JPH10261487A - Organic electroluminescent element and manufacture thereof - Google Patents

Organic electroluminescent element and manufacture thereof

Info

Publication number
JPH10261487A
JPH10261487A JP9064429A JP6442997A JPH10261487A JP H10261487 A JPH10261487 A JP H10261487A JP 9064429 A JP9064429 A JP 9064429A JP 6442997 A JP6442997 A JP 6442997A JP H10261487 A JPH10261487 A JP H10261487A
Authority
JP
Japan
Prior art keywords
organic
injection electrode
film
electron injection
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9064429A
Other languages
Japanese (ja)
Other versions
JP3524711B2 (en
Inventor
Yuji Hamada
祐次 浜田
Yasuhiko Matsushita
保彦 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP06442997A priority Critical patent/JP3524711B2/en
Publication of JPH10261487A publication Critical patent/JPH10261487A/en
Application granted granted Critical
Publication of JP3524711B2 publication Critical patent/JP3524711B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the oxidization of electron injection electrode, and improve the wet resistance of organic EL element by forming at least an electron injection electrode side of an organic EL element with an oxidization preventing protecting film of silicon nitride or diamond-like carbon film by ECR plasma CVD method. SOLUTION: At the time of manufacturing an organic EL element, in which an organic layer is laminated between a hole injection electrode and an electron injection electrode, at least an electrode injection electrode side of the organic EL element is formed with an oxidization preventing protecting film for electron injection electrode without decomposing the organic material by electron cyclotron resonance plasma chemical vapor repositioning method (ECR plasma CVD method). The ECR plasma CVD method can form a film at a low temperature without heating a substrate so as to reduce the generation of damage of the base and while it can form the film at a high speed more than 100 nm/minute. Oxidization preventing film can be thereby manufactured without generating damage of the organic material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、有機エレクトロ
ルミネッセンス(EL)素子の製造方法およびそれによ
り製造された有機EL素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an organic electroluminescence (EL) device and an organic EL device manufactured by the method.

【0002】[0002]

【従来の技術】有機エレクトロルミネッセンス(EL)
素子は、新しい自己発光型素子として、期待されてい
る。有機EL素子としは、一般に、陽極となるホール注
入電極と陰極となる電子注入電極との間にホール輸送層
と発光層とが形成された構造(SH−A構造)、または
ホール注入電極と電子注入電極との間に発光層と電子輸
送層とが形成された構造(SH−B構造)の2層構造、
あるいはホール注入電極と電子注入電極との間に、ホー
ル輸送層と発光層と電子輸送層とが形成された構造(D
H構造)3層構造のものがある。
2. Description of the Related Art Organic electroluminescence (EL)
The device is expected as a new self-luminous device. Generally, an organic EL element has a structure in which a hole transport layer and a light emitting layer are formed between a hole injection electrode serving as an anode and an electron injection electrode serving as a cathode (SH-A structure), or a structure in which a hole injection electrode and an electron are provided. A two-layer structure (SH-B structure) in which a light-emitting layer and an electron transport layer are formed between an injection electrode and
Alternatively, a structure in which a hole transport layer, a light emitting layer, and an electron transport layer are formed between a hole injection electrode and an electron injection electrode (D
H structure) There is a three-layer structure.

【0003】上記陽極となるホール注入電極としては、
金やITO(インジウム−スズ酸化物)のような仕事関
数の大きな電極材料を用い、上記陰極となる電子注入電
極としては、Mgのような仕事関数の小さな電極材料を
用いる。
As the hole injection electrode serving as the anode,
An electrode material having a large work function such as gold or ITO (indium-tin oxide) is used, and an electrode material having a small work function such as Mg is used as the electron injection electrode serving as the cathode.

【0004】また、上記ホール輸送層、発光層、電子輸
送層には有機材料が用いられ、ホール輸送層はp型半導
体の性質、電子輸送層はn型半導体の性質を有する材料
が用いられる。上記発光層は、上記SH−A構造では、
n型半導体の性質、SH−B構造ではp型半導体の性
質、DH構造では中性に近い性質を有する材料が用いら
れる。
An organic material is used for the hole transport layer, the light emitting layer, and the electron transport layer. A material having the property of a p-type semiconductor is used for the hole transport layer, and a material having the property of an n-type semiconductor is used for the electron transport layer. The light emitting layer has the SH-A structure,
A material having properties of an n-type semiconductor, properties of a p-type semiconductor in the SH-B structure, and properties close to neutrality in the DH structure is used.

【0005】いずれの構造にしても、有機EL素子はホ
ール注入電極(陽極)から注入されたホールと電子注入
電極(陰極)から注入された電子が、発光層とホール
(または電子)輸送層の界面、および発光層内で再結合
して発光するという原理である。従って、発光機構が衝
突勃起型発光である無機EL素子と比べて、有機EL素
子は低電圧で発光が可能といった特長を持っており、こ
れからの表示素子として非常に有望である。
In any structure, the organic EL device is characterized in that holes injected from the hole injection electrode (anode) and electrons injected from the electron injection electrode (cathode) are used for the light emitting layer and the hole (or electron) transport layer. The principle is that light is emitted by recombination at the interface and in the light emitting layer. Therefore, the organic EL element has a feature that it can emit light at a low voltage as compared with an inorganic EL element whose emission mechanism is a collision erect light emission, and is very promising as a display element in the future.

【0006】[0006]

【発明が解決しようとする課題】前述したように、上記
有機EL素子は、優れた特性を持っているが、耐久性の
面で課題がある。有機EL素子の場合、その発光メカニ
ズムにより、電子注入電極(陰極)に仕事関数の小さい
金属を用いている。しかし、これらの材料は仕事関数が
低い故に、空気中の酸素あるいは水分と反応を起こしや
すく、酸化されやすい。電子注入電極(陰極)が酸化さ
れると、電子の注入が阻害され、発光輝度の低下が見ら
れる、あるいはダークスポット(非発光部)が成長する
などの問題が生じていた。
As described above, the above-mentioned organic EL device has excellent characteristics, but has a problem in durability. In the case of an organic EL element, a metal having a small work function is used for an electron injection electrode (cathode) due to its light emission mechanism. However, since these materials have a low work function, they easily react with oxygen or moisture in the air and are easily oxidized. When the electron injecting electrode (cathode) is oxidized, injection of electrons is hindered, causing a problem such as a decrease in emission luminance or a dark spot (non-light emitting portion) growing.

【0007】また、特開平6−52991号公報(IP
C:H05B 33/26)に開示されているように、
陰極を陰極とは異なる材質の金属で被覆した有機EL素
子が提案されている。しかし、この種の構造の有機EL
発光素子においても、やはり電子注入電極(陰極)の酸
化が発生し、発光輝度の低下や、ダークスポットが発生
するなどの問題があった。
Further, Japanese Patent Laid-Open No. 6-52991 (IP
C: H05B 33/26),
There has been proposed an organic EL device in which a cathode is coated with a metal of a different material from that of the cathode. However, this type of organic EL
Also in the light emitting element, the oxidation of the electron injection electrode (cathode) also occurs, which causes problems such as a decrease in light emission luminance and generation of a dark spot.

【0008】この発明は、上記した従来の問題点を解決
するためになされたものにして、有機材料を分解させず
に、電子注入電極(陰極)の酸化を防止することができ
る酸化防止用保護膜を形成することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and it is an anti-oxidation protection device capable of preventing oxidation of an electron injection electrode (cathode) without decomposing an organic material. The purpose is to form a film.

【0009】[0009]

【課題を解決するための手段】この発明は、ホール注入
電極と電子注入電極との間に、有機層が積層された有機
エレクトロルミネッセンス素子の製造方法であって、有
機エレクトロルミネッセンス素子の少なくとも電子注入
電極側の面にECR(Electron Cyclot
ron Resonance)プラズマCVD(Che
mical Vapor Deposition)法で
酸化防止用保護膜を形成することを特徴とする。
SUMMARY OF THE INVENTION The present invention relates to a method of manufacturing an organic electroluminescent device in which an organic layer is laminated between a hole injection electrode and an electron injection electrode. ECR (Electron Cyclot)
ron Resonance) Plasma CVD (Che
The method is characterized in that a protective film for preventing oxidation is formed by a physical vapor deposition (Metal Vapor Deposition) method.

【0010】ECRプラズマCVD法は、低温(基板加
熱無し)で膜形成ができるため、下地への損傷が少な
く、しかも高速成膜(100nm/分以上)が可能であ
る。このため、酸化防止用保護膜を有機EL素子の有機
材料に損傷を与えずに作製することができる。この酸化
防止用保護膜により外部からの水分、酸素の進入を防止
することができ、電子注入電極の酸化が防止され、輝度
の低下、ダークスポットの成長などを抑制することが可
能となる。
In the ECR plasma CVD method, a film can be formed at a low temperature (without heating the substrate), so that damage to the base is small, and high-speed film formation (100 nm / min or more) is possible. Therefore, the protective film for preventing oxidation can be manufactured without damaging the organic material of the organic EL element. The protective film for preventing oxidation can prevent entry of moisture and oxygen from the outside, prevent oxidation of the electron injection electrode, and suppress a decrease in luminance, growth of a dark spot, and the like.

【0011】また、前記電子注入電極上を電子注入電極
とは異なる材質の金属層で被覆し、この金属層を前記保
護膜で被覆するように構成することができる。
Further, the electron injection electrode may be covered with a metal layer made of a material different from that of the electron injection electrode, and the metal layer may be covered with the protective film.

【0012】金属層のみでの酸化防止膜が不十分であっ
ても、その上に上記の酸化防止用保護膜が形成されてい
るので、電子注入電極の酸化防止が確実に行える。ま
た、金属層により電極の取り出しの自由度も向上する。
Even if the antioxidant film formed of only the metal layer is insufficient, the antioxidant protective film is formed thereon, so that the oxidation of the electron injection electrode can be reliably prevented. Further, the degree of freedom of taking out the electrode is improved by the metal layer.

【0013】前記酸化防止用保護膜として窒化シリコン
(Si3 4 )膜を用いるとよい。
It is preferable to use a silicon nitride (Si 3 N 4 ) film as the oxidation preventing protective film.

【0014】上記したSi3 4 膜は構造が緻密なた
め、酸素や水分を透過しにくいという特徴を持ってい
る。例えば、酸化シリコン(SiO2 )膜と密度を比較
すると、SiO2 膜が2.2g/cm2 であるのに対
し、Si3 4 膜は1.4倍の3.1g/cm2 であ
り、緻密である。
The above-mentioned Si 3 N 4 film has a feature that it is difficult to transmit oxygen and moisture due to its dense structure. For example, comparing the density with a silicon oxide (SiO 2 ) film, the SiO 2 film is 2.2 g / cm 2 , whereas the Si 3 N 4 film is 1.4 g, 3.1 g / cm 2 . , Is dense.

【0015】このSi3 4 膜で有機EL素子の電子注
入電極側の面を保護することにより、外部からの水分、
酸素の進入を防止することができ、輝度の低下、ダーク
スポットの成長などを抑制することが可能である。
By protecting the surface of the organic EL element on the side of the electron injection electrode with this Si 3 N 4 film, external moisture,
Oxygen can be prevented from entering, and a decrease in luminance, growth of dark spots, and the like can be suppressed.

【0016】前記保護膜として、ダイアモンド様炭素
(DLC)膜を用いるとよい。
As the protective film, a diamond-like carbon (DLC) film is preferably used.

【0017】DLC膜は、ダイアモンド結合(sp3
合)とグラファイト結合(sp2 結合)が混在した非晶
質膜である。sp3 / sp2 結合量比、密度、元素組成
比により、6員環炭素を主に5員環、7員環なども含ん
だ3次元の網目構造であると推定できる。その性質は、
高い硬度、化学的に不活性、可視光から赤外光に透明、
高い電気抵抗といった性質がダイアモンドに類似してい
る。このDLC膜は、構造が緻密なため、酸素や水分を
透過しにくいという特徴を持っている。
The DLC film is an amorphous film in which diamond bonds (sp 3 bonds) and graphite bonds (sp 2 bonds) are mixed. From the sp 3 / sp 2 bond amount ratio, the density, and the element composition ratio, it can be estimated that it has a three-dimensional network structure mainly including a 6-membered ring carbon, a 5-membered ring, and a 7-membered ring. Its properties are
High hardness, chemically inert, transparent from visible light to infrared light,
Properties such as high electrical resistance are similar to diamond. This DLC film has a feature that it is difficult to transmit oxygen and moisture because of its dense structure.

【0018】ECRプラズマCVD法によりこのDLC
膜を形成すると、低温(基板加熱無し)で膜形成ができ
るため、下地への損傷が少なく、しかも高速成膜が可能
である。このDLC膜で有機EL素子の電子注入電極側
の面を保護することにより、外部からの水分、酸素の侵
入を防止することができ、輝度の低下、ダークスポット
の成長などを抑制することが可能となる。
This DLC is formed by ECR plasma CVD.
When a film is formed, the film can be formed at a low temperature (without heating the substrate), so that damage to the base is small and high-speed film formation is possible. By protecting the surface of the organic EL element on the electron injection electrode side with the DLC film, it is possible to prevent moisture and oxygen from entering from the outside, and it is possible to suppress a decrease in brightness, growth of a dark spot, and the like. Becomes

【0019】この発明の有機EL発光素子は、ホール注
入電極と電子注入電極との間に、有機層が積層された有
機エレクトロルミネッセンス素子であって、有機エレク
トロルミネッセンス素子の少なくとも電子注入電極側の
面に窒化シリコン膜からなる保護膜が設けられている。
The organic EL device according to the present invention is an organic electroluminescence device having an organic layer laminated between a hole injection electrode and an electron injection electrode, wherein at least a surface of the organic electroluminescence device on the electron injection electrode side. Is provided with a protective film made of a silicon nitride film.

【0020】上記したように、Si3 4 膜で有機EL
素子の電子注入側の面を保護することにより、外部から
の水分、酸素の進入を防止することができ、輝度の低
下、ダークスポットの成長などを抑制することが可能で
ある。
As described above, the organic EL is formed by the Si 3 N 4 film.
By protecting the surface of the element on the electron injection side, entry of moisture and oxygen from the outside can be prevented, and a decrease in luminance, growth of a dark spot, and the like can be suppressed.

【0021】また、この発明の有機EL発光素子は、ホ
ール注入電極と電子注入電極との間に、有機層が積層さ
れた有機エレクトロルミネッセンス素子であって、有機
エレクトロルミネッセンス素子の少なくとも電子注入電
極側の面にダイアモンド様炭素膜からなる保護膜が設け
られている。
Further, the organic EL light emitting device of the present invention is an organic electroluminescent device having an organic layer laminated between a hole injection electrode and an electron injection electrode, wherein at least the electron injection electrode side of the organic electroluminescence device is provided. Is provided with a protective film made of a diamond-like carbon film.

【0022】このDLC膜で有機EL素子の電子注入電
極側の面を保護することにより、外部からの水分、酸素
の侵入を防止することができ、輝度の低下、ダークスポ
ットの成長などを抑制することが可能である。
By protecting the surface of the organic EL element on the electron injection electrode side with the DLC film, intrusion of moisture and oxygen from the outside can be prevented, and a decrease in luminance, growth of a dark spot, and the like can be suppressed. It is possible.

【0023】[0023]

【発明の実施の形態】以下、この発明の実施の形態につ
き図面を参照して説明する。図1は、この発明を適用し
た3層構造有機EL素子の断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a three-layer organic EL device to which the present invention is applied.

【0024】この発明の有機EL素子は、厚さ1mm程
度の透明ガラス基板1上に、インジウム−スズ酸化物
(ITO)からなる陽極となるホール注入電極2、ホー
ル輸送層3(厚み500Å)、発光層4(厚み200
Å)、電子輸送層5(厚み500Å)、AlLi合金か
らなる陰極となる電子注入電極6(厚み2000Å)、
Alからなる金属保護膜(厚み20000Å)7とが順
に形成されている。更に、この発明では、金属保護膜7
上に、有機EL素子を覆うようにECRプラズマ法で形
成された窒化シリコン(Si3 4 )膜またはDLC膜
からなる酸化防止用保護膜8が形成されている。
The organic EL device of the present invention comprises a transparent glass substrate 1 having a thickness of about 1 mm, a hole injection electrode 2 serving as an anode made of indium-tin oxide (ITO), a hole transport layer 3 (thickness of 500 mm), Light-emitting layer 4 (thickness 200
Å), an electron transport layer 5 (thickness 500 Å), an electron injection electrode 6 (thickness 2000 Å) serving as a cathode made of an AlLi alloy,
A metal protective film (thickness: 20000 °) 7 made of Al is formed in order. Further, in the present invention, the metal protective film 7
An oxidation protection film 8 made of a silicon nitride (Si 3 N 4 ) film or a DLC film formed by an ECR plasma method is formed thereon so as to cover the organic EL element.

【0025】上記したホール輸送層3、発光層4、電子
輸送層5は、それぞれ有機ELが用いられている。具体
的には、例えば、ホール輸送層3は、下記の化学式1で
示されるトリフェニルアミン誘導体(MTDATA)か
らなり、発光層4は、下記の化学式2で示されるN,
N’−Diphenyl−N,N’−di(α−nap
hthyl)benzidine(αNPD)をホスト
材料とし、下記の化学式3で示すルブレンをドーパント
したものからなり、電子輸送層5は下記の化学式4で示
す10−ベンゾ(h)−キノリール−ベリリウム錯体
(BeBq2 )からなっている。
An organic EL is used for each of the above-described hole transport layer 3, light-emitting layer 4, and electron transport layer 5. Specifically, for example, the hole transport layer 3 is made of a triphenylamine derivative (MTDATA) represented by the following chemical formula 1, and the light emitting layer 4 is formed of N,
N'-Diphenyl-N, N'-di (α-nap
(hthyl) benzidine (αNPD) as a host material, doped with rubrene represented by the following chemical formula 3, and the electron transport layer 5 is a 10-benzo (h) -quinolyl-beryllium complex (BeBq 2 ).

【0026】[0026]

【化1】 Embedded image

【0027】[0027]

【化2】 Embedded image

【0028】[0028]

【化3】 Embedded image

【0029】[0029]

【化4】 Embedded image

【0030】上記したように、この発明では、金属保護
膜7上に形成する酸化防止用保護膜8として、Si3
4 膜またはDCL膜をECRプラズマCVD法を用いて
形成している。ECRプラズマCVD法は、電子サイク
ロトロン共鳴(ECR)により、比較的低い圧力領域
(2×10-3Pa以上)で高密度プラズマが得られる。
このプラズマを利用して、原料ガスをイオン化し、試料
表面に当てて、膜を堆積させることができる。このよう
にECRプラズマCVD法は、プラズマの反応とイオン
衝撃の複合効果を利用するために加熱せずに、常温でS
3 4 膜またはDCL膜の薄膜を金属保護膜7の上に
形成でき、有機材料に何等障害を与えずに、有機EL素
子の電子注入電極6側の面を被覆することができる。
As described above, according to the present invention, as the oxidation preventing protection film 8 formed on the metal protection film 7, Si 3 N
Four films or DCL films are formed by using the ECR plasma CVD method. In the ECR plasma CVD method, high-density plasma can be obtained in a relatively low pressure region (2 × 10 −3 Pa or more) by electron cyclotron resonance (ECR).
Using this plasma, the source gas can be ionized and applied to the sample surface to deposit a film. As described above, the ECR plasma CVD method uses a combined effect of plasma reaction and ion bombardment, and does not perform heating, but uses S
A thin film of an i 3 N 4 film or a DCL film can be formed on the metal protective film 7, and the surface on the electron injection electrode 6 side of the organic EL element can be covered without giving any obstacle to the organic material.

【0031】次に、上記した図1に示す構造の有機EL
素子の製造方法の一例につき説明する。
Next, the organic EL having the structure shown in FIG.
An example of a method for manufacturing an element will be described.

【0032】まず、ガラス基板1上にインジウム−スズ
酸化物(ITO)が形成された基板を中性洗剤により洗
浄した後、アセトン中で20分間、エタノール中で20
分間超音波洗浄を行った。次いで、上記基板1を沸騰し
たエタノール中に約1分間入れ、取り出した後、すぐに
送風乾燥を行った。
First, a substrate having indium-tin oxide (ITO) formed on a glass substrate 1 is washed with a neutral detergent, and then washed in acetone for 20 minutes and in ethanol for 20 minutes.
Ultrasonic cleaning was performed for minutes. Next, the substrate 1 was placed in boiling ethanol for about 1 minute, taken out, and immediately blow-dried.

【0033】この後、上記ITOからなるホール注入電
極(陽極)2上にMTDATAを真空蒸着して、ホール
輸送層3を形成した。続いて、このホール輸送層3上に
αNPDとルブレンを共蒸着して発光層4を形成し、そ
の上にBeBq2を真空蒸着して電子輸送層5を形成し
た。さらに、AlLiからなる電子注入電極(陰極)6
とAlからなる金属保護膜8を真空蒸着法で順に形成し
た。尚、これらの蒸着はいずれも真空度1×10-6Tor
r、基板温度制御無しの条件下で行った。
Thereafter, MTDATA was vacuum-deposited on the hole injection electrode (anode) 2 made of ITO to form a hole transport layer 3. Subsequently, αNPD and rubrene were co-evaporated on the hole transport layer 3 to form a light emitting layer 4, and BeBq 2 was vacuum-deposited thereon to form an electron transport layer 5. Furthermore, an electron injection electrode (cathode) 6 made of AlLi
And a metal protective film 8 made of Al were sequentially formed by a vacuum deposition method. All of these depositions were performed at a degree of vacuum of 1 × 10 −6 Tor.
r, performed under conditions without substrate temperature control.

【0034】酸化防止用保護膜8の形成に使用するEC
RプラズマCVD装置につき説明する。図2はECRプ
ラズマCVD装置のECRイオン源を示す模式図であ
る。
EC used for forming protective film 8 for preventing oxidation
The R plasma CVD apparatus will be described. FIG. 2 is a schematic diagram showing an ECR ion source of the ECR plasma CVD apparatus.

【0035】プラズマ室11は空洞共振器になってい
て、その周囲に磁気コイル12を配置してある。このプ
ラズマ室11は冷却パイプ21に冷却水を供給すること
で冷却され。図示しないマグネトロンで発生したマイク
ロ波(周波数2.45GHz)は、矩形導波管13で運
ばれてきて、石英ガラス板14を通してプラズマ室11
にはいる。プラズマ室11内にガス供給管6から窒素
(N2 )、酸素(O2 )、アルゴン(Ar)などのガス
が供給され、このガスがプラズマ流11aとなり、デポ
ジション室15に与えられる。デポジション室15内に
は、試料ホルダー16に保持されて試料17が配置さ
れ、ガス供給管19から供給されるシラン(SiH4
ガスなどの原料ガスが分解され、試料17上に膜が堆積
される。
The plasma chamber 11 is a cavity resonator, around which a magnetic coil 12 is arranged. The plasma chamber 11 is cooled by supplying cooling water to the cooling pipe 21. A microwave (frequency 2.45 GHz) generated by a magnetron (not shown) is carried by a rectangular waveguide 13 and passes through a quartz glass plate 14 to form a plasma chamber 11.
Enter. Gases such as nitrogen (N 2 ), oxygen (O 2 ), and argon (Ar) are supplied from the gas supply pipe 6 into the plasma chamber 11, and this gas becomes a plasma flow 11 a and is supplied to the deposition chamber 15. In the deposition chamber 15, a sample 17 is disposed while being held by a sample holder 16, and silane (SiH 4 ) supplied from a gas supply pipe 19 is provided.
A source gas such as a gas is decomposed, and a film is deposited on the sample 17.

【0036】尚、試料17とプラズマ室11の間には、
シャッタ20が配置されている。
The space between the sample 17 and the plasma chamber 11 is
A shutter 20 is provided.

【0037】次に、この有機EL素子の金属保護膜7上
に酸化防止用保護膜8としてSi34 膜をECRプラ
ズマCVD法を用いて形成する方法につき説明する。
Next, a method of forming an Si 3 N 4 film as an oxidation preventing protective film 8 on the metal protective film 7 of the organic EL element by using the ECR plasma CVD method will be described.

【0038】マグネトロンで発生したマイクロ波(周波
数2.45GHz)が、矩形導波管13により、石英ガ
ラス板14を通してプラズマ室11に入る。磁界中の電
子は、いわゆるローレンツ力を受け、磁力線を軸にして
旋回運動する(サイクロトロン運動)。
The microwave (frequency 2.45 GHz) generated by the magnetron enters the plasma chamber 11 through the quartz glass plate 14 by the rectangular waveguide 13. Electrons in a magnetic field receive a so-called Lorentz force and rotate around a line of magnetic force (cyclotron motion).

【0039】その時の電子の回転周波数(サイクロトン
周波数)fcは、次の数式1ように表せる。
The electron rotation frequency (cycloton frequency) fc at that time can be expressed by the following equation (1).

【0040】[0040]

【数1】 fc=qB/2πm=2.8B×106 [Hz] ここで、mは電子の質量、qは電子の電荷の絶対値、B
は磁束密度である。
Fc = qB / 2πm = 2.8 B × 10 6 [Hz] where m is the mass of the electron, q is the absolute value of the charge of the electron, and B
Is the magnetic flux density.

【0041】この周波数fcがマイクロ波の周波数に一
致したときに、電子サイクロトロン共鳴(ECR)条件
が成立し、共鳴吸収現象を生じる。電子の運動エネルギ
ー、電離効率は増加し、比較的低い圧力領域(2×10
-3Pa以上)で高密度プラズマが得られる。そのときの
磁界強度は上記数式より875ガウスであることがわか
る。また、磁界は、試料方向に近づくほど緩やかに弱く
なる発散磁界になっている。
When the frequency fc coincides with the frequency of the microwave, the electron cyclotron resonance (ECR) condition is satisfied, and a resonance absorption phenomenon occurs. The kinetic energy and ionization efficiency of the electrons increase, and the pressure region (2 × 10
-3 Pa or more) to obtain high density plasma. The magnetic field intensity at that time is found to be 875 Gauss from the above equation. Further, the magnetic field is a divergent magnetic field that gradually weakens as approaching the sample direction.

【0042】ECRプラズマ中では、円運動する高エネ
ルギー電子が多量に存在する。また、その電子は大きい
磁気モーメントを持ち、発散磁界の強度の勾配と相互作
用して、試料ホルダ方向に加速される。イオン源と試料
ホルダ16は電気的に絶縁してあるため、試料ホルダ1
6方向に加速された電子は負の空間電位を発生させる。
その結果、空間電位を中和させるように、プラズマ室1
1からイオンが引き出される。つまり、電子サイクロト
ロン共鳴によって、発生した高密度プラズマは、発散磁
界に沿って効率よく試料ホルダ16方向へ輸送される。
このときのイオンのエネルギーは10〜20eVであ
り、試料17表面に適度の衝撃を与える。
In the ECR plasma, a large amount of circularly moving high-energy electrons are present. The electrons also have a large magnetic moment, interact with the intensity gradient of the diverging magnetic field, and are accelerated toward the sample holder. Since the ion source and the sample holder 16 are electrically insulated, the sample holder 1
Electrons accelerated in six directions generate a negative space potential.
As a result, the plasma chamber 1 is neutralized to neutralize the space potential.
Ions are extracted from 1. That is, the high-density plasma generated by the electron cyclotron resonance is efficiently transported along the diverging magnetic field toward the sample holder 16.
At this time, the energy of the ions is 10 to 20 eV, and an appropriate impact is applied to the surface of the sample 17.

【0043】有機EL素子へのSi3 4 膜の形成は、
原料ガスにSiH4 ガスとN2 ガスを用いる。まず、N
2 ガスがガス供給管18からプラズマ室11に導入され
て、N+ イオンになり、10〜20eVの加速を受け
て、有機EL素子の表面にあたる。一方、デポジション
室15中にガス供給管19からSiH4 ガスを導入する
と、デポジション室15内の活性な窒素プラズマに触れ
て、SiH4 ガスは分解する。さらに有機EL素子の表
面上で、次の数式2で示す反応がN+ イオンの衝撃効果
により促進され、Si3 4 膜8が有機EL素子の金属
保護膜7を含めこの表面に堆積する。
The formation of the Si 3 N 4 film on the organic EL device is performed as follows.
SiH 4 gas and N 2 gas are used as source gases. First, N
The two gases are introduced from the gas supply pipe 18 into the plasma chamber 11 and become N + ions, which are accelerated by 10 to 20 eV and hit the surface of the organic EL element. On the other hand, when SiH 4 gas is introduced into the deposition chamber 15 from the gas supply pipe 19, the SiH 4 gas is decomposed by contacting the active nitrogen plasma in the deposition chamber 15. Further, on the surface of the organic EL element, a reaction represented by the following formula 2 is accelerated by the bombardment effect of N + ions, and the Si 3 N 4 film 8 is deposited on this surface including the metal protective film 7 of the organic EL element.

【0044】[0044]

【数2】3Si+4N→Si3 4 [Equation 2] 3Si + 4N → Si 3 N 4

【0045】このように、ECRプラズマCVD法は、
プラズマの反応とイオン衝撃の複合効果を利用するため
に高温で加熱せずに、常温で薄膜を形成できる。
As described above, the ECR plasma CVD method is
A thin film can be formed at room temperature without heating at high temperature to utilize the combined effect of plasma reaction and ion bombardment.

【0046】上記したように、Si3 4 膜からなる酸
化防止用保護膜8を金属保護膜7の上に堆積形成して被
覆した有機EL素子を封止材とシールドガラスを用いて
封止した後、ホール注入電極(陽極)2をプラス、電子
注入電極(陰極)6をマイナスに順バイアスして、電圧
を印加すると、電圧10Vで輝度12,000cd/m
2 の高輝度な黄色発光を得ることができた。
As described above, the organic EL element in which the oxidation-preventing protective film 8 made of the Si 3 N 4 film is deposited and formed on the metal protective film 7 and sealed is sealed using the sealing material and the shield glass. After that, the hole injection electrode (anode) 2 is positively biased and the electron injection electrode (cathode) 6 is forwardly biased negatively, and when a voltage is applied, the luminance is 12,000 cd / m at a voltage of 10 V.
2 high-brightness yellow light emission was obtained.

【0047】さらに、この素子を耐温試験(60℃、9
0%で発光させずに放置)にかけて、500時間後に再
度、電圧を印加した。その結果、10Vで輝度12,0
00cd/m2 の輝度を得ることができ、発光特性が落
ちていないことを確認した。また、発光部のダークスポ
ット(非発光部)の成長も見られなかった。
Further, the device was subjected to a temperature resistance test (60 ° C., 9
(Leaving at 0% without emitting light), and after 500 hours, a voltage was applied again. As a result, at 10 V, the luminance is 12,0.
A luminance of 00 cd / m 2 was obtained, and it was confirmed that the light emission characteristics did not decrease. Also, no growth of dark spots (non-light-emitting portions) in the light-emitting portions was observed.

【0048】また、酸化防止用保護膜8として、DLC
膜を上記と同様にECRプラズマCVD法により金属保
護膜7上に形成することができる。
The protective film 8 for preventing oxidation is made of DLC
A film can be formed on the metal protective film 7 by the ECR plasma CVD method in the same manner as described above.

【0049】上記したように、DLC膜は、本質的には
非晶質であり、sp3 結合とsp2結合を含んでいる。
その構造の詳細はなお研究中であるが、sp3 / sp2
結合量比、密度、元素組成比によって、ある程度推定で
きる。即ち、6員環炭素を主に5員環、7員環なども含
んだ3次元の網目構造をしている。その性質は、高い硬
度、科学的に不活性、可視光から赤外光に透明、高い電
気抵抗といった性質がダイアモンドに類似している。こ
のDLCは構造が緻密なため、酸素や水分を透過しにく
いという特徴を持っており、有機EL素子の酸化防止用
保護膜として有用である。
As described above, the DLC film is essentially amorphous and contains sp 3 bonds and sp 2 bonds.
Details of its structure are still under study, but sp 3 / sp 2
It can be estimated to some extent from the bond ratio, density, and elemental composition ratio. That is, it has a three-dimensional network structure mainly including a 6-membered ring carbon, a 5-membered ring, a 7-membered ring and the like. Its properties are similar to diamond, such as high hardness, scientifically inert, transparent from visible light to infrared light, and high electrical resistance. This DLC has a feature that it is difficult to transmit oxygen and moisture due to its dense structure, and is useful as a protective film for preventing oxidation of an organic EL device.

【0050】ところで、DLC膜の成膜は、RFスパッ
タリング法、マグネトロンスパッタ法、あるいは電子ビ
ーム蒸着法など種々の方法があるが、ECRプラズマC
VD法を用いると、膜形成中に有機EL素子に対する損
傷も少なくすることができる。前述したように、ECR
プラズマCVD法は、低温(基板加熱無し)で膜形成が
できるため、下地への損傷が少なく、しかも高速成膜が
可能である。有機EL素子の場合、有機材料を用いてい
るため、耐熱性が弱い。従って、このECRプラズマC
VD法を用いれば、低温でDLC膜の形成が可能であ
り、有機材料に何等悪影響を与えずに酸化防止膜が形成
できる。また、ECRプラズマCVD法は、高真空下に
おいて成膜が可能であることより、不純物の混入が少な
い。
The DLC film can be formed by various methods such as an RF sputtering method, a magnetron sputtering method, and an electron beam evaporation method.
The use of the VD method can reduce damage to the organic EL element during film formation. As mentioned above, ECR
In the plasma CVD method, a film can be formed at a low temperature (without substrate heating), so that damage to a base is small and high-speed film formation is possible. In the case of an organic EL device, heat resistance is weak because an organic material is used. Therefore, this ECR plasma C
By using the VD method, a DLC film can be formed at a low temperature, and an antioxidant film can be formed without affecting the organic material at all. In addition, the ECR plasma CVD method can form a film under a high vacuum, so that the amount of impurities is small.

【0051】ECRプラズマCVD法により、この有機
EL素子の金属保護膜7の上にDLC膜からなる酸化防
止用保護膜8を形成した有機EL素子を用意し、その有
機EL素子を封止剤とシールドガラスを用いて封止した
後、ホール注入電極(陽極)2をプラス、電子注入電極
(陰極)6をマイナスに順バイアスして、電圧を印加す
ると、電圧10Vで輝度12,000cd/m2 の高輝
度な黄色発光を得ることができた。
An organic EL device was prepared by forming an oxidation-preventing protective film 8 made of a DLC film on the metal protective film 7 of the organic EL device by ECR plasma CVD, and the organic EL device was used as a sealant. After sealing with a shield glass, the hole injection electrode (anode) 2 is positively biased and the electron injection electrode (cathode) 6 is forward biased negatively, and when a voltage is applied, the luminance is 12,000 cd / m 2 at a voltage of 10V. , High-brightness yellow light emission was obtained.

【0052】更に、この素子を耐湿試験(60℃、90
%で発光させずに放置)にかけて、500時間後に再
度、電圧を印加した。その結果、10Vで輝度12,0
00cd/m2 の輝度を得ることができ、発光特性が落
ちていないことを確認した。また、発光部のダークスポ
ット(非発光部)の成長も全く見られなかった。
Further, this device was subjected to a humidity resistance test (60 ° C., 90
%), And after 500 hours, a voltage was applied again. As a result, at 10 V, the luminance is 12,0.
A luminance of 00 cd / m 2 was obtained, and it was confirmed that the light emission characteristics did not decrease. Also, no growth of a dark spot (non-light-emitting portion) in the light-emitting portion was observed.

【0053】また、比較例として、上記各実施の形態で
用いた有機EL素子において、Si 3 4 膜またはDL
C膜を付けない素子を作成した。この素子は、Si3
4 膜またはDLC膜を付けない以外の素子構成は上記の
実施の形態と同じである。この素子に同様に、10Vを
順バイアスに印加すると、輝度12,000cd/m 2
の黄色の発光を得ることができ、初期特性においては、
上記実施の形態の素子と同等であることを確認した。さ
らに、実施の形態と同様の耐湿試験を行ったところ、5
00時間経過後、10V印加しても輝度は5300cd
/m2 しか得ることができず、初期輝度の半分以下にな
ったことがわかった。また、ダークスポットは発光部の
30%以上を占め、劣化が著しく進行したことがわかっ
た。これは、Si3 4 膜またはDLC膜を付けなかっ
たために、外部から水分、酸素が進入して陰極の酸化が
進行したものと考える。
As a comparative example, in each of the above embodiments,
In the organic EL device used, Si ThreeNFourMembrane or DL
An element without a C film was prepared. This element is composed of SiThreeN
FourThe device configuration except that the film or DLC film is not
This is the same as the embodiment. Similarly, 10V is applied to this element.
When applied to a forward bias, the luminance is 12,000 cd / m Two
Can be obtained, and in the initial characteristics,
It was confirmed that the device was equivalent to the device of the above embodiment. Sa
Further, the same moisture resistance test as in the embodiment was performed.
After the lapse of 00 hours, the luminance is 5300 cd even when 10 V is applied.
/ MTwoOnly less than half of the initial brightness.
It turned out that it was. In addition, the dark spot is
Occupies 30% or more, indicating that deterioration has progressed remarkably
Was. This is SiThreeNFourNo film or DLC film
As a result, moisture and oxygen enter from the outside to oxidize the cathode.
Think advanced.

【0054】上記した実施の形態では、酸化防止用保護
膜8と電子注入用電極(陰極)6との間に、金属保護膜
7を設けているが、金属保護膜7を省略しても酸化防止
用保護膜7の保護膜としての機能が十分であるので、耐
用性は確保できる。
In the above-described embodiment, the metal protective film 7 is provided between the protective film 8 for preventing oxidation and the electrode (cathode) 6 for electron injection. Since the function of the protection film 7 as a protection film is sufficient, the durability can be ensured.

【0055】上記した実施の形態においては、酸化防止
用保護膜8として、Si3 4 膜またはDLC膜を用い
たが、形成時に有機材料に障害を与えない低温形成で
き、外部から水分、酸素の進入を防ぐことができる膜で
あれば、他の組成の膜を用いることができる。
In the above-described embodiment, the Si 3 N 4 film or the DLC film is used as the oxidation-preventing protective film 8. However, it can be formed at a low temperature that does not hinder the organic material at the time of formation. A film having another composition can be used as long as the film can prevent the intrusion of the gas.

【0056】[0056]

【発明の効果】以上説明したように、この発明によれ
ば、有機ELその有機材料に何等悪影響を与えずに、S
3 4 膜またはDLC膜をからなる酸化防止用保護膜
を設けることができので、電子注入電極(陰極)の酸化
を防止することができ、有機EL素子の耐湿性を向上さ
せることができる。
As described above, according to the present invention, the organic EL can be formed without adversely affecting the organic material.
Since an anti-oxidation protective film made of an i 3 N 4 film or a DLC film can be provided, oxidation of the electron injection electrode (cathode) can be prevented, and the moisture resistance of the organic EL element can be improved. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明を適用した3層構造有機EL素子の断
面図である。
FIG. 1 is a sectional view of a three-layer organic EL device to which the present invention is applied.

【図2】ECRプラズマCVD装置のECRイオン源を
示す模式図である。
FIG. 2 is a schematic diagram showing an ECR ion source of the ECR plasma CVD apparatus.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 ITO(ホール注入電極) 3 ホール輸送層 4 発光層 5 電子輸送層 6 AlLi(電子注入電極) 7 Al膜(金属保護膜) 8 酸化防止用保護膜(Si3 4 膜またはDLC膜)Reference Signs List 1 glass substrate 2 ITO (hole injection electrode) 3 hole transport layer 4 light emitting layer 5 electron transport layer 6 AlLi (electron injection electrode) 7 Al film (metal protective film) 8 protective film for oxidation prevention (Si 3 N 4 film or DLC) film)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ホール注入電極と電子注入電極との間
に、有機層が積層された有機エレクトロルミネッセンス
素子の製造方法であって、有機エレクトロルミネッセン
ス素子の少なくとも電子注入電極側の面にECRプラズ
マCVD法で酸化防止用保護膜を形成することを特徴と
する有機エレクトロルミネッセンス素子の製造方法。
1. A method of manufacturing an organic electroluminescence device having an organic layer laminated between a hole injection electrode and an electron injection electrode, wherein at least a surface of the organic electroluminescence device on the electron injection electrode side is ECR plasma CVD. A method for manufacturing an organic electroluminescent device, comprising forming a protective film for preventing oxidation by a method.
【請求項2】 前記電子注入電極上を電子注入電極とは
異なる材質の金属層で被覆し、この金属層を前記酸化防
止用保護膜で被覆することを特徴とする請求項1に記載
の有機エレクトロルミネッセンス素子の製造方法。
2. The organic material according to claim 1, wherein the electron injection electrode is covered with a metal layer made of a material different from that of the electron injection electrode, and the metal layer is covered with the protection film for preventing oxidation. A method for manufacturing an electroluminescence element.
【請求項3】 前記酸化防止用保護膜が窒化シリコン膜
からなることを特徴とする請求項1または2に記載の有
機エレクトロルミネッセンス素子の製造方法。
3. The method for manufacturing an organic electroluminescence device according to claim 1, wherein the protection film for preventing oxidation is made of a silicon nitride film.
【請求項4】 前記酸化防止用保護膜がダイアモンド様
炭素膜からなることを特徴とする請求項1または2に記
載の有機エレクトロルミネッセンス素子の製造方法。
4. The method for manufacturing an organic electroluminescent device according to claim 1, wherein the protective film for preventing oxidation comprises a diamond-like carbon film.
【請求項5】 ホール注入電極と電子注入電極との間
に、有機層が積層された有機エレクトロルミネッセンス
素子であって、有機エレクトロルミネッセンス素子の少
なくとも電子注入電極側の面に窒化シリコン膜からなる
酸化防止用保護膜が設けられていることを特徴とする有
機エレクトロルミネッセンス素子。
5. An organic electroluminescent device having an organic layer laminated between a hole injection electrode and an electron injection electrode, wherein at least the surface of the organic electroluminescence device on the electron injection electrode side is formed of a silicon nitride film. An organic electroluminescent device, comprising a protective film for prevention.
【請求項6】 ホール注入電極と電子注入電極との間
に、有機層が積層された有機エレクトロルミネッセンス
素子であって、有機エレクトロルミネッセンス素子の少
なくとも電子注入電極側の面にダイアモンド様炭素膜か
らなる酸化防止用保護膜が設けられていることを特徴と
する有機エレクトロルミネッセンス素子。
6. An organic electroluminescence device having an organic layer laminated between a hole injection electrode and an electron injection electrode, wherein at least a surface of the organic electroluminescence device on the electron injection electrode side is formed of a diamond-like carbon film. An organic electroluminescence device comprising a protective film for preventing oxidation.
【請求項7】 前記電子注入電極と酸化防止用保護膜と
の間に電子注入電極とは異なる材質の金属層が設けられ
ていることを特徴とする請求項5または6に記載の有機
エレクトロルミネッセンス素子。
7. The organic electroluminescence according to claim 5, wherein a metal layer made of a material different from that of the electron injection electrode is provided between the electron injection electrode and the protective film for preventing oxidation. element.
JP06442997A 1997-03-18 1997-03-18 Organic electroluminescence device and method of manufacturing the same Expired - Fee Related JP3524711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06442997A JP3524711B2 (en) 1997-03-18 1997-03-18 Organic electroluminescence device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06442997A JP3524711B2 (en) 1997-03-18 1997-03-18 Organic electroluminescence device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10261487A true JPH10261487A (en) 1998-09-29
JP3524711B2 JP3524711B2 (en) 2004-05-10

Family

ID=13258034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06442997A Expired - Fee Related JP3524711B2 (en) 1997-03-18 1997-03-18 Organic electroluminescence device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3524711B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1071144A2 (en) * 1999-07-23 2001-01-24 Sel Semiconductor Energy Laboratory Co., Ltd. EL display device and a method of manufacturing the same
JP2002049333A (en) * 2000-05-12 2002-02-15 Semiconductor Energy Lab Co Ltd Light emitting device and electrical equipment
JP2002117971A (en) * 2000-08-04 2002-04-19 Semiconductor Energy Lab Co Ltd Luminescent device and its manufacturing method
JP2002134268A (en) * 2000-10-27 2002-05-10 Tdk Corp Organic el element and organic el display panel using organic el element
JP2002151253A (en) * 2000-08-18 2002-05-24 Semiconductor Energy Lab Co Ltd Luminescent device and display device
JP2002158090A (en) * 2000-09-08 2002-05-31 Semiconductor Energy Lab Co Ltd Light-emitting device, its production method and thin film forming device
US6660409B1 (en) 1999-09-16 2003-12-09 Panasonic Communications Co., Ltd Electronic device and process for producing the same
WO2005105428A1 (en) 2004-04-28 2005-11-10 Zeon Corporation Multilayer body, light-emitting device and use thereof
JP2005353577A (en) * 2004-06-10 2005-12-22 Samsung Sdi Co Ltd Organic electroluminescent display device and its manufacturing method
JP2006032977A (en) * 1999-06-04 2006-02-02 Semiconductor Energy Lab Co Ltd Electro-optical device
WO2006033164A1 (en) * 2004-09-24 2006-03-30 Tadahiro Ohmi Organic el light emitting element, manufacturing method thereof and display apparatus
KR100569607B1 (en) * 2003-08-26 2006-04-10 한국전자통신연구원 Method for forming a passivation layer in organic emitting device
KR100628811B1 (en) 2003-04-30 2006-09-26 가부시키가이샤 시마즈세이사쿠쇼 Apparatus and method for deposition of protective film for organic electroluminescence
JP2006294608A (en) * 2005-04-06 2006-10-26 Samsung Sdi Co Ltd Manufacturing method for organic electroluminescent element
JP2007188890A (en) * 1999-06-04 2007-07-26 Semiconductor Energy Lab Co Ltd Manufacturing method of electro-optical device
JP2008218415A (en) * 2007-03-07 2008-09-18 Samsung Sdi Co Ltd Organic light emitting display device, and method of manufacturing the same
JP2008251715A (en) * 2007-03-29 2008-10-16 Toshiba Corp Polymer arrester and its manufacturing method
WO2009017024A1 (en) * 2007-07-31 2009-02-05 Sumitomo Chemical Company, Limited Method for manufacturing organic electroluminescence device
US7633223B2 (en) 2000-11-10 2009-12-15 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting device provided with drying agent at side surfaces of a sealing member
US7632704B2 (en) * 2004-04-22 2009-12-15 Canon Kabushiki Kaisha Manufacturing method for organic electronic element and manufacturing apparatus therefor
US7854640B2 (en) 2000-08-04 2010-12-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
JP2014063174A (en) * 2013-10-25 2014-04-10 Semiconductor Energy Lab Co Ltd Display device
US8890172B2 (en) 1999-06-04 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing an electro-optical device
US9059049B2 (en) 1999-09-17 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. EL display device

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8890172B2 (en) 1999-06-04 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing an electro-optical device
JP4515469B2 (en) * 1999-06-04 2010-07-28 株式会社半導体エネルギー研究所 Method for manufacturing electro-optical device
JP4515349B2 (en) * 1999-06-04 2010-07-28 株式会社半導体エネルギー研究所 Electro-optic device
JP2007188890A (en) * 1999-06-04 2007-07-26 Semiconductor Energy Lab Co Ltd Manufacturing method of electro-optical device
US9293726B2 (en) 1999-06-04 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing an electro-optical device
JP2006032977A (en) * 1999-06-04 2006-02-02 Semiconductor Energy Lab Co Ltd Electro-optical device
EP1071144A2 (en) * 1999-07-23 2001-01-24 Sel Semiconductor Energy Laboratory Co., Ltd. EL display device and a method of manufacturing the same
US7456037B2 (en) 1999-07-23 2008-11-25 Semiconductor Energy Laboratory Co., Ltd. EL display device and a method of manufacturing the same
EP1071144A3 (en) * 1999-07-23 2006-04-26 Sel Semiconductor Energy Laboratory Co., Ltd. EL display device and a method of manufacturing the same
US6660409B1 (en) 1999-09-16 2003-12-09 Panasonic Communications Co., Ltd Electronic device and process for producing the same
US9059049B2 (en) 1999-09-17 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. EL display device
US9431470B2 (en) 1999-09-17 2016-08-30 Semiconductor Energy Laboratory Co., Ltd. Display device
US9735218B2 (en) 1999-09-17 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. EL display device and method for manufacturing the same
JP2002049333A (en) * 2000-05-12 2002-02-15 Semiconductor Energy Lab Co Ltd Light emitting device and electrical equipment
US7854640B2 (en) 2000-08-04 2010-12-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
JP4566475B2 (en) * 2000-08-04 2010-10-20 株式会社半導体エネルギー研究所 Method for manufacturing light emitting device
JP2002117971A (en) * 2000-08-04 2002-04-19 Semiconductor Energy Lab Co Ltd Luminescent device and its manufacturing method
US10236331B2 (en) 2000-08-18 2019-03-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
US9263697B2 (en) 2000-08-18 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
JP2002151253A (en) * 2000-08-18 2002-05-24 Semiconductor Energy Lab Co Ltd Luminescent device and display device
US8497516B2 (en) 2000-08-18 2013-07-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
US9768239B2 (en) 2000-08-18 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
US8106407B2 (en) 2000-08-18 2012-01-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
US8735899B2 (en) 2000-08-18 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
JP2002158090A (en) * 2000-09-08 2002-05-31 Semiconductor Energy Lab Co Ltd Light-emitting device, its production method and thin film forming device
JP2002134268A (en) * 2000-10-27 2002-05-10 Tdk Corp Organic el element and organic el display panel using organic el element
US7633223B2 (en) 2000-11-10 2009-12-15 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting device provided with drying agent at side surfaces of a sealing member
CN100442574C (en) * 2003-04-30 2008-12-10 株式会社岛津制作所 Deposition method and device for organic electroluminescent protective film
KR100628811B1 (en) 2003-04-30 2006-09-26 가부시키가이샤 시마즈세이사쿠쇼 Apparatus and method for deposition of protective film for organic electroluminescence
KR100569607B1 (en) * 2003-08-26 2006-04-10 한국전자통신연구원 Method for forming a passivation layer in organic emitting device
US7632704B2 (en) * 2004-04-22 2009-12-15 Canon Kabushiki Kaisha Manufacturing method for organic electronic element and manufacturing apparatus therefor
WO2005105428A1 (en) 2004-04-28 2005-11-10 Zeon Corporation Multilayer body, light-emitting device and use thereof
US7902087B2 (en) 2004-06-10 2011-03-08 Samsung Mobile Display Co., Ltd. Organic electroluminescent display device and method of preparing the same
JP2005353577A (en) * 2004-06-10 2005-12-22 Samsung Sdi Co Ltd Organic electroluminescent display device and its manufacturing method
WO2006033164A1 (en) * 2004-09-24 2006-03-30 Tadahiro Ohmi Organic el light emitting element, manufacturing method thereof and display apparatus
US8383208B2 (en) 2005-04-06 2013-02-26 Samsung Display Co., Ltd. Method of fabricating organic light emitting device
KR100721576B1 (en) 2005-04-06 2007-05-23 삼성에스디아이 주식회사 Method for fabricating organic electroluminescence deivce
JP2006294608A (en) * 2005-04-06 2006-10-26 Samsung Sdi Co Ltd Manufacturing method for organic electroluminescent element
JP2008218415A (en) * 2007-03-07 2008-09-18 Samsung Sdi Co Ltd Organic light emitting display device, and method of manufacturing the same
JP2008251715A (en) * 2007-03-29 2008-10-16 Toshiba Corp Polymer arrester and its manufacturing method
JP2009037811A (en) * 2007-07-31 2009-02-19 Sumitomo Chemical Co Ltd Manufacturing method of organic el device
US8278126B2 (en) 2007-07-31 2012-10-02 Sumitomo Chemical Company, Limited Method for manufacturing organic electroluminescence device
GB2464636B (en) * 2007-07-31 2011-12-28 Sumitomo Chemical Co Method for manufacturing organic electroluminescence device
GB2464636A (en) * 2007-07-31 2010-04-28 Sumitomo Chemical Co Method for manufacturing organic electroluminescence device
WO2009017024A1 (en) * 2007-07-31 2009-02-05 Sumitomo Chemical Company, Limited Method for manufacturing organic electroluminescence device
JP2014063174A (en) * 2013-10-25 2014-04-10 Semiconductor Energy Lab Co Ltd Display device

Also Published As

Publication number Publication date
JP3524711B2 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
JP3524711B2 (en) Organic electroluminescence device and method of manufacturing the same
EP1995996A1 (en) Film forming apparatus and method for manufacturing light emitting element
US20020185969A1 (en) Inorganic buffer structure for organic light-emitting diode devices
KR19980024082A (en) Organic light emitting device
TW200414799A (en) Organic electroluminescent device, method for manufacturing the organic electroluminescent device, and organic electroluminescent display apparatus
JP3197305B2 (en) Protection of electroluminescent element
Chen et al. DC sputtered indium-tin oxide transparent cathode for organic light-emitting diode
JP4310843B2 (en) Method for manufacturing organic electroluminescent device
JPH10255987A (en) Manufacture of organic el element
JPH1131587A (en) Organic electroluminescent element and manufacture thereof
KR100236011B1 (en) Organic electroluminescence device and method for fabricating the same
JPH10340787A (en) Organic electroluminescent element and its manufacture
JP4337567B2 (en) Method for manufacturing organic electroluminescence element
JPH11329746A (en) Organic el element
JP2000208253A (en) Organic electroluminescent element and manufacture thereof
JPH08288068A (en) Organic electroluminescent element
KR100806704B1 (en) The manufacturing method of transparent conducting electrode for organic light emitting diode
JP3253368B2 (en) EL device
JP3040597B2 (en) Manufacturing method of organic electroluminescent device
US7009749B2 (en) Optical element and manufacturing method therefor
JP4145239B2 (en) Method of manufacturing an organic light emitting diode
KR100267998B1 (en) Method for fabricating an organic electroluminescent device having high luminous efficiency
JP2003168565A (en) Organic el element
JP4747609B2 (en) Method for manufacturing organic electroluminescent device
KR100666568B1 (en) Fabricating method of inorganic layer and Fabricating method of organic electroluminesence dispaly device using inorganic layer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees