JPH1026179A - Base isolation device - Google Patents

Base isolation device

Info

Publication number
JPH1026179A
JPH1026179A JP20872996A JP20872996A JPH1026179A JP H1026179 A JPH1026179 A JP H1026179A JP 20872996 A JP20872996 A JP 20872996A JP 20872996 A JP20872996 A JP 20872996A JP H1026179 A JPH1026179 A JP H1026179A
Authority
JP
Japan
Prior art keywords
rotational
flywheel
energy
vibration
rack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20872996A
Other languages
Japanese (ja)
Inventor
Yasuo Aoki
保夫 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DYNAMIC ART KENKYUSHO KK
Original Assignee
DYNAMIC ART KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DYNAMIC ART KENKYUSHO KK filed Critical DYNAMIC ART KENKYUSHO KK
Priority to JP20872996A priority Critical patent/JPH1026179A/en
Publication of JPH1026179A publication Critical patent/JPH1026179A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve living comfortability and safety by damping vibration of a building, or the like due to an earthquake, wind, or the like by replacing horizontal vibration kinetic energy of a structure to a form of rotational operating energy by converting it to rotational energy of a flywheel. SOLUTION: A bidirectional rotational damping mechanism is provided in parallel with laminated rubber, etc., as a base isolation device between a structure and the ground. It is constituted by combining an X directional rotational damping mechanism 11 and a Y directional rotational damping mechanism 12 and individually converts rectilinear motion on both of XY directional flat surfaces to rotation of a flywheel. Accordingly, a rack 5 is manufactured in a mechanism to give torque to rotating gears 6, 7, and torque in the reverse rotational direction is constituted to slide. Consequently, transmission gears 8, 9 transmit torque only in the same direction by reciprocal motion of the rack 5, and the flywheel is rotated only in one direction. Additionally, even when the rack 5 stops, the flywheel 4 keeps rotating, discharging accumulated rotational kinetic energy little by little by the amount of friction of a bearing and absorbs vibration of the structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】 本発明は、免振用積層ゴム等を
利用する建物等の地震、および風等による連性振動を減
衰させ居住性、安全性を増強するに役立ちます。
[Industrial application field] The present invention is useful for attenuating coupled vibrations caused by earthquakes, winds, and the like in buildings and the like that use laminated rubber for vibration isolation to enhance livability and safety.

【0002】[0002]

【従来の技術】 積層ゴム等の免振装置は、従来多種の
減衰機と組み合わせて使用しております。 例としてオ
イルダンパー、鉛棒ダンパー等を利用した減衰材料ダン
パー、ねじり棒減衰等の方式があります。どれもエネル
ギーを、熱に変換してエネルギー放出をしております。
これらはどれも運動エネルギーの変換効率がよくありま
せん。
[Prior art] Vibration isolation devices, such as laminated rubber, have been used in combination with various types of dampers. Examples include damping material dampers using oil dampers and lead rod dampers, and torsion bar damping. All of them convert energy into heat and release energy.
None of these are efficient at converting kinetic energy.

【0003】[0003]

【発明が解決しようとする課題】 上記既存の減衰方式
はエネルギー変換効率が悪くその弊害により構造物のゆ
れがいつまでも大きく長く継続いたします。また、減衰
材料は経年劣化があり長期運用に関して維持管理経費が
かかります。
[Problems to be Solved by the Invention] The above-mentioned existing damping method has poor energy conversion efficiency, and due to its adverse effects, the structure shakes forever and long. In addition, attenuated materials have aged and require long-term operation and maintenance costs.

【0004】[0004]

【課題を解決するための手段】 エネルギー変換効率を
高めるために地盤と構造物間の相対直線運動を直接的に
歯車機構を介してはずみ車の回転運動に変換します。地
盤と構造物間の相対直線往復運動の行きと帰りの逆方向
の運動をはずみ車の一方向の回転に変換するために、2
式の歯車一方向機構を備えることにより解決しておりま
す。はずみ車は2式の歯車一方向機構により地盤と構造
物間の相対直線運動が停止しても回り続けます。
[Means for Solving the Problems] In order to increase the energy conversion efficiency, the relative linear motion between the ground and the structure is directly converted into the rotary motion of the flywheel via the gear mechanism. In order to convert the movement of the relative linear reciprocating movement between the ground and the structure in the opposite direction of the return and return to one-way rotation of the flywheel,
The problem is solved by providing a one-way gear mechanism. The flywheel continues to rotate even if the relative linear movement between the ground and the structure is stopped by the two sets of one-way gear mechanism.

【0005】[0005]

【作用】[Action]

【図1】に示すように 地震、風等の外部からの力によ
り構造物3は積層ゴム2等のバネ常数に見合った変形を
発生します。
As shown in [Fig. 1], the structure 3 generates deformation corresponding to the spring constant of the laminated rubber 2 etc. due to an external force such as an earthquake or wind.

【図2】に示すようにX方向回転式減衰機構11とY方
向回転式減衰機構12との組み合わせによりXY両方向
の平面上の直線運動が個別にはずみ車の回転になりま
す。ラック5は回転歯車6、7に回転力を与えます。歯
車6、7は同回転方向への一方向のみトルクを与えうる
機構で作製します。歯車6、7は逆回転方向へのトルク
は滑るようになります。このことによりラック5の往復
運動により伝達歯車8、9は同回転のみトルクを伝達し
結果としてはずみ車は一方向のみに回転します。ラック
5が停止してもはずみ車は回転を続けます。貯めたはず
み車の回転運動エネルギーは、時間をかけてゆっくり、
少しずつ軸受けの摩擦分だけを放出していきます。
As shown in Fig. 2, the combination of the X-direction rotary damping mechanism 11 and the Y-direction rotary damping mechanism 12 causes the linear motion on the plane in both XY directions to individually rotate the flywheel. The rack 5 applies a rotating force to the rotating gears 6 and 7. Gears 6 and 7 are made with a mechanism that can apply torque only in one direction in the same rotation direction. Gears 6 and 7 will slip in the reverse rotation direction. As a result, the transmission gears 8 and 9 transmit the torque only by the reciprocating motion of the rack 5, and as a result, the flywheel rotates only in one direction. The flywheel continues to rotate even if the rack 5 stops. The rotating kinetic energy of the flywheel that has been stored slowly over time,
Release the friction of the bearing little by little.

【0006】[0006]

【実施例】 図1により本発明による実施例を説明す
る。ビルの下部に積層ゴム2と回転式減衰機構1を配置
すると地盤とビル3の間のバネ常数は積層ゴムに決ま
り、減衰常数は回転式減衰機構により決まる。ビルの慣
性質量により各常数が最適値となるように設計し外力に
よる振動免振を最適に設定できる。
Embodiment An embodiment according to the present invention will be described with reference to FIG. When the laminated rubber 2 and the rotary damping mechanism 1 are arranged below the building, the spring constant between the ground and the building 3 is determined by the laminated rubber, and the damping constant is determined by the rotary damping mechanism. Each constant is designed to be the optimum value according to the inertial mass of the building, and vibration isolation by external force can be set optimally.

【0007】[0007]

【発明の効果】 構造物に地震のような大きな力がかか
った場合、その衝撃を緩和させ、又その振動を早く減衰
させる効果があります。又構造物に風のような周期的な
小さな力がかかった場合、構造物の固有振動数でのゆれ
を充分減衰させる効果があります。
[Effects of the Invention] When a large force such as an earthquake is applied to a structure, it has an effect of reducing the impact and damping the vibration quickly. Also, when a periodic small force such as wind is applied to a structure, it has the effect of sufficiently attenuating the fluctuation at the natural frequency of the structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例を示す構成図です。FIG. 1 is a configuration diagram showing one embodiment of the present invention.

【図2】 本発明の減衰装置の正面断面図です。FIG. 2 is a front sectional view of the damping device of the present invention.

【図3】 本発明の減衰装置の側面断面図です。FIG. 3 is a side sectional view of the damping device of the present invention.

【符号の説明】[Explanation of symbols]

1 XY2方向回転式減衰機構 2 積層ゴム等の免振装置 3 構造物(建築物等) 4 はずみ車 5 ラック(直線歯車) 6 一方向回転歯車 7 一方向回転歯車 8 伝達歯車 9 伝達歯車 10 伝達歯車 11 X方向回転式減衰機構 12 Y方向回転式減衰機構 DESCRIPTION OF SYMBOLS 1 XY two-way rotary damping mechanism 2 Vibration isolation device of laminated rubber etc. 3 Structure (building etc.) 4 Handwheel 5 Rack (linear gear) 6 One-way rotary gear 7 One-way rotary gear 8 Transmission gear 9 Transmission gear 10 Transmission gear 11 X direction rotary damping mechanism 12 Y direction rotary damping mechanism

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 積層ゴム2、コロ軸受け2等のみの免振
支持機構に支えられた構造物はそのままですと地震、風
の力により長周期で大きくゆれます。そのゆれを減衰さ
せるために構造物の水平ゆれ運動エネルギーをはずみ車
の回転エネルギーに変換してエネルギーを害のない回転
運動エネルギーの形に置き換えて構造物のゆれを減少さ
せます。積層ゴム2、コロ軸受け2等の免振支持機構
と、基礎と構造物の間の水平面のX、Y2方向相対運動
を回転減衰装置1のはずみ車の回転運動に変換して構造
物の運動エネルギーを放出することのできる減衰装置か
らなる免振装置。
[1] If the structure supported by the vibration-isolation support mechanism consisting only of the laminated rubber 2, the roller bearings 2, etc. is used as it is, it will shake greatly in a long cycle due to the force of the earthquake or wind. In order to attenuate the shaking, the horizontal shaking kinetic energy of the structure is converted to the rotational energy of the flywheel, and the energy is replaced with harmless rotating kinetic energy to reduce the shaking of the structure. Vibration isolation support mechanisms such as the laminated rubber 2 and the roller bearing 2, and the relative movement of the horizontal plane between the foundation and the structure in the X and Y 2 directions are converted into the rotational movement of the flywheel of the rotation damping device 1 to convert the kinetic energy of the structure. An anti-vibration device consisting of a damping device that can be released.
JP20872996A 1996-07-05 1996-07-05 Base isolation device Pending JPH1026179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20872996A JPH1026179A (en) 1996-07-05 1996-07-05 Base isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20872996A JPH1026179A (en) 1996-07-05 1996-07-05 Base isolation device

Publications (1)

Publication Number Publication Date
JPH1026179A true JPH1026179A (en) 1998-01-27

Family

ID=16561119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20872996A Pending JPH1026179A (en) 1996-07-05 1996-07-05 Base isolation device

Country Status (1)

Country Link
JP (1) JPH1026179A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010110A (en) * 2005-07-04 2007-01-18 Tama Tlo Kk Base isolation device and rotational inertia addition device
GB2495514A (en) * 2011-10-12 2013-04-17 William Brian Turner Flywheel energy storage technology to withstand seismic shock

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010110A (en) * 2005-07-04 2007-01-18 Tama Tlo Kk Base isolation device and rotational inertia addition device
GB2495514A (en) * 2011-10-12 2013-04-17 William Brian Turner Flywheel energy storage technology to withstand seismic shock

Similar Documents

Publication Publication Date Title
CN107419945B (en) Inertial mass damping device
JP6890491B2 (en) Seismic isolation damper and seismic isolation system
JP5601825B2 (en) Damper and seismic isolation mechanism
CN112177185A (en) Displacement response amplification type friction energy dissipation damper based on gear transmission
CN114294362A (en) Inertial capacity type double-potential well vibration reduction device
CN112814191A (en) Inertial volume type multidirectional tuning energy-absorbing vibration-damping device
JPH1026179A (en) Base isolation device
JP5601824B2 (en) Damper and seismic isolation mechanism
CN110145567B (en) Nonlinear energy sink
CN108412069B (en) Ultra-long period TMD control system
JPH11351318A (en) Damper for base isolation device
JP2011106515A (en) Base isolation/vibration control mechanism
JP2011236632A (en) Seismic control structure
CN110512759A (en) A kind of inertia mass scale-up version tuned mass damper
JP2009155801A (en) Vibration control structure
TWI691660B (en) Electromagnetic damping device with flywheel
JP4843881B2 (en) Coupling damping device using rotary inertia force
JP2003056199A (en) Vibration control device using inertia force, installed between stories of building
JP2002174292A (en) Friction damper
JP2017218857A (en) Installation structure for rotary mass damper
CN219825687U (en) Self-resetting tuned inertial mass damper for adjacent structure
JP3082408B2 (en) Damping device
CN217353003U (en) Inertial volume type multidirectional tuning energy-absorbing vibration-damping device
JP3954019B2 (en) Friction damper
CN114232829A (en) TMD control system based on rotational inertia virtual translation inertial mass