge / discharge cycle progresses. In addition, when the degree of graphitization of the carbon material increases, the capacity increases, but the electrolyte solution is easily decomposed, and the cycle characteristics tend to deteriorate.
The present invention has been made to solve the above problems, and provides an electrolyte for a lithium secondary battery in which decomposition on a carbon electrode is small with progress of a charge / discharge cycle.
[0004]
[Means for Solving the Problems]
The present invention is a lithium salt as a solute, an organic solvent and the following equation which is dissolved alkyl methanesulfonate [0005] represented by the formula (I)
[Chemical 2]
Figure 0003728791
[0006]
Wherein R 1 represents a methyl group, and R 2 represents an alkyl group having 1 to 6 carbon atoms. ]
A electrolytic solution for lithium secondary batteries containing a lithium secondary battery electrolyte concentration of methanesulfonic acid alkyl is from 0.1 to 50% by weight of the formula before occupying in the electrolyte (I) Is to provide.
[0007]
[Action]
In the present invention, the decomposition deterioration of the electrolyte becomes a problem when using a carbon material such as graphite as the electrode material, it is contained a predetermined amount of methanesulfonic acid alkyl to the electrolyte solution, to produce a coating on the electrode surface Thus, decomposition of the electrolytic solution can be suppressed and cycle characteristics can be improved.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Methane sulfonic acid alkyl:
In the present invention, a lithium secondary battery electrolyte, 0.1 to 50 wt% of methanesulfonic acid alkyl represented by the formula (I), preferably are contained 0.3 to 10% by weight, the methane The alkyl sulfonate reacts with the carbon anode to form a film having high lithium ion permeability on the surface of the carbon electrode, and this film suppresses the decomposition of the electrolytic solution.
Such methanesulfonate alkyl, methyl methanesulfonate, ethyl methanesulfonate, methanesulfonic acid propyl, butyl methanesulfonate acid.
[0009]
In the present invention, the content of occupying in the electrolytic solution of methanesulfonic acid alkyl is limited 0.1 to 50% by weight, if the content is less than 0.1 wt%, a sufficient thickness This is because, since no film is formed, the decomposition of the electrolytic solution on the carbon electrode surface cannot be suppressed, and the cycle characteristics cannot be sufficiently improved. On the other hand, when the content exceeds 50% by weight, the film becomes too thick and the lithium ion permeability is deteriorated, so that the reaction resistance of the electrode plate is increased and the cycle characteristics are deteriorated.
[0010]
Organic solvents and solutes:
As for the solute and the solvent of the electrolytic solution, various materials conventionally proposed and used as the electrolytic solution for a secondary battery can be used.
(Organic solvent)
Examples of the organic solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, 1,2-dimethoxyethane, 1 , 2-diethoxyethane, or a mixed solution of these.
(Solute)
As the solute lithium salt, LiPF 6 , LiClO 4 , LiBF 4 , CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, LiAsF 6 and the like can be used. The lithium salt is dissolved in the organic solvent. The concentration of the solute composed of this lithium salt in the electrolytic solution is 0.5 to 1.5 M (mol / liter).
[0011]
Lithium secondary battery:
FIG. 1 is a cross-sectional view of a lithium secondary battery (coin type; diameter: 20 mm, thickness: 16 mm) having a carbon electrode as a positive electrode manufactured in Examples and Comparative Examples. The coin-type cell includes a stainless steel case 1, a stainless steel sealing plate 2, a positive electrode 3 in which natural graphite is laid on a copper sheet, a negative electrode 4 of a metal lithium sheet, and a porous polypropylene film separator 5 immersed in an organic solvent electrolyte. , And an insulating gasket 6.
[0012]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
Example 1
A coin-type cell (lithium secondary battery) shown in FIG. 1 was produced.
Here, the organic solvent electrolyte was prepared by dissolving 5.6 g of LiPF 6 as an electrolyte in a mixed solvent in which 22.9 g of ethylene carbonate (EC) and 21.0 g of propylene carbonate (PC) were mixed at a volume ratio of 5: 5. Further, an electrolyte containing 0.5 g of methyl methanesulfonate was used.
The concentration of LiPF 6 in the electrolyte is 1.0 M (mol / liter), and the concentration of methyl methanesulfonate is 1% by weight.
[0013]
Example 2
A coin-type cell was produced in the same manner as in Example 1 except that ethyl methanesulfonate was used as the alkyl methanesulfonate.
Comparative Example 1
A solution obtained by dissolving 5.7 g of LiPF 6 in a mixed solvent in which 23.1 g of ethylene carbonate (EC) and 21.2 g of propylene carbonate (PC) are mixed at a volume ratio of 5: 5 as an electrolytic solution not containing alkyl methanesulfonate. A coin-shaped cell was produced in the same manner as in Example 1 except for using.
[0014]
(Measurement of cycle characteristics)
For the coin-type cells obtained in Examples 1 and 2 and Comparative Example 1, each of the electrolytes was discharged at 0.613 mA to a final discharge voltage of 0.0 V and then charged to a final charge voltage of 1.0 V at 0.613 mA. The cycle characteristics of a coin-shaped cell using the above were examined. The result is shown in FIG.
FIG. 2 shows the cycle characteristics of a coin-type cell using each electrolyte, the carbon negative electrode capacity (mAh / g) as the capacity per gram of carbon material on the vertical axis, and the number of cycles (times) on the horizontal axis. The graph is shown. As shown in the figure, the carbon electrode capacity of the coin cell using the electrolyte of the present invention is larger from the initial cycle than in the case of using the comparative electrolyte.
[0015]
Further, as shown in FIG. 3, the capacity retention rate (Example 1: 97%, Example 2: 99%) of the coin-type cell using the electrolytic solution of the present invention is the same as that when the comparative electrolytic solution is used. It is smaller than the capacity maintenance rate (85%). Therefore, the methanesulfonic acid alkyl added to the electrolytic solution, the lithium ion permeability high coating is produced on the carbon electrode surface, the capacity reduction due to decomposition of the electrolyte solution during charging and discharging is understood to be inhibited.
In the above embodiment, a case has been described with methyl methanesulfonate and ethyl methanesulfonate as methanesulfonic acid alkyl as an example, methanesulfonic acid propyl, another methanesulfonic acid alkyl such as methane sulfonic acid butyl using In such a case, an electrolytic solution having the same excellent cycle characteristics can be obtained.
[0016]
【The invention's effect】
Methanesulfonic acid alkyl contained in the electrolytic solution for lithium secondary battery reacts with the surface of the carbon electrode is a lithium-ion permeable high film (protective film) is formed, the decomposition deterioration of the electrolytic solution in the electrode surface can be suppressed . Therefore, the coin-type cell using the electrolytic solution of the present invention exhibits excellent unique effects such as a small capacity deterioration that occurs with the progress of the charge / discharge cycle.
[Brief description of the drawings]
FIG. 1 is a sectional view of a coin cell.
FIG. 2 is a graph showing cycle characteristics of a coin cell.
FIG. 3 is a graph showing a capacity retention ratio of a coin cell.

Claims (2)

リチウム塩を溶質とし、これを溶解する有機溶媒および下記式(I)で示されるメタンスルホン酸アルキル
Figure 0003728791
〔ただし、式中のR はメチル基、は炭素数1〜6のアルキル基を表す。〕を含有するリチウム二次電池用電解液であって、該電解液中に占める前式(I)で示されるメタンスルホン酸アルキルの濃度が0.1〜50重量%であるリチウム二次電池用電解液。
A lithium salt as a solute, methanesulfonic acid alkyl represented by organic solvents and the following formula (I) which is dissolved
Figure 0003728791
[In the formula, R 1 represents a methyl group, and R 2 represents an alkyl group having 1 to 6 carbon atoms. ] A electrolyte for lithium secondary batteries containing a concentration of methanesulfonic acid alkyl for lithium secondary battery is 0.1 to 50% by weight of the formula before occupying the electrolytic solution (I) Electrolyte.
メタンスルホン酸アルキルが、メタンスルホン酸メチルまたはメタンスルホン酸エチルである請求項1に記載のリチウム二次電池用電解液。 The electrolyte solution for a lithium secondary battery according to claim 1, wherein the alkyl methanesulfonate is methyl methanesulfonate or ethyl methanesulfonate.
JP05608596A 1996-03-13 1996-03-13 Electrolyte for lithium secondary batteries Expired - Fee Related JP3728791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05608596A JP3728791B2 (en) 1996-03-13 1996-03-13 Electrolyte for lithium secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05608596A JP3728791B2 (en) 1996-03-13 1996-03-13 Electrolyte for lithium secondary batteries

Publications (2)

Publication Number Publication Date
JPH09245834A JPH09245834A (en) 1997-09-19
JP3728791B2 true JP3728791B2 (en) 2005-12-21

Family

ID=13017260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05608596A Expired - Fee Related JP3728791B2 (en) 1996-03-13 1996-03-13 Electrolyte for lithium secondary batteries

Country Status (1)

Country Link
JP (1) JP3728791B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4448275B2 (en) 2001-05-11 2010-04-07 三星エスディアイ株式会社 ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
KR100450199B1 (en) * 2001-05-11 2004-09-24 삼성에스디아이 주식회사 A non-aqueous electrolyte and a lithium secondary battery comprising the same
JP4863572B2 (en) * 2001-05-22 2012-01-25 三井化学株式会社 Non-aqueous electrolyte and secondary battery using the same
CN100385727C (en) 2002-03-08 2008-04-30 三菱化学株式会社 Nonaqueous electrolyte and lithium secondary battery employing the same
CN100585935C (en) 2002-07-15 2010-01-27 宇部兴产株式会社 Non-aqueous electrolyte and lithium cell
JP4449907B2 (en) 2003-12-15 2010-04-14 日本電気株式会社 Secondary battery electrolyte and secondary battery using the same
JP4725728B2 (en) 2003-12-15 2011-07-13 日本電気株式会社 Secondary battery
KR101347671B1 (en) 2005-06-07 2014-01-03 히다치 막셀 가부시키가이샤 A secondary battery with nonaqueous electrolyte
JP4876495B2 (en) * 2005-09-13 2012-02-15 ソニー株式会社 Electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP4951913B2 (en) * 2005-09-27 2012-06-13 ソニー株式会社 Lithium ion secondary battery
JP5290819B2 (en) * 2009-03-18 2013-09-18 日立マクセル株式会社 Non-aqueous secondary battery
WO2011152534A1 (en) 2010-06-04 2011-12-08 宇部興産株式会社 Nonaqueous electrolyte solution and electrochemical element using same
JP6036298B2 (en) 2010-10-18 2016-11-30 三菱化学株式会社 Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte battery using the same
CN108069884B (en) * 2016-11-10 2020-01-17 宁德时代新能源科技股份有限公司 Cyanovinyl sulfonate and synthesis method thereof
JP6518734B2 (en) * 2017-08-03 2019-05-22 株式会社パワーフォー Secondary battery
CN114846669A (en) 2019-12-17 2022-08-02 三菱化学株式会社 Nonaqueous electrolyte solution and energy device
CN113979454B (en) * 2021-11-23 2023-09-26 山东永浩新材料科技有限公司 Preparation method of alkali metal fluorosulfonate

Also Published As

Publication number Publication date
JPH09245834A (en) 1997-09-19

Similar Documents

Publication Publication Date Title
JP3760540B2 (en) Electrolyte for lithium secondary battery
JP3728791B2 (en) Electrolyte for lithium secondary batteries
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JP4227882B2 (en) Organic electrolyte for lithium-sulfur battery and lithium-sulfur battery employing the same
JP3760539B2 (en) Electrolyte for lithium secondary battery
JP2001167791A (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2002083633A (en) Electrolytic solution for lithium sulfur battery and lithium sulfur battery containing the same
JP3883726B2 (en) Non-aqueous electrolyte secondary battery
JP4193295B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4949017B2 (en) Lithium ion battery with improved high-temperature storage characteristics
CN110190330B (en) Lithium battery, electrolyte thereof and preparation method of electrolyte
JP3978882B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
CN113394453B (en) Electrolyte additive, electrolyte and secondary battery
KR100592248B1 (en) Organic electrolytic solution and lithium battery using the same
JPH09245833A (en) Electrolytic solution for lithium secondary battery
JPH1126016A (en) Electrolyte for lithium secondary battery
JP4042082B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4042083B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
CN111384438A (en) Lithium ion battery non-aqueous electrolyte and lithium ion battery
JP3408152B2 (en) Non-aqueous electrolyte secondary battery
JPH0636370B2 (en) Electrolyte for lithium secondary battery
JPH1131526A (en) Lithium secondary battery
CN113764822A (en) High-ionic-conductivity composite coating film for lithium primary battery and preparation method thereof
JP2000040524A (en) Electrolyte for lithium secondary battery and secondary battery
JP2002305022A (en) Nonaqueous electrolytic solution for secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050621

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees