JPH10340787A - Organic electroluminescent element and its manufacture - Google Patents

Organic electroluminescent element and its manufacture

Info

Publication number
JPH10340787A
JPH10340787A JP9151001A JP15100197A JPH10340787A JP H10340787 A JPH10340787 A JP H10340787A JP 9151001 A JP9151001 A JP 9151001A JP 15100197 A JP15100197 A JP 15100197A JP H10340787 A JPH10340787 A JP H10340787A
Authority
JP
Japan
Prior art keywords
cathode
work function
thin film
insulating film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9151001A
Other languages
Japanese (ja)
Inventor
Shinji Yamana
真司 山名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP9151001A priority Critical patent/JPH10340787A/en
Publication of JPH10340787A publication Critical patent/JPH10340787A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic electroluminescent element superior in durability and high luminous efficiency by constituting with at least a substrate, a cathode made of a material having a work function larger than a specified value, an insulating film, an organic thin film, and an anode, and forming it as a carrier injection type. SOLUTION: A material having a work function of more than 4 eV is used in a cathode 2 formed on a substrate 1, and practically Al, Au, or Ag is included, but Al is especially preferable. These metals are chemically stable and can suppress deterioration with respect to change in time caused by oxidation. Since the work function is preferably set small from the stand point of the injection efficiency of electrons and suppression of drive voltage, and limited to a range of 4.1-5.2 eV. An insulation film 3 is formed on the cathode 2. As the material used in the insulation film 3, an oxide of the material of the cathode 2, for example, Al2 O3 is suitable and can be formed by oxidizing the cathode 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機発光素子及び
その製造方法に関する。更に詳しくは、本発明は、耐久
性に優れ、発光効率の高い、キャリア注入型の有機発光
素子及びその製造方法に関する。
The present invention relates to an organic light emitting device and a method for manufacturing the same. More specifically, the present invention relates to a carrier-injection type organic light-emitting device having excellent durability and high luminous efficiency, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来の代表的な有機発光素子としては、
ガラス基板上に、ITO透明電極(陽極)/ホール輸送
性有機薄膜(ホール輸送層)/発光性有機薄膜(発光
層)/電子輸送性有機薄膜(電子輸送層)/MgAg共
蒸着膜(陰極)を順次積層した構造が知られている。
2. Description of the Related Art Conventional typical organic light emitting devices include:
ITO transparent electrode (anode) / Hole transporting organic thin film (Hole transporting layer) / Emitting organic thin film (Emitting layer) / Electron transporting organic thin film (Electron transporting layer) / MgAg co-deposited film (Cathode) on glass substrate Are known.

【0003】また、特開平5−3080号公報では、有
機薄膜上にMgO等の金属酸化膜を形成してからMg等
の陰極を積層することによって、キャリアの閉じ込め効
果を向上させた有機発光素子が記載されている。
In Japanese Patent Application Laid-Open No. Hei 5-3080, an organic light-emitting device in which a metal oxide film such as MgO is formed on an organic thin film and a cathode such as Mg is laminated thereon to improve the effect of confining carriers. Is described.

【0004】[0004]

【発明が解決しようとする課題】従来(上記公報におい
ても)、陰極から有機薄膜への電子注入効率を高めるた
め、MgやLi等の仕事関数の低い金属を陰極に使用し
ていた(上記公報では4eV以下)。しかしながら、こ
れらの金属は化学的に不安定であるため、酸化等により
経時変化が生じ、有機発光素子の特性が劣化するという
問題があった。
Heretofore (also in the above publication), a metal having a low work function, such as Mg or Li, has been used for the cathode in order to increase the efficiency of electron injection from the cathode into the organic thin film (see the above publication). 4 eV or less). However, since these metals are chemically unstable, they change with time due to oxidation or the like, and there is a problem that the characteristics of the organic light emitting device are deteriorated.

【0005】また、上記公報では、有機薄膜と陰極の間
への金属酸化膜の形成は、真空チャンバー内に酸素や水
分を導入して、蒸着中に陰極材料を酸化させることによ
り行われている。しかし、この方法では、有機薄膜も酸
素や水分に晒されることとなるので、有機薄膜が変質
し、注入特性が劣化すると共に素子特性も劣化する恐れ
があった。
In the above publication, the formation of a metal oxide film between an organic thin film and a cathode is performed by introducing oxygen or moisture into a vacuum chamber and oxidizing the cathode material during vapor deposition. . However, in this method, since the organic thin film is also exposed to oxygen and moisture, the organic thin film may be deteriorated, and the injection characteristics and the device characteristics may be deteriorated.

【0006】[0006]

【課題を解決するための手段】本発明の発明者は、化学
的に安定な陰極を使用することにより素子特性の劣化を
抑え、かつ陰極から有機薄膜への電子の注入を容易にし
て発光効率を高めることを目的として検討した結果、本
発明に至った。かくして本発明によれば、少なくとも基
板、仕事関数が4eVより大きな材料からなる陰極、絶
縁膜、有機薄膜及び陽極により構成され、かつキャリア
注入型であることを特徴とする有機発光素子が提供され
る。
Means for Solving the Problems The inventor of the present invention uses a chemically stable cathode to suppress the deterioration of the device characteristics and to facilitate the injection of electrons from the cathode into the organic thin film to improve the luminous efficiency. As a result of study for the purpose of increasing the value, the present invention was reached. Thus, according to the present invention, there is provided an organic light emitting device comprising at least a substrate, a cathode, an insulating film, an organic thin film, and an anode made of a material having a work function larger than 4 eV, and being of a carrier injection type. .

【0007】また、本発明によれば、基板上に、仕事関
数が4eVより大きな材料からなる陰極、絶縁膜、有機
薄膜及び陽極をこの順で形成することを特徴とするキャ
リア注入型の有機発光素子の製造方法が提供される。
According to the present invention, a carrier injection type organic light emitting device is characterized in that a cathode, an insulating film, an organic thin film and an anode made of a material having a work function larger than 4 eV are formed in this order on a substrate. A method for manufacturing a device is provided.

【0008】[0008]

【発明の実施の形態】本発明を、図1に示す有機発光素
子の概略断面図に基づき説明する。ただし、図1は、本
発明の説明を目的とするものであり、本発明はこの構成
に限定されることはない。まず、基板1上に陰極2を形
成する。本発明に使用できる基板としては、ガラス基
板、石英基板、シリコン基板等が挙げられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to a schematic sectional view of an organic light emitting device shown in FIG. However, FIG. 1 is for the purpose of describing the present invention, and the present invention is not limited to this configuration. First, the cathode 2 is formed on the substrate 1. Examples of the substrate that can be used in the present invention include a glass substrate, a quartz substrate, and a silicon substrate.

【0009】陰極に使用できる材料としては、仕事関数
が4eVより大きな材料であれば特に限定されない。具
体的には、Al、Au、Ag、Fe、Ni及びCu等が
挙げられ、特にAlが好ましい。これら金属は、従来陰
極に使用されていたLi、Mg等の金属と比較して化学
的に安定であるため、酸化等による経時変化を抑えるこ
とができる。なお、仕事関数は、電子の注入効率及び駆
動電圧の抑制の観点からは小さい方が好ましく、化学的
安定性の観点からは大きい方が好ましい。従って、好ま
しい仕事関数の範囲は、4.1〜5.2eVである。ま
た、陰極の厚さは、約0.1μmが好ましい。陰極の形
成方法は、特に限定されず、公知の方法をいずれも使用
することができ、例えば、真空蒸着法、スパッタ法及び
電子ビーム蒸着法等が挙げられる。ここで、シリコン基
板を使用した場合は、該シリコン基板の表面層に、リ
ン、砒素等のn型不純物、ホウ素等のp型不純物を拡散
させた不純物層を陰極として使用してもよい。
The material that can be used for the cathode is not particularly limited as long as it has a work function greater than 4 eV. Specifically, Al, Au, Ag, Fe, Ni, Cu and the like can be mentioned, and Al is particularly preferable. These metals are chemically more stable than metals such as Li and Mg which have been conventionally used for the cathode, so that a change with time due to oxidation or the like can be suppressed. The work function is preferably small from the viewpoint of electron injection efficiency and the suppression of driving voltage, and is preferably large from the viewpoint of chemical stability. Therefore, a preferable range of the work function is 4.1 to 5.2 eV. The thickness of the cathode is preferably about 0.1 μm. The method for forming the cathode is not particularly limited, and any known method can be used, and examples thereof include a vacuum evaporation method, a sputtering method, and an electron beam evaporation method. Here, when a silicon substrate is used, an impurity layer in which an n-type impurity such as phosphorus or arsenic or a p-type impurity such as boron is diffused in a surface layer of the silicon substrate may be used as a cathode.

【0010】次に、陰極2上には絶縁膜3が形成され
る。絶縁膜に使用できる材料としては、上記陰極の酸化
物を好適に使用できる。具体的には、Al2 3 、Au
2 O、Ag2 O、Fe2 3 、NiO、CuO等が挙げ
られる。また、絶縁膜の厚さは、0.005〜0.05
μmが好ましい。絶縁膜の形成方法は、特に限定されな
い。例えば、上記陰極を酸化することにより得ることが
できる。また、絶縁膜が陰極とは異なる金属の酸化物か
らなる場合は、陰極上に所望の金属を積層した後に酸化
する方法や金属の水酸化物等を加熱分解する方法により
形成することができる。酸化は、陽極酸化法により行え
ば、緻密で絶縁耐圧の高い絶縁膜を得ることができるの
で好ましい。ここで、シリコン基板の表面層の不純物層
を陰極として使用した場合は、シリコン基板を熱酸化す
ることによりSiO2 からなる絶縁膜を簡便に得ること
ができる。
Next, an insulating film 3 is formed on the cathode 2. As a material that can be used for the insulating film, the above-described oxide of the cathode can be suitably used. Specifically, Al 2 O 3 , Au
Examples include 2 O, Ag 2 O, Fe 2 O 3 , NiO, and CuO. The thickness of the insulating film is 0.005 to 0.05.
μm is preferred. The method for forming the insulating film is not particularly limited. For example, it can be obtained by oxidizing the cathode. In the case where the insulating film is made of an oxide of a metal different from that of the cathode, the insulating film can be formed by laminating a desired metal on the cathode and then oxidizing the same, or a method of thermally decomposing a metal hydroxide or the like. Oxidation is preferably performed by an anodic oxidation method because a dense insulating film with high withstand voltage can be obtained. Here, when the impurity layer of the surface layer of the silicon substrate is used as a cathode, an insulating film made of SiO 2 can be easily obtained by thermally oxidizing the silicon substrate.

【0011】次いで、絶縁膜3上には有機薄膜4が形成
される。有機薄膜4は、例えば、電子輸送層/発光層/
ホール輸送層、発光層4a/ホール輸送層4b等の積層
体であることが好ましい。電子輸送層に使用できる材料
としては、ガラス転移点が高く、結晶化を起こしにくい
化合物が好ましく、一般に電子写真感光体材料の分野に
おいて電子輸送性化合物として使用されている化合物が
挙げられる。具体的には、オキサジアゾリル誘導体等が
挙げられ、より具体的には、2−(4−ビフェニリル)
−5−(4−ターシャリーブチルフェニル)−1,3,
4−オキサジアゾール等が挙げられる。
Next, an organic thin film 4 is formed on the insulating film 3. The organic thin film 4 includes, for example, an electron transport layer / a light emitting layer /
It is preferable to be a laminate of a hole transport layer, a light emitting layer 4a / a hole transport layer 4b, and the like. As a material that can be used for the electron transporting layer, a compound having a high glass transition point and hardly causing crystallization is preferable, and examples thereof include compounds that are generally used as an electron transporting compound in the field of electrophotographic photoreceptor materials. Specifically, oxadiazolyl derivatives and the like can be mentioned, and more specifically, 2- (4-biphenylyl)
-5- (4-tert-butylphenyl) -1,3,
4-oxadiazole and the like.

【0012】発光層に使用できる材料としては、具体的
には、キノリールアルミニウム錯体(Alq3)、キノ
リールベリリウム錯体、テトラフェニルブタジエン誘導
体等が挙げられる。ホール輸送層に使用できる材料とし
ては、具体的には、ジアミン誘導体等が挙げられる。よ
り具体的には、N,N−ビス(3−メチルフェニル)−
(1,1’−ビフェニル)−4,4’−ジアミン(TP
D)が挙げられる。
Specific examples of the material that can be used for the light emitting layer include a quinolyl aluminum complex (Alq3), a quinolyl beryllium complex, and a tetraphenylbutadiene derivative. Specific examples of a material that can be used for the hole transport layer include a diamine derivative. More specifically, N, N-bis (3-methylphenyl)-
(1,1′-biphenyl) -4,4′-diamine (TP
D).

【0013】なお、緑色の発光を所望する場合は、発光
層にAlq3、ホール輸送層にTPDを使用することが
好ましい。電子輸送層、発光層及びホール輸送層は、そ
れぞれ0.01〜0.1μm、0.01〜0.1μm及
び0.05〜0.1μmの厚さを有することが好まし
い。また、これら有機薄膜の形成方法としては、特に限
定されないが、例えば真空蒸着法が挙げられる。
When green light emission is desired, it is preferable to use Alq3 for the light emitting layer and TPD for the hole transport layer. The electron transport layer, the light emitting layer, and the hole transport layer preferably have a thickness of 0.01 to 0.1 μm, 0.01 to 0.1 μm, and 0.05 to 0.1 μm, respectively. The method for forming these organic thin films is not particularly limited, but includes, for example, a vacuum deposition method.

【0014】この後、有機薄膜4上には陽極5が形成さ
れる。陽極に使用できる材料としては、一般に電子写真
感光体材料の分野において、陽極として使用されている
材料であれば特に限定されない。例えば、ITO、Si
2 等の金属酸化物、Au、Ni等の金属が挙げられ
る。ここで、Au、Ni等の仕事関数の大きな金属を使
用すれば、ホール輸送層のHOMO準位との障壁高さを
低くでき、それによりホール注入効率を向上させること
ができるので好ましい。なお、このような金属を使用す
る場合は、例えば図2に示すように、陽極5又は陰極2
の一方の面積を小さくして、面積の小さい方の電極側か
ら光を取り出すことが好ましい。この場合において、大
きい方の電極の面積と小さい方の電極の面積の比は、
1:0.1〜0.5であることが好ましい。なお、IT
Oのような透明材料以外の材料を電極として使用した場
合は、電極の厚さを薄くすることにより半透明膜として
光を取り出すことも可能である。また、ITOの成膜時
の基板の加熱温度は200℃以下が好ましく、100℃
以下がより好ましい。
Thereafter, an anode 5 is formed on the organic thin film 4. The material that can be used for the anode is not particularly limited as long as it is generally used as an anode in the field of electrophotographic photoreceptor materials. For example, ITO, Si
Examples include metal oxides such as O 2 and metals such as Au and Ni. Here, it is preferable to use a metal having a large work function, such as Au or Ni, because the height of the barrier between the hole transport layer and the HOMO level can be reduced, thereby improving the hole injection efficiency. When such a metal is used, for example, as shown in FIG.
It is preferable to reduce the area of one of the electrodes and extract light from the electrode having the smaller area. In this case, the ratio of the area of the larger electrode to the area of the smaller electrode is
1: preferably 0.1 to 0.5. In addition, IT
When a material other than a transparent material such as O is used for the electrode, light can be extracted as a translucent film by reducing the thickness of the electrode. The heating temperature of the substrate at the time of ITO film formation is preferably 200 ° C. or less,
The following is more preferred.

【0015】なお、上記では、基板、陰極、絶縁膜、有
機薄膜及び陽極の順で形成した有機発光素子について説
明したが、これに限定されず、基板、陰極、有機薄膜、
絶縁膜及び陽極の順で形成してもよい。但し、上記図1
の構成で有機発光素子を形成した場合、絶縁膜の形成を
有機薄膜の形成前に行うことができるので、有機薄膜は
酸化雰囲気中に晒されず、有機薄膜へのダメージを防ぐ
ことができる。
In the above description, the organic light-emitting element formed in the order of the substrate, the cathode, the insulating film, the organic thin film, and the anode has been described.
The insulating film and the anode may be formed in this order. However, FIG.
When the organic light-emitting element is formed by the configuration described above, the formation of the insulating film can be performed before the formation of the organic thin film, so that the organic thin film is not exposed to an oxidizing atmosphere, and damage to the organic thin film can be prevented.

【0016】次に、本発明の有機発光素子の作用につい
て説明する。なお、説明のために上記図1の積層順の有
機発光素子を使用している。キャリア注入型有機発光素
子では、図4に示すように、陰極の仕事関数と陰極に接
する有機薄膜のLUMO準位の差がエネルギー障壁の高
さとなる。図4から判るように、従来の仕事関数の低い
陰極を使用した場合、エネルギー障壁が高くなり、陰極
からの電子注入は妨げられている。
Next, the operation of the organic light emitting device of the present invention will be described. Note that, for the sake of explanation, the organic light emitting elements in the stacking order shown in FIG. 1 are used. In the carrier injection type organic light-emitting device, as shown in FIG. 4, the difference between the work function of the cathode and the LUMO level of the organic thin film in contact with the cathode becomes the height of the energy barrier. As can be seen from FIG. 4, when a conventional cathode having a low work function is used, the energy barrier increases, and electron injection from the cathode is hindered.

【0017】これに対して、本発明では、図3に示すよ
うに、バイアス電圧を印加する時に、絶縁膜にかかる電
界強度が大きくなれば、エネルギー障壁が低くなる。つ
まりエネルギー障壁の高さを、絶縁膜の厚さとバイアス
電圧とで制御することが可能となる。従って、仕事関数
の大きな化学的に安定な金属を陰極の材料として使用し
ても、両者を制御することでエネルギー障壁を低く制御
することができるので、絶縁膜をトンネリングした電子
の有機薄膜への注入を容易にすることが可能となる。
On the other hand, in the present invention, as shown in FIG. 3, when the electric field intensity applied to the insulating film increases when the bias voltage is applied, the energy barrier decreases. That is, the height of the energy barrier can be controlled by the thickness of the insulating film and the bias voltage. Therefore, even if a chemically stable metal having a large work function is used as the material of the cathode, the energy barrier can be controlled to be low by controlling both of them. Injection can be facilitated.

【0018】これに対して、陽極から有機薄膜へ注入さ
れたホールは、電子よりホールのトンネリングの確率が
低いことから、絶縁膜によりブロックされることとな
る。よって、ホールの閉じ込め効率が向上し、発光効率
を上げることができる。
On the other hand, holes injected from the anode into the organic thin film are blocked by the insulating film because holes have a lower probability of tunneling than electrons. Therefore, the hole confinement efficiency is improved, and the light emission efficiency can be improved.

【0019】[0019]

【発明の効果】本発明の有機発光素子によれば、絶縁膜
を介して陰極からの電子注入効率を向上させることがで
きるので、発光効率を上げることができる。更に、仕事
関数が大きな化学的に安定な金属を陰極の材料として使
用できるので、陰極が酸化されることを防ぐことができ
る。従って、酸化による素子特性の劣化が抑制されるの
で、寿命が延び、信頼性も向上させることができる。
According to the organic light emitting device of the present invention, the efficiency of injecting electrons from the cathode through the insulating film can be improved, so that the light emitting efficiency can be improved. Further, since a chemically stable metal having a large work function can be used as a material for the cathode, it is possible to prevent the cathode from being oxidized. Therefore, deterioration of device characteristics due to oxidation is suppressed, so that the life can be prolonged and the reliability can be improved.

【0020】更に、本発明の有機発光素子の製造方法に
よれば、基板上に陰極から積層するので、絶縁膜形成時
の雰囲気下に有機薄膜が晒されることがなく、よって有
機薄膜の劣化を防ぐことができる。
Further, according to the method for manufacturing an organic light emitting device of the present invention, since the organic thin film is laminated from the cathode on the substrate, the organic thin film is not exposed to the atmosphere during the formation of the insulating film. Can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機発光素子の概略断面図である。FIG. 1 is a schematic sectional view of an organic light emitting device of the present invention.

【図2】本発明の有機発光素子の陰極と陽極の構成を示
す概略平面図である。
FIG. 2 is a schematic plan view showing a configuration of a cathode and an anode of the organic light emitting device of the present invention.

【図3】本発明の有機発光素子へのバイアス電圧の印加
時の概略エネルギー図である。
FIG. 3 is a schematic energy diagram when a bias voltage is applied to the organic light emitting device of the present invention.

【図4】従来の有機発光素子へのバイアス電圧の無印加
時の概略エネルギー図である。
FIG. 4 is a schematic energy diagram when a bias voltage is not applied to a conventional organic light emitting device.

【符号の説明】[Explanation of symbols]

1 基板 2 陰極 3 絶縁膜 4 有機薄膜 4a 発光層 4b ホール輸送層 5 陽極 Reference Signs List 1 substrate 2 cathode 3 insulating film 4 organic thin film 4a light emitting layer 4b hole transport layer 5 anode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも基板、仕事関数が4eVより
大きな材料からなる陰極、絶縁膜、有機薄膜及び陽極に
より構成され、かつキャリア注入型であることを特徴と
する有機発光素子。
1. An organic light-emitting device comprising at least a substrate, a cathode, an insulating film, an organic thin film and an anode made of a material having a work function larger than 4 eV, and being of a carrier injection type.
【請求項2】 絶縁膜が、陰極の表面を酸化することに
より形成される酸化物である請求項1の有機発光素子。
2. The organic light emitting device according to claim 1, wherein the insulating film is an oxide formed by oxidizing a surface of the cathode.
【請求項3】 基板、陰極、絶縁膜、有機薄膜及び陽極
の順で積層された請求項1又は2の有機発光素子。
3. The organic light-emitting device according to claim 1, wherein a substrate, a cathode, an insulating film, an organic thin film, and an anode are laminated in this order.
【請求項4】 基板上に、仕事関数が4eVより大きな
材料からなる陰極、絶縁膜、有機薄膜及び陽極をこの順
で形成することを特徴とするキャリア注入型の有機発光
素子の製造方法。
4. A method for manufacturing a carrier-injection type organic light-emitting device, comprising: forming a cathode, an insulating film, an organic thin film, and an anode made of a material having a work function larger than 4 eV on a substrate in this order.
JP9151001A 1997-06-09 1997-06-09 Organic electroluminescent element and its manufacture Pending JPH10340787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9151001A JPH10340787A (en) 1997-06-09 1997-06-09 Organic electroluminescent element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9151001A JPH10340787A (en) 1997-06-09 1997-06-09 Organic electroluminescent element and its manufacture

Publications (1)

Publication Number Publication Date
JPH10340787A true JPH10340787A (en) 1998-12-22

Family

ID=15509126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9151001A Pending JPH10340787A (en) 1997-06-09 1997-06-09 Organic electroluminescent element and its manufacture

Country Status (1)

Country Link
JP (1) JPH10340787A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005928A1 (en) * 1998-07-22 2000-02-03 Tdk Corporation Organic el device
JP2000040592A (en) * 1998-07-21 2000-02-08 Casio Comput Co Ltd Electroluminescence element
WO2000010366A1 (en) * 1998-08-13 2000-02-24 Tdk Corporation Organic el device
WO2000032014A1 (en) * 1998-11-25 2000-06-02 Tdk Corporation Organic el device
WO2000056122A1 (en) * 1999-03-16 2000-09-21 Tdk Corporation Organic el device
WO2000060906A1 (en) * 1999-04-05 2000-10-12 Tdk Corporation Organic el device
JP2001093671A (en) * 1999-09-22 2001-04-06 Korea Electronics Telecommun Organic electric field light-emitting element with double- insulating layer
US6369507B1 (en) 1999-06-07 2002-04-09 Tdk Corporation Organic EL display apparatus with a switching device
WO2010134237A1 (en) * 2009-05-22 2010-11-25 シャープ株式会社 Organic el display device and method for manufacturing same
JP2013165068A (en) * 2013-04-15 2013-08-22 Sony Corp Top emission light-emitting element and manufacturing method of the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040592A (en) * 1998-07-21 2000-02-08 Casio Comput Co Ltd Electroluminescence element
WO2000005928A1 (en) * 1998-07-22 2000-02-03 Tdk Corporation Organic el device
WO2000010366A1 (en) * 1998-08-13 2000-02-24 Tdk Corporation Organic el device
WO2000032014A1 (en) * 1998-11-25 2000-06-02 Tdk Corporation Organic el device
US6404126B1 (en) 1998-11-25 2002-06-11 Tdk Corporation Organic electroluminescent device having a conjugated polymer and an inorganic insulative electron injecting and transporting layer
WO2000056122A1 (en) * 1999-03-16 2000-09-21 Tdk Corporation Organic el device
US6262433B1 (en) 1999-03-16 2001-07-17 Tdk Corporation Organic electroluminescent device
WO2000060906A1 (en) * 1999-04-05 2000-10-12 Tdk Corporation Organic el device
US6252246B1 (en) 1999-04-05 2001-06-26 Tdk Corporation Organic electroluminescent device
US6369507B1 (en) 1999-06-07 2002-04-09 Tdk Corporation Organic EL display apparatus with a switching device
JP2001093671A (en) * 1999-09-22 2001-04-06 Korea Electronics Telecommun Organic electric field light-emitting element with double- insulating layer
WO2010134237A1 (en) * 2009-05-22 2010-11-25 シャープ株式会社 Organic el display device and method for manufacturing same
US8822983B2 (en) 2009-05-22 2014-09-02 Sharp Kabushiki Kaisha Organic electroluminescent display device and manufacturing method thereof
JP2013165068A (en) * 2013-04-15 2013-08-22 Sony Corp Top emission light-emitting element and manufacturing method of the same

Similar Documents

Publication Publication Date Title
KR100656035B1 (en) Transparent, thermally stable light-emitting component comprising organic layers
KR100776872B1 (en) Low-voltage organic light-emitting device
JP3776600B2 (en) Organic EL device
US20080001532A1 (en) Electroluminescent devices with low work function anode
KR20010030157A (en) Efficient electron-injection for organic electroluminescent devices
KR19980024082A (en) Organic light emitting device
JPH11307264A (en) Organic electroluminescent element
US6995391B2 (en) Electrode structure for electronic and opto-electronic devices
JP2004139930A (en) Organic electroluminescent element, manufacturing method of the same, and organic electroluminescent display device
JPH11345687A (en) Luminescent element
JPH02216790A (en) Electric field luminous element
JPH10340787A (en) Organic electroluminescent element and its manufacture
JPH1140365A (en) Organic el element and its manufacture
US6187457B1 (en) Organic EL element and method of producing the same
JP2006173569A (en) Organic electroluminescent device containing triazine derivative compound
JPH11121179A (en) Organic thin film el element
US20060220535A1 (en) Organic electroluminescent element and display device
JP4310843B2 (en) Method for manufacturing organic electroluminescent device
US20050122041A1 (en) Organic electroluminescent device
WO2000057446A1 (en) High efficiency electrodes for organic light emitting diode devices
JP4697577B2 (en) Organic EL device
JPH11135264A (en) Organic el element
JPH06310280A (en) Electrode for organic light emitting element, and organic light emitting element using it, and manufacture of organic light emitting element
JP2000164360A (en) Organic electroluminescent display device and method of driving organic el element
JPH09245968A (en) Organic light emitting element and manufacture thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041012