JPH10265850A - Production of straight motion support bearing member - Google Patents

Production of straight motion support bearing member

Info

Publication number
JPH10265850A
JPH10265850A JP9170697A JP9170697A JPH10265850A JP H10265850 A JPH10265850 A JP H10265850A JP 9170697 A JP9170697 A JP 9170697A JP 9170697 A JP9170697 A JP 9170697A JP H10265850 A JPH10265850 A JP H10265850A
Authority
JP
Japan
Prior art keywords
bearing member
high frequency
hardness
support bearing
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9170697A
Other languages
Japanese (ja)
Other versions
JP3339795B2 (en
Inventor
Motohiro Nishikawa
元裕 西川
Norimasa Tokokage
典正 常陰
Kazuhiko Hiraoka
和彦 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP09170697A priority Critical patent/JP3339795B2/en
Publication of JPH10265850A publication Critical patent/JPH10265850A/en
Application granted granted Critical
Publication of JP3339795B2 publication Critical patent/JP3339795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce the straight motion support bearing member without lowering a high frequency hardening property by reducing a number of processes consisting of drawing with an irregular shaped die and high frequency hardening in which drawings of three times or more and annealings of two times or more are heretofore executed. SOLUTION: In a production method of the straight motion support bearing member in which a high frequency hardened material is subjected to one time drawing with an irregular shaped die, after intermediate annealing, finish drawing and then high frequency hardening, a high frequency hardened steel, which has a composition consisting of, by weight, 0.36-0.70% C, 0.05-0.15% Si, 0.60-2.00% Mn, 0.01-0.20% Ti, <0.01% N, 0.0005-0.0050% B and the balance Fe with inevitable impurities, after hot rolling as pretreatment prior to drawing, is subjected to spheroidizing annealing at the Ac1 point to 800 deg.C as a max temp. succeeded by slow cooling to a hardness of <=85HRB, deformation resistance at cold drawing is reduced. It is seen from the hardness shown in a diagram that the austenized straight motion support bearing member is produced in a very short time under a temp. condition in the diagram.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、異形ダイスによる
引抜きと高周波焼入れにより製造される直動軸受け部材
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a linear motion bearing member manufactured by drawing with a deformed die and induction hardening.

【0002】[0002]

【従来の技術】従来、異形ダイスによる引抜き後、高周
波焼入れにより製造される直動軸受け部材は中炭素鋼を
使用し、圧延後、球状化焼鈍を施し、3回以上の引抜き
と2回以上の焼鈍を経て、高周波焼入れを行うことによ
り製造されていた。しかしながら、従来の直動軸受け部
材に使用される鋼部材を球状化焼鈍して使用すると引抜
き時の変形抵抗が大きいため少なくとも3回以上の引抜
きと焼鈍の繰り返しを行わなければならず、工程数と工
程費用がかかるという欠点があった。
2. Description of the Related Art Conventionally, a linear bearing member manufactured by induction hardening after drawing by a deformed die is made of medium carbon steel, subjected to spheroidizing annealing after rolling, and subjected to at least three times of drawing and at least two times of drawing. It was manufactured by performing induction hardening after annealing. However, if a steel member used for a conventional linear motion bearing member is used after being spheroidized and annealed, deformation resistance at the time of drawing is large. Therefore, it is necessary to repeat drawing and annealing at least three times or more. There was a disadvantage that the process cost was high.

【0003】[0003]

【発明が解決しようとする課題】本発明は、従来3回以
上の引抜きと2回以上の焼鈍を行っていた異形ダイスに
よる引抜きと高周波焼入れにて製造されていた直動軸受
け部材の製造工程数を減らして、高周波焼入性を低下さ
せることなく仕上げ引抜きも入れて2回の引抜きと1回
の中間焼鈍後、高周波焼入れ工程を経て直動軸受け部材
を製造する方法を提供することである。
SUMMARY OF THE INVENTION The present invention relates to a process for manufacturing a linear motion bearing member which has been manufactured by drawing and induction hardening using a deformed die, which has conventionally been drawn three times or more and annealed twice or more. It is an object of the present invention to provide a method for producing a linear motion bearing member through an induction hardening step after two extractions and one intermediate annealing including a finish extraction without lowering the induction hardening property without reducing the induction hardening property.

【0004】[0004]

【課題を解決するための手段】本発明は、従来の高周波
焼入鋼の成分を変更し、焼入性を満足させると共に、冷
間加工性を向上させて加工時の変形抵抗を低減したもの
である。そして、その手段は、高周波焼入材を使用し、
異形ダイスによる1回の引抜きを行い、中間焼鈍を経
て、仕上げ引抜きを行い、その後高周波焼入れ工程を経
て製造する直動軸受け部材の製造方法において、前記高
周波焼入材の成分が、重量%で、C:0.36〜0.7
0%、Si:0.05〜0.15%、Mn:0.60〜
2.00%、Ti:0.01〜0.20%、N:<0.
01%、B:0.0005〜0.0050%、残部Fe
および不可避不純物からなる組成の鋼とし、引抜き前の
処理として熱間圧延後、AC1点〜800℃を最高点温度
とし、その後徐冷する球状化焼鈍を行い、硬さを85H
RB以下とし、冷間引抜き時の変形抵抗を低減したの
で、従来3回引抜きにて製造していた直動軸受け部材を
1回の引抜きと中間焼鈍後の仕上げ引抜きの2回の引抜
きにて製造することを可能とする。
SUMMARY OF THE INVENTION The present invention provides a conventional induction hardened steel in which the components are changed to satisfy the hardenability and to improve the cold workability to reduce the deformation resistance at the time of working. It is. And the means use induction hardening material,
In a method of manufacturing a linear motion bearing member which performs one drawing with a deformed die, performs intermediate annealing, finishes drawing, and then manufactures through an induction hardening process, the component of the induction hardened material is expressed as C: 0.36-0.7
0%, Si: 0.05 to 0.15%, Mn: 0.60 to
2.00%, Ti: 0.01 to 0.20%, N: <0.
01%, B: 0.0005 to 0.0050%, balance Fe
And a steel having a composition consisting of unavoidable impurities. After hot rolling as a treatment before drawing, the highest point temperature is set from A C1 point to 800 ° C., and then spheroidizing annealing is performed by slow cooling, and the hardness is 85H.
RB or less to reduce the deformation resistance during cold drawing, so the direct-acting bearing member conventionally manufactured by three times of drawing is manufactured by one drawing and two times of finish drawing after intermediate annealing. It is possible to do.

【0005】上記高周波焼入鋼の化学成分の限定理由を
以下に述べる。Cは、直動軸受け部材には表面の硬度が
必要であるが、0.36%未満では高周波焼入後の硬度
を確保できず、0.70%を超えると冷間加工性が低下
する。そこで、Cは、0.36〜0.70%とする。
The reasons for limiting the chemical components of the induction hardened steel will be described below. C requires the surface hardness of the direct-acting bearing member, but if it is less than 0.36%, the hardness after induction hardening cannot be secured, and if it exceeds 0.70%, the cold workability deteriorates. Therefore, C is set to 0.36 to 0.70%.

【0006】Mnは、高周波焼入性を向上させる元素で
あるが、0.60%未満では高周波焼入性は十分ではな
く、2.00%を超えると冷間加工性が低下する。そこ
で、Mnは、0.60〜2.00%とする。
Mn is an element that improves induction hardenability, but if it is less than 0.60%, induction hardenability is not sufficient, and if it exceeds 2.00%, cold workability is reduced. Therefore, Mn is set to 0.60 to 2.00%.

【0007】Siは、0.05%未満では脱酸効果が十
分ではなく、0.15%を超えるとフェライト硬さが上
昇し、冷間加工性を低下させる。そこで、Siは、0.
05〜0.15%とする。
[0007] If Si is less than 0.05%, the deoxidizing effect is not sufficient, and if it exceeds 0.15%, the ferrite hardness increases, and the cold workability decreases. Therefore, Si is set to 0.
It is set to be from 0.05 to 0.15%.

【0008】Tiは、鋼中にフリーNがあるとBNを形
成して固溶Bが無くなるため、TiによってNを固定す
る。すなわち、Nと窒化物を形成してフェライト中の固
溶Nを低減して冷間加工時の変形抵抗を低下させ、Bの
焼入性への効果を向上させる。0.01%未満ではNを
固定するのに不足であり、0.20%を超えると冷間加
工性を低下させる。そこでTiは、0.01〜0.20
%とする。
[0008] If free N is present in the steel, Ti forms BN and solid solution B disappears, so that N is fixed by Ti. That is, N forms a nitride with N to reduce solid solution N in ferrite, thereby reducing deformation resistance during cold working, and improving the effect of B on hardenability. If it is less than 0.01%, it is insufficient to fix N, and if it exceeds 0.20%, the cold workability is reduced. Therefore, Ti is 0.01 to 0.20
%.

【0009】Nは、0.01%以上含有するとTiNが
増加し、転動疲労寿命に悪影響を及ぼす。そこで、Nは
0.01%未満とする。
[0009] When N is contained in an amount of 0.01% or more, TiN increases, and the rolling fatigue life is adversely affected. Therefore, N is set to less than 0.01%.

【0010】Bは、極微量の添加によって鋼の焼入性を
著しく向上させる元素であるが、0.0005%未満で
はその効果は十分でなく、0.0050%を超えると逆
に焼入性を低下させる。そこで、Bは、0.0005%
〜0.0050%とする。
[0010] B is an element which significantly improves the hardenability of steel by the addition of a trace amount, but if its content is less than 0.0005%, its effect is not sufficient. Lower. Therefore, B is 0.0005%
To 0.0050%.

【0011】[0011]

【発明の実施の形態】本発明の実施の形態の鋼組成を表
1の実施例に示す。実施例は炭素含有量がS55Cを基
本とする鋼に相当するものであり、実施例1はS55C
からSi、Mnを低減し、Bを添加したものである。ま
た、比較例1は代表的な従来鋼であり比較例2は実施例
の鋼からMnをさらに低下させたものである。これらの
鋼を用いて、焼鈍後の硬さ、冷間引抜きの変形抵抗、高
周波焼入性を評価し、異形ダイスによる中間焼鈍をはさ
んだ2回の引抜きにより直動軸受けを製造した。以下、
実施例よりさらに本発明の実施形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The steel composition according to an embodiment of the present invention is shown in Examples of Table 1. The example corresponds to steel having a carbon content of S55C, and the example 1 corresponds to S55C.
In this case, Si and Mn are reduced, and B is added. Comparative Example 1 is a typical conventional steel, and Comparative Example 2 is one in which Mn is further reduced from the steel of Example. Using these steels, the hardness after annealing, the deformation resistance of cold drawing, and the induction hardening were evaluated, and a linear bearing was manufactured by drawing twice with intermediate annealing using a deformed die. Less than,
An embodiment of the present invention will be described further than an example.

【0012】[0012]

【発明の実施の形態】表1に示す化学成分組成の供試鋼
(比較例1、2、及び実施例)を100kg真空溶解炉
にて溶製し、熱処理試験、冷間加工性試験、高周波焼入
性試験を行った。
BEST MODE FOR CARRYING OUT THE INVENTION Test steels (comparative examples 1, 2 and examples) having the chemical composition shown in Table 1 were melted in a 100 kg vacuum melting furnace, and heat treatment tests, cold workability tests, and high frequency A hardenability test was performed.

【0013】熱処理試験片は熱間鍛造で20mmφに鍛
造し、切削により15mmφ×100mmLの試験片を
作成し、大気炉により最高点温度をAC1点〜800℃を
最高点温度とし、その後徐冷する球状化焼鈍を行い、熱
処理後の硬さを調べた。その結果を表2に示す。表2か
ら従来鋼はどの最高点温度で球状化焼鈍を行っても硬さ
は85HRB以下にはならないが、実施例、および比較
例2はどの条件においても85HRB以下となる。
The heat-treated test piece is forged to 20 mmφ by hot forging, and a test piece of 15 mmφ × 100 mmL is prepared by cutting, and the highest point temperature is set to A 1 point to 800 ° C. by an atmospheric furnace, and then gradually cooled. Spheroidizing annealing was performed, and the hardness after the heat treatment was examined. Table 2 shows the results. From Table 2, the hardness of the conventional steel does not become 85 HRB or less even when the spheroidizing annealing is performed at any highest point temperature, but the hardness of the Example and Comparative Example 2 becomes 85 HRB or less under any conditions.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】次に冷間加工性試験片は熱間鍛造で20m
mφに鍛造後、最高点温度を770℃とする球状化焼鈍
を行い、14mmφ×21mmHの端面拘束型圧縮試験
用円柱型試験片に加工し、冷間加工時の変形抵抗を測定
した。その結果を表3に示す。この結果から、実施例、
および比較例2に示す鋼は比較例1の従来鋼に比べ冷間
加工時の変形抵抗が大幅に減少している。従来の3回引
きの場合は1回目、2回目の加工率は約20%である
が、2回引きにした場合、その加工率は約40%とな
る。しかし、球状化焼鈍を施した実施例に示す鋼の40
%加工時の変形抵抗は、従来鋼の20%加工時の変形抵
抗よりも小さくなっている。このため、実施例に示す鋼
を使用することにより、従来3回以上の引抜きを行わな
いと成形できなかったものが2回の引抜きにより製造で
きるようになった。
Next, the cold workability test specimen is 20 m in hot forging.
After forging to mφ, spheroidizing annealing was performed at a maximum point temperature of 770 ° C. to form a cylindrical test piece of 14 mmφ × 21 mmH for an end-face constrained compression test, and the deformation resistance during cold working was measured. Table 3 shows the results. From the results, the example,
And the steel shown in Comparative Example 2 has significantly reduced deformation resistance during cold working as compared with the conventional steel of Comparative Example 1. In the case of the conventional three-time drawing, the first and second processing rates are about 20%. However, when the second-time drawing is performed, the processing rate is about 40%. However, 40% of the steel shown in the example subjected to spheroidizing annealing was used.
The deformation resistance at the time of% processing is smaller than the deformation resistance at the time of 20% processing of the conventional steel. For this reason, by using the steel shown in the examples, what could not be formed conventionally without drawing three or more times can be manufactured by drawing twice.

【0017】[0017]

【表3】 [Table 3]

【0018】高周波焼入性試験片は熱間鍛造で30φに
鍛造し、そのD/4位置より削り出すことにより、3m
mφ×10mmLの試験片を作成し、一定時間一定温度
で加熱後急冷することによりTTA(Time-Temperature
-Austenizing)線図を求める試験を行った。その結果を
図1〜3に示す。図1は実施例に示す鋼のTTA線図を
示すものであり、硬さ720HV以上をオーステナイト
化の基準とする。このとき、図中の温度条件では非常に
短時間の加熱でも完全にオーステナイト化していること
が図中に示した硬さからわかる。図2は比較例1に示す
鋼のTTA線図を示すものであるが、これについても図
中の温度条件では図1と同様に非常に短時間の加熱でも
完全にオーステナイト化していることがわかる。
The induction hardenability test piece was forged to 30φ by hot forging, and was cut from its D / 4 position to obtain a 3 m
A test piece of mφ × 10 mmL is prepared, heated at a constant temperature for a predetermined time and then rapidly cooled to obtain a TTA (Time-Temperature).
-Austenizing) A test was performed to determine a diagram. The results are shown in FIGS. FIG. 1 shows a TTA diagram of the steel shown in the examples, and a hardness of 720 HV or more is used as a standard for austenitization. At this time, it can be seen from the hardness shown in the figure that under the temperature conditions in the figure, the austenite was completely formed even by heating for a very short time. FIG. 2 shows a TTA diagram of the steel shown in Comparative Example 1, and it can be seen that, under the temperature conditions in the diagram, as in FIG. .

【0019】さらに、図3は本発明の請求範囲よりMn
量が低い比較例2の鋼のTTA線図を示すものである
が、850℃以下の加熱温度では保持時間が短い場合、
正常な硬さが得られず、完全にオーステナイト化せず、
フェライトが残留してしまう。また、残留フェライトが
残らないような条件でも不完全焼入相が出てしまうとい
う問題がある。この様な組織となった場合、直動軸受け
の寿命を著しく低下させてしまう。
FIG. 3 is a graph showing Mn according to the present invention.
FIG. 4 shows a TTA diagram of the steel of Comparative Example 2 having a low amount, but when the holding time is short at a heating temperature of 850 ° C. or less,
Normal hardness is not obtained, it does not completely austenite,
Ferrite remains. Also, there is a problem that an incompletely quenched phase appears even under the condition that no residual ferrite remains. In such a structure, the life of the linear motion bearing is significantly reduced.

【0020】また、以上のような特性を有する鋼を用い
て異形ダイスによる2回の引抜きを行った結果を表4に
示す。引抜きの変形抵抗の低い実施例および比較例2に
示す鋼においては2回引抜きで成形可能である。しか
し、比較例1に示す従来鋼では引抜き後、正常な形状が
得られず、時には引抜き時に破断してしまうという問題
がある。
Further, Table 4 shows the results of performing twice drawing with a deformed die using steel having the above characteristics. The steels shown in Examples and Comparative Example 2 having low deformation resistance during drawing can be formed by drawing twice. However, with the conventional steel shown in Comparative Example 1, there is a problem that a normal shape cannot be obtained after drawing, and the steel sometimes breaks during drawing.

【0021】[0021]

【表4】 [Table 4]

【0022】以上の結果から、実施例、比較例2に示す
鋼を使用すると、異形ダイスによる1回の引抜きと中間
焼鈍後の仕上げ引抜きの計2回の引抜きにより直動軸受
け部材を製造可能であるが、比較例2の鋼を使用した場
合、高周波焼入時に均一な焼入組織が得られず、直動軸
受けの寿命を著しく低下させる可能性がある。
From the above results, when the steels shown in Examples and Comparative Example 2 are used, a linear motion bearing member can be manufactured by a total of two times of drawing, one drawing with a deformed die and the finish drawing after intermediate annealing. However, when the steel of Comparative Example 2 is used, a uniform hardened structure cannot be obtained during induction hardening, and the life of the linear motion bearing may be significantly reduced.

【0023】[0023]

【発明の効果】以上説明した通り、本発明による化学成
分組成の鋼を熱間圧延後、AC1点〜800℃の温度を最
高点温度とし、その後徐冷する球状化焼鈍を行い、その
硬さを85HRB以下にすることにより、従来異形ダイ
スによる3回の引抜きと2回の中間焼鈍を経て高周波焼
入れにて製造されていた直動軸受け部材が、高周波焼入
性を低下させることなく、2回の引抜きと1回の中間焼
鈍を経るだけで高周波焼入れにて製造できるようにな
り、工程数と工程コストを削減できるという優れた効果
を有する。
As described above, after the steel having the chemical composition according to the present invention is hot-rolled, the temperature between the AC 1 point and 800 ° C. is set to the highest point temperature, and then the steel is subjected to spheroidizing annealing by slow cooling. By reducing the hardness to 85 HRB or less, the direct-acting bearing member, which has conventionally been manufactured by induction hardening through three times of drawing with a deformed die and two times of intermediate annealing, can reduce the hardness by 2 hours without deteriorating the induction hardenability. It can be manufactured by induction hardening only through one drawing and one intermediate annealing, and has an excellent effect that the number of steps and the process cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は実施例に示す化学成分組成のTTA線図
を示しており、各温度における保持時間ごとに硬さを測
定し、光学顕微鏡による組織観察を行うことによって、
オーステナイト化の容易さを示したものである。図中の
○印は測定点を示し、その横の数値は硬さ(HV)を示
している。
FIG. 1 shows a TTA diagram of the chemical component composition shown in the examples. The hardness is measured for each holding time at each temperature, and the structure is observed by an optical microscope.
This shows the easiness of austenitization. The circles in the figure indicate measurement points, and the numerical values beside them indicate hardness (HV).

【図2】図2は比較例1に示す化学成分組成のTTA線
図を示しており、各温度における保持時間ごとに硬さを
測定し、光学顕微鏡による組織観察を行うことによっ
て、オーステナイト化の容易さを示したものである。図
中の○印は測定点を示し、その横の数値は硬さ(HV)
を示している。
FIG. 2 shows a TTA diagram of the chemical composition shown in Comparative Example 1. The hardness was measured for each holding time at each temperature, and the structure was observed by an optical microscope to observe the structure of austenite. It shows ease. The circles in the figure indicate the measurement points, and the numerical values beside them are hardness (HV).
Is shown.

【図3】図3は比較例2に示す化学成分組成のTTA線
図を示しており、各温度における保持時間ごとに硬さを
測定し、光学顕微鏡による組織観察を行うことによっ
て、オーステナイト化の容易さを示したものである。図
中の○印は測定点を示し、その横の数値は硬さ(HV)
を示している。
FIG. 3 shows a TTA diagram of the chemical composition shown in Comparative Example 2. The hardness was measured for each holding time at each temperature, and the structure of austenitized steel was observed by optical microscopy. It shows ease. The circles in the figure indicate the measurement points, and the numerical values beside them are hardness (HV).
Is shown.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.36〜0.70%、
Si:0.05〜0.15%、Mn:0.60〜2.0
0%、Ti:0.01〜0.20%、N:<0.01
%、B:0.0005〜0.0050%、残部Feおよ
び不可避不純物からなる組成の鋼を熱間圧延した後、A
C1点〜800℃を最高点温度とし、その後徐冷する球状
化焼鈍を行い、硬さを85HRB以下とし、異形ダイス
にて1回の引抜きを行い、中間焼鈍をした後、仕上げ引
抜きを行い、その後高周波焼入れを行なうことを特徴と
する直動軸受け部材の製造方法。
(1) C: 0.36 to 0.70% by weight,
Si: 0.05 to 0.15%, Mn: 0.60 to 2.0
0%, Ti: 0.01 to 0.20%, N: <0.01
%, B: 0.0005 to 0.0050%, and after hot rolling a steel having a composition consisting of the balance of Fe and unavoidable impurities, A
C1 point ~ 800 ℃ as the highest point temperature, then perform spheroidizing annealing by slow cooling, make the hardness less than 85HRB, perform one drawing with a deformed die, perform intermediate annealing, then perform finish drawing, Thereafter, induction hardening is performed.
JP09170697A 1997-03-25 1997-03-25 Method for manufacturing linear motion bearing member Expired - Fee Related JP3339795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09170697A JP3339795B2 (en) 1997-03-25 1997-03-25 Method for manufacturing linear motion bearing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09170697A JP3339795B2 (en) 1997-03-25 1997-03-25 Method for manufacturing linear motion bearing member

Publications (2)

Publication Number Publication Date
JPH10265850A true JPH10265850A (en) 1998-10-06
JP3339795B2 JP3339795B2 (en) 2002-10-28

Family

ID=14033967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09170697A Expired - Fee Related JP3339795B2 (en) 1997-03-25 1997-03-25 Method for manufacturing linear motion bearing member

Country Status (1)

Country Link
JP (1) JP3339795B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470670B1 (en) * 2000-10-04 2005-03-07 주식회사 포스코 Method for Manufacturing Steel Plate for Pressure Vessel with Superior Workability and High Tensile Strength and Method for Manufacturing Pressure Vessel with High Tensile Strength Using the Steel Plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470670B1 (en) * 2000-10-04 2005-03-07 주식회사 포스코 Method for Manufacturing Steel Plate for Pressure Vessel with Superior Workability and High Tensile Strength and Method for Manufacturing Pressure Vessel with High Tensile Strength Using the Steel Plate

Also Published As

Publication number Publication date
JP3339795B2 (en) 2002-10-28

Similar Documents

Publication Publication Date Title
JP5257082B2 (en) Steel wire rod excellent in cold forgeability after low-temperature annealing, method for producing the same, and method for producing steel wire rod excellent in cold forgeability
JP5407178B2 (en) Steel wire rod for cold forging excellent in cold workability and manufacturing method thereof
JP5288259B2 (en) Pre-quenching method and quenching method for martensitic tool steel
CN107406949B (en) Steel wire for machine structural parts
JP2011256456A (en) Method for manufacturing steel for cold forging
JP2002235151A (en) High strength heat treated stel wire for spring
JP5495648B2 (en) Machine structural steel with excellent grain coarsening resistance and method for producing the same
JP2018012874A (en) Method of manufacturing steel wire for bolt
EP3330398A1 (en) Steel pipe for line pipe and method for manufacturing same
JP2000063935A (en) Production of nitrided part
JPH08283847A (en) Production of graphite steel for cold forging excellent in toughness
JP2005120397A (en) High strength forged parts with excellent drawability
JP3339795B2 (en) Method for manufacturing linear motion bearing member
JP3751707B2 (en) High-strength bolt wire excellent in strength and ductility and its manufacturing method
JP6752624B2 (en) Manufacturing method of carburized steel
JPH09316540A (en) Manufacture of steel for machine structural use for contour induction hardening, excellent in cold forgeability, and manufacture of cold forged part
JP3242336B2 (en) Cold forging steel excellent in cold forgeability and fatigue strength and method for producing cold forged member
JPH04329824A (en) Production of martensitic stainless steel for cold forging
JPH04362123A (en) Production of bearing steel stock
JP5008804B2 (en) Steel for constant velocity joint outer
JPH0572442B2 (en)
CA2589006A1 (en) Steel wire for cold forging
JPS63303036A (en) High-strength steel wire
JP4289714B2 (en) Manufacturing method of medium and high carbon cold rolled steel sheet
JP3282491B2 (en) Steel for mechanical structure excellent in cold workability and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees