JP3311611B2 - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP3311611B2
JP3311611B2 JP28926696A JP28926696A JP3311611B2 JP 3311611 B2 JP3311611 B2 JP 3311611B2 JP 28926696 A JP28926696 A JP 28926696A JP 28926696 A JP28926696 A JP 28926696A JP 3311611 B2 JP3311611 B2 JP 3311611B2
Authority
JP
Japan
Prior art keywords
carbonate
lithium
secondary battery
solvent
acid ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28926696A
Other languages
Japanese (ja)
Other versions
JPH10116627A (en
Inventor
良浩 小路
靖幸 樟本
敦志 柳井
俊之 能間
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP28926696A priority Critical patent/JP3311611B2/en
Publication of JPH10116627A publication Critical patent/JPH10116627A/en
Application granted granted Critical
Publication of JP3311611B2 publication Critical patent/JP3311611B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、リチウム二次電池
に係わり、詳しくは充放電効率が極めて高いリチウム二
次電池を得ることを目的とした、電解液の溶媒の改良に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to an improvement in a solvent for an electrolytic solution for obtaining a lithium secondary battery having extremely high charge / discharge efficiency.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
電解液の溶媒として有機溶媒を使用するリチウム二次電
池が、従前のアルカリ二次電池に比べて、高電圧化乃至
高容量化が可能であることから注目されている。アルカ
リ電解液を使用しないリチウム二次電池の場合は、電池
設計をする際に水の分解電圧を考慮する必要が無いから
である。
2. Description of the Related Art In recent years,
BACKGROUND ART A lithium secondary battery using an organic solvent as a solvent for an electrolytic solution has attracted attention because it can achieve higher voltage and higher capacity than conventional alkaline secondary batteries. This is because in the case of a lithium secondary battery that does not use an alkaline electrolyte, it is not necessary to consider the decomposition voltage of water when designing the battery.

【0003】リチウム二次電池の負極材料には、金属リ
チウム、リチウム合金、黒鉛、コークスなどが使用され
るが、リチウムと有機溶媒とが反応して、リチウムイオ
ン導電性の良くない被膜が負極の表面に形成されるた
め、充放電効率(充電電気量に対する放電電気量の比
率)が良くないという問題がある。
As a negative electrode material of a lithium secondary battery, metallic lithium, lithium alloy, graphite, coke, and the like are used, and a film having poor lithium ion conductivity is formed by a reaction between lithium and an organic solvent. Since it is formed on the surface, there is a problem that the charge / discharge efficiency (the ratio of the amount of discharged electricity to the amount of charged electricity) is not good.

【0004】リチウム二次電池の充放電効率を改善する
ために、電解液の溶媒として、γ−ブチロラクトン(γ
−BL)の3位又は4位の水素を塩素又はフッ素で置換
した塩素化又はフッ素化γ−ブチロラクトンを使用する
ことが提案されている(特開昭62−290073号公
報参照)。同公報によれば、塩素化又はフッ素化により
ラクトン環のC−O結合が切れにくくなるため溶媒が安
定化し、その結果充放電効率が改善されるとのことであ
る。
In order to improve the charging and discharging efficiency of a lithium secondary battery, γ-butyrolactone (γ
It has been proposed to use chlorinated or fluorinated γ-butyrolactone in which the hydrogen at the 3- or 4-position of —BL) has been replaced with chlorine or fluorine (see Japanese Patent Application Laid-Open No. 62-290073). According to the gazette, chlorination or fluorination makes it difficult to break the C—O bond of the lactone ring, so that the solvent is stabilized, and as a result, the charge / discharge efficiency is improved.

【0005】しかしながら、リチウム二次電池の充放電
効率は、リチウムと有機溶媒との反応により負極の表面
に形成される被膜のリチウムイオン導電性の良否による
ところが大きいため、上記従来の技術では、充放電効率
が極めて高いリチウム二次電池を得ることは困難であ
る。
However, the charge / discharge efficiency of a lithium secondary battery largely depends on the quality of lithium ion conductivity of a film formed on the surface of a negative electrode due to the reaction between lithium and an organic solvent. It is difficult to obtain a lithium secondary battery having extremely high discharge efficiency.

【0006】本発明は、以上の事情に鑑みてなされたも
のであって、リチウムイオン導電性の良い被膜を形成す
る有機溶媒を使用した、充放電効率が極めて高いリチウ
ム二次電池を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a lithium secondary battery having an extremely high charge / discharge efficiency using an organic solvent which forms a film having good lithium ion conductivity. With the goal.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るリチウム二次電池(本発明電池)は、C
3 COOCF3 、CF3 COOCF3 、CF3 COO
CH2 CF3 、CF3CH2 COOCF3 及びCF3
OOCH2 CF3 よりなる群から選ばれた少なくとも1
種のフッ化カルボン酸エステルのみからなる溶媒、又
は、前記少なくとも1種のフッ化カルボン酸エステル
と、エチレンカーボネート、プロピレンカーボネート、
ブチレンカーボネート、ジメチルカーボネート、エチル
メチルカーボネート及びジエチルカーボネートよりなる
群から選ばれた少なくとも1種の炭酸エステルとからな
り、前記少なくとも1種のフッ化カルボン酸エステルを
50体積%以上含有する混合溶媒を、電解液の溶媒とし
て使用したものである。
The lithium secondary battery (battery of the present invention) according to the present invention for achieving the above object has the following features.
H 3 COOCF 3 , CF 3 COOCF 3 , CF 3 COO
CH 2 CF 3 , CF 3 CH 2 COOCF 3 and CF 3 C
At least one selected from the group consisting of OOCH 2 CF 3
A solvent consisting of only one kind of fluorinated carboxylic acid ester, or the at least one kind of fluorinated carboxylic acid ester, ethylene carbonate, propylene carbonate,
A mixed solvent comprising at least one carbonate ester selected from the group consisting of butylene carbonate, dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate, and containing at least one fluorocarboxylic acid ester in an amount of 50% by volume or more; It was used as a solvent for the electrolytic solution.

【0008】上記フッ化カルボン酸エステルを上記炭酸
エステルとの混合溶媒の形態で使用する場合は、上記フ
ッ化カルボン酸エステルの一種又は二種以上を50体積
%以上含む混合溶媒を使用する必要がある。上記フッ化
カルボン酸エステルの含有比率が50体積%未満の場合
は、負極の表面に形成される被膜のリチウムイオン導電
性が充分でないため、充放電効率が極めて高いリチウム
二次電池を得ることが困難になるからである。
When the above-mentioned fluorocarboxylic acid ester is used in the form of a mixed solvent with the above-mentioned carbonic acid ester, it is necessary to use a mixed solvent containing one or more of the above-mentioned fluorocarboxylic acid esters in an amount of 50% by volume or more. is there. When the content ratio of the fluorocarboxylic acid ester is less than 50% by volume, the lithium ion conductivity of the film formed on the surface of the negative electrode is not sufficient, so that a lithium secondary battery having extremely high charge / discharge efficiency can be obtained. Because it becomes difficult.

【0009】本発明は、リチウム二次電池の電解液の溶
媒の改良に関する。それゆえ、電解液の溶媒を除く部材
には、次に示す如き従来公知のものを特に制限無く用い
ることができる。
The present invention relates to an improvement in a solvent for an electrolytic solution of a lithium secondary battery. Therefore, as the member for removing the solvent of the electrolytic solution, a conventionally known member as shown below can be used without particular limitation.

【0010】正極活物質の具体例としては、LiCoO
2 、LiNiO2 、LiMn2 4、LiVO2 及びL
iNbO2 が挙げられる。
As a specific example of the positive electrode active material, LiCoO
2 , LiNiO 2 , LiMn 2 O 4 , LiVO 2 and L
iNbO 2 .

【0011】負極材料としては、リチウムイオンを電気
化学的に吸蔵及び放出することが可能な物質及び金属リ
チウムが例示される。リチウムイオンを電気化学的に吸
蔵及び放出することが可能な物質の具体例としては、黒
鉛、コークス等の炭素材料;リチウム−アルミニウム合
金、リチウム−鉛合金、リチウム−錫合金等のリチウム
合金;SnO2 、SnO、TiO2 、Nb2 3 等の電
位が正極活物質に比べて卑な金属酸化物が挙げられる。
Examples of the negative electrode material include a substance capable of electrochemically absorbing and releasing lithium ions and lithium metal. Specific examples of substances capable of electrochemically storing and releasing lithium ions include carbon materials such as graphite and coke; lithium alloys such as lithium-aluminum alloy, lithium-lead alloy, and lithium-tin alloy; SnO. 2 , metal oxides such as SnO, TiO 2 , and Nb 2 O 3 which have a lower potential than the positive electrode active material.

【0012】非水電解液の溶質の具体例としては、Li
PF6 、LiAsF6 、LiSbF6 、LiClO4
LiBF4 、LiCF3 SO3 、LiN(CF3
2 2が挙げられる。
A specific example of the solute of the non-aqueous electrolyte is Li
PF 6, LiAsF 6, LiSbF 6 , LiClO 4,
LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 S
O 2 ) 2 .

【0013】本発明電池においては、特定のフッ化カル
ボン酸エステルと負極のリチウムとの反応によりリチウ
ムイオン導電性の良い被膜が負極の表面に形成される。
このため、本発明電池は充放電効率が極めて高い。
In the battery of the present invention, a film having good lithium ion conductivity is formed on the surface of the negative electrode by a reaction between a specific fluorocarboxylic acid ester and lithium of the negative electrode.
For this reason, the battery of the present invention has extremely high charge / discharge efficiency.

【0014】[0014]

【実施例】本発明を実施例に基づいてさらに詳細に説明
するが、本発明は下記実施例に何ら限定されるものでは
なく、その要旨を変更しない範囲で適宜変更して実施す
ることが可能なものである。
EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples and can be carried out by appropriately changing the scope of the invention without changing its gist. It is something.

【0015】表1及び表2に示す電解液(溶質濃度は全
て1モル/リットル)を調製し、それぞれの電解液を使
用して、3極式の試験セルA1〜A36,B1〜B7を
組み立てた。表2中の溶媒欄において、ECはエチレン
カーボネートを、PCはプロピレンカーボネートを、B
Cはブチレンカーボネートを、DMCはジメチルカーボ
ネートを、EMCはエチルメチルカーボネートを、DE
Cはジエチルカーボネートを、DMEは1,2−ジメト
キシエタンを、EMEはエトキシメトキシエタンを、D
EEは1,2−ジエトキシエタンを、THFはテトラヒ
ドロフランを、2MeTHFは2−メチルテトラヒドロ
フランを、DOXLは1,3−ジオキソランを、2Me
DOXLは2−メチル−1,3−ジオキソランを、4M
eDOXLは4−メチル−1,3−ジオキソランを、そ
れぞれ表す。試験セルA6〜A8、A10、A12、A
23〜A28は本発明電池の試験セルであり、他は比較
電池の試験セルである。特に、試験セルB2は、特開昭
62−290073号公報で提案されている溶媒を使用
した従来電池の試験セルである。図1は組み立てた試験
セルの断面模式図であり、図示の試験セルCは、作用極
(ニッケル電極;電極面積1cm2 )1、作用極1に比
べて充分に大きな電気化学的容量を有する対極(リチウ
ム電極;電極面積10cm2 )2、参照極(リチウム電
極;電極面積0.3cm2 )3、ルギン管4、絶縁性の
密閉容器5及び電解液6からなる。
Electrolyte solutions shown in Tables 1 and 2 (all solute concentrations were 1 mol / liter) were prepared, and triode test cells A1 to A36 and B1 to B7 were assembled using the respective electrolytes. Was. In the solvent column in Table 2, EC represents ethylene carbonate, PC represents propylene carbonate, and B represents
C is butylene carbonate, DMC is dimethyl carbonate, EMC is ethyl methyl carbonate, DE
C is diethyl carbonate, DME is 1,2-dimethoxyethane, EME is ethoxymethoxyethane, D
EE is 1,2-diethoxyethane, THF is tetrahydrofuran, 2MeTHF is 2-methyltetrahydrofuran, DOXL is 1,3-dioxolane, 2Me
DOXL converts 2-methyl-1,3-dioxolan to 4M
eDOXL represents 4-methyl-1,3-dioxolane, respectively. Test cells A6 to A8, A10, A12, A
23 to A28 are test cells of the battery of the present invention, and the others are test cells of comparative batteries. In particular, the test cell B2 is a test cell of a conventional battery using a solvent proposed in JP-A-62-290073. FIG. 1 is a schematic sectional view of an assembled test cell. The illustrated test cell C has a working electrode (nickel electrode; electrode area 1 cm 2 ) 1 and a counter electrode having a sufficiently large electrochemical capacity as compared with the working electrode 1. (Lithium electrode; electrode area 10 cm 2 ) 2, reference electrode (lithium electrode; electrode area 0.3 cm 2 ) 3, Luggin tube 4, insulating closed container 5 and electrolyte 6.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】次いで、上記の各試験セルを、25°Cに
て、電流密度1mA/cm2 で5分間充電した後、1m
A/cm2 で参照極を基準とする作用極の電位が0.5
Vに達するまで放電して、各試験セルの充放電効率を下
式より求めた。これらの充放電効率を先の表1及び表2
に示す。
Next, each of the test cells was charged at 25 ° C. at a current density of 1 mA / cm 2 for 5 minutes.
A / cm 2 , the potential of the working electrode with respect to the reference electrode is 0.5
The battery was discharged until the voltage reached V, and the charge / discharge efficiency of each test cell was determined by the following equation. These charge and discharge efficiencies are shown in Tables 1 and 2 above.
Shown in

【0019】 充放電効率(%)=放電時間(分)÷充電時間(5分)×100Charge / discharge efficiency (%) = discharge time (minutes) / charge time (5 minutes) × 100

【0020】表1及び表2に示すように、本発明電池の
試験セルである試験セルA6〜A8、A10、A12、
A23〜A28は、他の試験セル(比較電池の試験セ
ル)に比べて、充放電効率が高い。この事実から、本発
明で規定するフッ化カルボン酸エステルを単一溶媒又は
特定の炭酸エステルとの混合溶媒の形態で電解液に使用
することにより、充放電効率が向上することが分かる。
As shown in Tables 1 and 2, test cells A6 to A8, A10, A12,
A23 to A28 have higher charge / discharge efficiency than other test cells (test cells of comparative batteries). From this fact, it is understood that the use of the fluorinated carboxylic acid ester defined in the present invention in the form of a single solvent or a mixed solvent with a specific carbonic acid ester for the electrolytic solution improves the charge / discharge efficiency.

【0021】〈フッ化カルボン酸エステルを炭酸エステ
ルとの混合溶媒の形態で使用する場合のフッ化カルボン
酸エステルの好適な比率〉 表3に示す電解液(溶質濃度は全て1モル/リットル)
を調製し、それぞれの電解液を使用して試験セルA37
〜A39,B8を組み立て、各試験セルの充放電効率を
先と同様にして求めた。これらの充放電効率を表3に示
す。表3には、試験セルA6の充放電効率も表1より転
記して示してある。
<Suitable ratio of fluorinated carboxylic acid ester when fluorinated carboxylic acid ester is used in the form of a mixed solvent with carbonate ester> Electrolyte shown in Table 3 (all solute concentrations are 1 mol / l)
Was prepared, and a test cell A37 was prepared using the respective electrolytes.
39A39 and B8 were assembled, and the charge / discharge efficiency of each test cell was determined in the same manner as above. Table 3 shows the charge / discharge efficiency. In Table 3, the charge / discharge efficiency of the test cell A6 is also transcribed from Table 1.

【0022】[0022]

【表3】 [Table 3]

【0023】表3より、CH3 COOCF3 をエチレン
カーボネートとの混合溶媒の形態で使用する場合は、充
放電効率の極めて高いリチウム二次電池を得る上で、混
合溶媒中のCH3 COOCF3 の比率を50体積%以上
とする必要があることが分かる。
[0023] From Table 3, when used in the form of a mixed solvent of ethylene carbonate CH 3 COOCF 3 is in obtaining a very high lithium secondary battery charge and discharge efficiency, the mixed solvent of CH 3 COOCF 3 It is understood that the ratio needs to be 50% by volume or more.

【0024】上記の実施例では、本発明で規定するフッ
化カルボン酸エステルを1種類使用する場合について説
明したが、2種類以上を併用した場合にも、同様に、充
放電効率の極めて高いリチウム二次電池が得られること
を確認した。
In the above embodiment, the case where one kind of the fluorocarboxylic acid ester defined in the present invention is used has been described. However, when two or more kinds are used in combination, lithium having extremely high charge / discharge efficiency is also similarly used. It was confirmed that a secondary battery was obtained.

【0025】[0025]

【発明の効果】負極のリチウムと反応してリチウムイオ
ン導電性の良い被膜を負極の表面に形成する特定のフッ
化カルボン酸エステルが電解液の溶媒として使用されて
いるので、本発明電池は充放電効率が極めて高い。
As the specific fluorinated carboxylate which reacts with the lithium of the negative electrode to form a film having good lithium ion conductivity on the surface of the negative electrode is used as a solvent for the electrolytic solution, the battery of the present invention is not charged. Extremely high discharge efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で組み立てた試験セルの断面模式図であ
る。
FIG. 1 is a schematic cross-sectional view of a test cell assembled in an example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平6−20719(JP,A) 特開 平7−37613(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiyuki Noma 2-5-5 Keihanhondori, Moriguchi City, Osaka Prefecture Inside Sanyo Electric Co., Ltd. (72) Koji Nishio 2-5-5 Keihanhondori, Moriguchi City, Osaka Prefecture No. 5 Inside Sanyo Electric Co., Ltd. (56) References JP-A-6-20719 (JP, A) JP-A-7-37613 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) ) H01M 10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】CH3 COOCF3 、CF3 COOC
3 、CF3 COOCH2 CF3 、CF3 CH2 COO
CF3 及びCF3 COOCH2 CF3 よりなる群から選
ばれた少なくとも1種のフッ化カルボン酸エステルのみ
からなる溶媒、又は、前記少なくとも1種のフッ化カル
ボン酸エステルと、エチレンカーボネート、プロピレン
カーボネート、ブチレンカーボネート、ジメチルカーボ
ネート、エチルメチルカーボネート及びジエチルカーボ
ネートよりなる群から選ばれた少なくとも1種の炭酸エ
ステルとからなり、前記少なくとも1種のフッ化カルボ
ン酸エステルを50体積%以上含有する混合溶媒が、電
解液の溶媒として使用されているリチウム二次電池。
1. CH 3 COOCF 3 , CF 3 COOC
F 3 , CF 3 COOCH 2 CF 3 , CF 3 CH 2 COO
A solvent consisting of at least one kind of fluorinated carboxylic acid ester selected from the group consisting of CF 3 and CF 3 COOCH 2 CF 3 , or the at least one kind of fluorinated carboxylic acid ester, ethylene carbonate, propylene carbonate, Butylene carbonate, dimethyl carbonate, ethyl methyl carbonate and at least one carbonate ester selected from the group consisting of diethyl carbonate, a mixed solvent containing at least 50% by volume or more of the at least one fluorocarboxylic acid ester, A lithium secondary battery used as a solvent for an electrolytic solution.
JP28926696A 1996-10-11 1996-10-11 Lithium secondary battery Expired - Fee Related JP3311611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28926696A JP3311611B2 (en) 1996-10-11 1996-10-11 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28926696A JP3311611B2 (en) 1996-10-11 1996-10-11 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH10116627A JPH10116627A (en) 1998-05-06
JP3311611B2 true JP3311611B2 (en) 2002-08-05

Family

ID=17740942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28926696A Expired - Fee Related JP3311611B2 (en) 1996-10-11 1996-10-11 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3311611B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9673450B2 (en) 2011-09-02 2017-06-06 Solvay Sa Lithium ion battery
US9979050B2 (en) 2011-09-02 2018-05-22 Solvay Sa Fluorinated electrolyte compositions
US10044066B2 (en) 2012-06-01 2018-08-07 Solvary SA Fluorinated electrolyte compositions
US10074874B2 (en) 2012-06-01 2018-09-11 Solvay Sa Additives to improve electrolyte performance in lithium ion batteries
US10686220B2 (en) 2013-04-04 2020-06-16 Solvay Sa Nonaqueous electrolyte compositions

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3325800A (en) 1999-03-23 2000-10-09 Asahi Glass Company Limited Process for producing fluorine compound through liquid-phase fluorination
CN1246281C (en) 2000-07-11 2006-03-22 旭硝子株式会社 Method for producing fluorine-containing compound
CN1212314C (en) 2000-11-28 2005-07-27 旭硝子株式会社 Process for producing fluorosulfonyl fluoride compound
JP4285000B2 (en) 2001-01-16 2009-06-24 旭硝子株式会社 Method for producing fluorine-containing ester, fluorine-containing acyl fluoride and fluorine-containing vinyl ether
JP5062459B2 (en) * 2001-05-15 2012-10-31 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP4150202B2 (en) * 2002-04-02 2008-09-17 ソニー株式会社 battery
JP4039918B2 (en) * 2002-08-30 2008-01-30 シャープ株式会社 Gel electrolyte secondary battery and manufacturing method thereof
JP4586388B2 (en) * 2004-03-19 2010-11-24 三菱化学株式会社 Nonaqueous electrolyte, lithium ion secondary battery, and fluorine-containing ester compound
JP5235437B2 (en) * 2007-02-20 2013-07-10 三洋電機株式会社 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
CN107742743A (en) 2012-06-05 2018-02-27 日本电气株式会社 Lithium secondary battery
US10177413B2 (en) 2012-11-20 2019-01-08 Nec Corporation Lithium ion secondary battery
WO2018061301A1 (en) * 2016-09-30 2018-04-05 パナソニック株式会社 Nonaqueous electrolyte and nonaqueous-electrolyte secondary cell
JP6970895B2 (en) 2016-12-26 2021-11-24 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
JP2018195560A (en) * 2017-05-16 2018-12-06 パナソニックIpマネジメント株式会社 Negative electrode active material for nonaqueous secondary battery, and nonaqueous secondary battery
CN113471535A (en) * 2021-06-16 2021-10-01 合肥国轩高科动力能源有限公司 Multiplying power type lithium ion battery electrolyte with high and low temperature performance and lithium ion battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9673450B2 (en) 2011-09-02 2017-06-06 Solvay Sa Lithium ion battery
US9979050B2 (en) 2011-09-02 2018-05-22 Solvay Sa Fluorinated electrolyte compositions
US10044066B2 (en) 2012-06-01 2018-08-07 Solvary SA Fluorinated electrolyte compositions
US10074874B2 (en) 2012-06-01 2018-09-11 Solvay Sa Additives to improve electrolyte performance in lithium ion batteries
US10686220B2 (en) 2013-04-04 2020-06-16 Solvay Sa Nonaqueous electrolyte compositions
US10916805B2 (en) 2013-04-04 2021-02-09 Solvay Sa Nonaqueous electrolyte compositions

Also Published As

Publication number Publication date
JPH10116627A (en) 1998-05-06

Similar Documents

Publication Publication Date Title
JP3311611B2 (en) Lithium secondary battery
JP3167513B2 (en) Non-aqueous electrolyte battery
JP3384625B2 (en) Non-aqueous electrolyte battery
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JP3369583B2 (en) Non-aqueous electrolyte battery
JP2006216509A (en) Positive electrode and nonaqueous electrolyte secondary battery using the same
JPH08298134A (en) Nonaqueous electrolyte
JP4328915B2 (en) Non-aqueous electrolyte for secondary battery and secondary battery using the same
JP3416440B2 (en) Anode for lithium battery and lithium battery
JPH10189041A (en) Electrolyte for lithium secondary battery
JPH0864240A (en) Nonaqueous electrolyte battery
JPH09147910A (en) Lithium secondary battery
JPH1126016A (en) Electrolyte for lithium secondary battery
JP2002324550A (en) Non-aqueous electrolyte secondary battery
JP2001052698A (en) Lithium secondary battery
JP3229769B2 (en) Lithium secondary battery
JP2002100344A (en) Positive electrode and battery
JP2003229112A (en) Non-aqueous electrolyte secondary battery and manufacturing method of non-aqueous electrolyte secondary battery
JP2006236889A (en) Nonaqueous electrolyte primary battery
JPH08190932A (en) Secondary battery having nonaqueous solvent electrolyte
JPH06243869A (en) Nonaqueous secondary battery
JPH08162154A (en) Secondary battery having nonaqueous solvent electrolyt
JP2000040524A (en) Electrolyte for lithium secondary battery and secondary battery
JPH1131528A (en) Lithium secondary battery electrolyte
JP2006024417A (en) Manufacturing method of battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees