JPH09245968A - Organic light emitting element and manufacture thereof - Google Patents

Organic light emitting element and manufacture thereof

Info

Publication number
JPH09245968A
JPH09245968A JP8052777A JP5277796A JPH09245968A JP H09245968 A JPH09245968 A JP H09245968A JP 8052777 A JP8052777 A JP 8052777A JP 5277796 A JP5277796 A JP 5277796A JP H09245968 A JPH09245968 A JP H09245968A
Authority
JP
Japan
Prior art keywords
electrode
material layer
metal
light emitting
organic light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8052777A
Other languages
Japanese (ja)
Inventor
Ritsuo Inaba
律夫 稲葉
Mikiko Matsuo
三紀子 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8052777A priority Critical patent/JPH09245968A/en
Publication of JPH09245968A publication Critical patent/JPH09245968A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes

Abstract

PROBLEM TO BE SOLVED: To stabilize an electrode for elongating a service life, and drive an element at low voltage. SOLUTION: In a light emitting element comprising a transparent electrode 12 formed on a glass substrate 11, a hole transport material layer 13 formed on the transparent electrode 12, an electron transport material layer 14 of organic material formed on the hole transport material layer 13, and a metal electrode 15 formed on the electron transport material layer 14, univalent metal, bivalent metal, or trivalent metal is used as material for the metal electrode 15. In addition, a layer of oxide or hydroxide of the surface of the metal electrode 15 is formed at an interface between the electron transport material layer 14 and the metal electrode 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は有機材料を用いた発
光素子およびその電極に関するものである。
TECHNICAL FIELD The present invention relates to a light emitting element using an organic material and an electrode thereof.

【0002】[0002]

【従来の技術】有機材料を用いた発光素子に関する研究
は既に過去20年以上前から発表されており、アントラ
センを発光材料として、アントラセンに電流を注入する
ことによって電子とホ−ルの再結合によって発光させる
ことが報告されている。一方で1987年にコダック社
のグル−プによる研究発表で効率の良い発光素子が実現
して実用化の可能性が一挙に増大した。
2. Description of the Related Art Research on a light emitting device using an organic material has been published for more than 20 years, and anthracene is used as a light emitting material to inject a current into anthracene to recombine electrons and holes. It has been reported to emit light. On the other hand, in 1987, an efficient light emitting device was realized by a research announcement by Kodak Group, and the possibility of practical application increased all at once.

【0003】しかしながら、実用の観点から見ると上記
の発光素子ライフは非常に短く実用レベルには達してい
ない。上記の素子の劣化原因の大きな一つに電子を注入
するための電極の酸化が挙げられる。
However, from a practical point of view, the life of the above light emitting device is very short and has not reached a practical level. One of the major causes of deterioration of the element is oxidation of electrodes for injecting electrons.

【0004】また素子に電流を注入するため、特に有機
材料に電子を注入するためには仕事関数の小さい電極材
料が必要となる。一般的に仕事関数の小さい材料とし
て、ナトリウム、カリウム、リチウム、マグネシウム等
のアルカリ金属あるいはアルカリ土類金属があげられる
が、これらの金属材料はいずれも大気中では不安定な材
料である。その中でも特にマグネシウム−銀の合金が優
れた素子特性を示すことが判明したが、この材料でも素
子寿命に関しては実用化のレベルには達しない。
Further, an electrode material having a small work function is required for injecting a current into the device, particularly for injecting electrons into an organic material. In general, examples of materials having a low work function include alkali metals such as sodium, potassium, lithium, and magnesium or alkaline earth metals, and all of these metal materials are unstable in the atmosphere. Among them, it has been found that a magnesium-silver alloy has particularly excellent element characteristics, but even with this material, the element life has not reached the level of practical use.

【0005】その後安定性を目指してさまざまな金属が
電極として検討されてきた。今までに発表された電極材
料を列挙すると、Mg、Mg−Ag、In、Mg−I
n.Ca、Al等単体金属あるいはそれらの合金が発表
されてきた。これらの材料の選択の基準としては、電圧
上昇を招かずにいかにして効率良く電流注入が出来るか
に注意が払われて来た。
After that, various metals have been studied as electrodes for the purpose of stability. The electrode materials that have been announced so far are listed as Mg, Mg-Ag, In and Mg-I.
n. Single metals such as Ca and Al or alloys thereof have been announced. As a criterion for selecting these materials, attention has been paid to how current can be efficiently injected without causing a voltage rise.

【0006】その後改良された電極材料としてアルミニ
ウム−リチウムの合金が発表されて、しかしこの電極を
用いることによっても駆動電圧は下がったが、発光素子
の寿命に関してはやや寿命が長くなった程度でっやはり
実用化のレベルには至っていない。
After that, an aluminum-lithium alloy was announced as an improved electrode material. However, although the use of this electrode lowered the driving voltage, the life of the light emitting device was somewhat extended. After all, it has not reached the level of practical use.

【0007】[0007]

【発明が解決しようとする課題】有機発光素子の寿命を
決定する要因のなかで特に電極の安定性は重要である。
いかにして低電圧で素子の駆動を行うことができるかが
一つの鍵となる。そのための具体的な課題は陰極から有
機材料への電子の注入を安定に実現できるかが鍵とな
る。いままでの報告では単体の金属を用いて安定に動作
させた報告は少なく二元合金のMg−AgあるいはAl
−Li電極等の報告がなされている。しかしこれらの金
属を用いた素子でも時間経過とともに大気中の水分ある
いは酸素と反応して素子の特性を劣化させることによ
り、より安定な電極が求められている。
Among the factors that determine the life of the organic light emitting device, the stability of the electrode is particularly important.
One of the keys is how to drive the device at low voltage. The specific issue for that purpose is the stable realization of electron injection from the cathode to the organic material. In the reports so far, there have been few reports of stable operation using a single metal, and binary alloys such as Mg-Ag or Al.
-Li electrodes and the like have been reported. However, even elements using these metals are required to have more stable electrodes by reacting with moisture or oxygen in the atmosphere over time to deteriorate the characteristics of the element.

【0008】[0008]

【課題を解決するための手段】本発明は有機発光素子の
劣化に最も大きな影響を与えている電極を、改善するも
ので、電極の劣化の原因を電極材料面から取り除くこと
を特徴とするものである。そのための手段として、電極
材料の構造を複合化することによってそれぞれの部分の
機能を重ね合わせることを行う。
DISCLOSURE OF THE INVENTION The present invention is to improve an electrode which has the greatest influence on the deterioration of an organic light emitting device, and is characterized in that the cause of the deterioration of the electrode is removed from the surface of the electrode material. Is. As a means for this, the functions of the respective parts are overlapped by compounding the structure of the electrode material.

【0009】具体的には金属電極と有機材料との界面に
おいて、姻族電極の仕事関数あるいはイオン化ポテンシ
ャルを小さくすることを行った。仕事関数あるいはイオ
ン化ポテンシャルを小さくするための手段として、界面
金属部を酸化あるいは水酸化することによって界面部の
金属の仕事関数をより小さくすることである。
Specifically, at the interface between the metal electrode and the organic material, the work function or ionization potential of the family electrode was reduced. As a means for reducing the work function or the ionization potential, the work function of the metal at the interface portion is made smaller by oxidizing or hydroxylating the interface metal portion.

【0010】本発明は上記の構成により、有機発光素子
の電極に二元合金三元合金を用いることによって従来は
信頼性に欠けるため実用化に至っていなかったものを、
本発明においては有機材料との界面の電極状態を酸化あ
るいは水酸化することによって界面状態の金属の仕事関
数あるいはイオン化ポテンシャルを下げることによって
底電圧駆動を可能にし、結果として長寿命かが可能とな
り実用化に近づけることができた。
The present invention, which has the above-mentioned structure, has not been put into practical use because it lacks reliability in the related art by using a binary alloy and a ternary alloy for the electrodes of the organic light emitting device.
In the present invention, the bottom electrode can be driven by lowering the work function or ionization potential of the metal in the interface state by oxidizing or hydroxylating the electrode state at the interface with the organic material, and as a result, long life can be realized and practical I was able to approach the change.

【0011】[0011]

【発明の実施の形態】以下では本発明の実施の形態にお
ける有機発光素子について図面を参照しながら説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, organic light emitting devices according to embodiments of the present invention will be described with reference to the drawings.

【0012】図1は本発明の実施の形態における有機発
光素子の構造を示す断面図であり、図1において、ガラ
ス基板11上に酸化インジウム酸化スズいわゆるITO
電極(第1の電極)12を設け、その上に有機材料のホ
−ル輸送材料層13、有機材料の電子輸送材料層14を
蒸着法あるいは侵漬法あるいはスピンコ−ト法で設け、
さらにその上に電極15(第2の電極)を設ける。な
お、電極の作成方法は蒸着あるいはスパッタリング法で
の作成が最も容易であり本発明でも蒸着法を用いて作成
した。上記の電極の作成の際に条件をコントロールする
ことにより、電極15と有機材料の電子輸送材料層との
間に薄く酸化または水酸化層を形成する。
FIG. 1 is a sectional view showing the structure of an organic light emitting element according to an embodiment of the present invention. In FIG. 1, indium tin oxide, so-called ITO is formed on a glass substrate 11.
An electrode (first electrode) 12 is provided, and a hole transport material layer 13 made of an organic material and an electron transport material layer 14 made of an organic material are provided thereon by a vapor deposition method, a dipping method or a spin coat method,
Further, an electrode 15 (second electrode) is provided on it. The electrode is most easily prepared by vapor deposition or sputtering, and the vapor deposition method is also used in the present invention. By controlling the conditions during the production of the above electrode, a thin oxidation or hydroxide layer is formed between the electrode 15 and the electron transport material layer of the organic material.

【0013】具体的には、電極の成膜を行なう際に、雰
囲気中の酸素分子または水素分子の濃度を通常の成膜の
際よりも高くすることによって、酸化層または水酸化層
を形成する。なお、上記の酸化層または水酸化層の膜厚
は50オングストローム以下であることが望ましい。
Specifically, when forming an electrode, an oxide layer or a hydroxide layer is formed by increasing the concentration of oxygen molecules or hydrogen molecules in the atmosphere as compared with the case of normal film formation. . The thickness of the oxide layer or the hydroxide layer is preferably 50 angstroms or less.

【0014】有機材料に電流を注入するための仕事関数
の小さい金属として、アルカリ金属、例えばナトリウ
ム、カリウム、リチウム、さらにアルカリ土類金属とし
てマグネシウム、アルミニウム、カルシウム等を用い
る。
As a metal having a low work function for injecting an electric current into an organic material, an alkali metal such as sodium, potassium or lithium, and an alkaline earth metal such as magnesium, aluminum or calcium are used.

【0015】次に図1に示す構成の各材料のエネルギー
ダイヤグラムを図2に示す。図2において12のITO
電極から13のホール輸送材料へのホールの注入は容易
に可能となることがわかる。一方、15の電極から14
の電子輸送材料への電子の注入は電子輸送材料アルミキ
ノリンの仕事関数は2.9eVであり図2に示す例では
Mg金属3.7eVとの差はできるだけ少ない方が電子
の注入が容易となる。
Next, an energy diagram of each material having the structure shown in FIG. 1 is shown in FIG. In FIG. 2, 12 ITO
It can be seen that holes can be easily injected from the electrode into the hole transport material of 13. On the other hand, from 15 electrodes to 14
In the electron injection into the electron transporting material, the electron transporting material aluminum quinoline has a work function of 2.9 eV. In the example shown in FIG. 2, it is easier to inject the electron when the difference from Mg metal 3.7 eV is as small as possible. .

【0016】本発明の有効性を示すために、図3に電極
の仕事関数の測定結果を示す。測定は理研電子製の表面
観察装置A−1を用いた。測定原理は電極に各種のエネ
ルギーに対応した波長の光を照射して、外部に出てくる
電子の数をカウントするものである。実験は試料に各種
の波長の光を照射し対応エネルギーを横軸に取り出てく
る電子に対応する量を縦軸にとり、仕事関数は実験結果
を外挿して、その波長に対応するしきい値から仕事関
数、イオン化ポテンシャルを計測するものである。図3
に用いたMg電極の仕事関数は作製後2時間経過した表
面を測定したものである。図3からこの表面の仕事関数
は4eVと測定できる。
In order to show the effectiveness of the present invention, FIG. 3 shows the measurement results of the work function of the electrode. The measurement was performed using a surface observation device A-1 manufactured by Riken Denshi. The measurement principle is to irradiate the electrodes with light having wavelengths corresponding to various energies and count the number of electrons that are emitted to the outside. In the experiment, the sample is irradiated with light of various wavelengths, the corresponding energy is plotted on the horizontal axis, and the amount of electrons corresponding to the extracted electrons is plotted on the vertical axis, and the work function is extrapolated to the threshold value corresponding to that wavelength. To measure the work function and ionization potential. FIG.
The work function of the Mg electrode used for was measured on the surface 2 hours after the production. From FIG. 3, the work function of this surface can be measured as 4 eV.

【0017】次に図4は本発明の実施の形態において、
蒸着方法で作製したMgAg合金の仕事関数の経時変化
を示すものである。実験は蒸着装置で有機材料表面に作
製したMg電極の仕事関数を測定したものである。さら
に電極の有機材料の界面と大気に接した面の両方を比較
して記してある。実験結果からわかるように有機材料に
接する界面の仕事関数は3.5eVとMg金属の3.7
eVより小さいことが分かる(この実験で界面のイオン
化ポテンシャルの経時変化の測定は核測定時間後に新た
な界面を取り出して測定する)。
Next, FIG. 4 shows an embodiment of the present invention.
It shows the change with time of the work function of the MgAg alloy produced by the vapor deposition method. The experiment is to measure the work function of the Mg electrode formed on the surface of the organic material with the vapor deposition device. Furthermore, both the interface of the organic material of the electrode and the surface in contact with the atmosphere are compared and described. As can be seen from the experimental results, the work function of the interface in contact with the organic material is 3.5 eV and 3.7 of Mg metal.
It can be seen that it is smaller than eV (in this experiment, the change in ionization potential of the interface with time is measured by taking out a new interface after the nuclear measurement time).

【0018】この実験結果から本発明の電極材料は空気
に接する表面はやはり酸化によってイオン化ポテシャル
の増加を招くが、この電極組成は内部への酸化を防止し
ていることが分かる。
From the results of this experiment, it can be seen that the electrode material of the present invention causes an increase in ionization potential on the surface in contact with air, which is also caused by oxidation, but this electrode composition prevents internal oxidation.

【0019】他の実験例として金属電極としてAlを用
いた場合の実験結果を図5に示す。通常Alの仕事関数
は4.2eV程度であるが、本発明の構成で3.3eV
まで仕事関数が下がっていいることが分かる。さらにこ
の電極が1000時間以上安定に動作することもこの実
験結果からわかる。
As another experimental example, FIG. 5 shows the experimental result when Al is used as the metal electrode. Normally, the work function of Al is about 4.2 eV, but with the structure of the present invention, it is 3.3 eV.
It can be seen that the work function has dropped. Further, it can be seen from this experimental result that this electrode operates stably for 1000 hours or more.

【0020】なお、本発明においては、電極材料とし
て、Mg、Ca、アルミまたはアルミ合金を用いること
が望ましい。
In the present invention, it is desirable to use Mg, Ca, aluminum or aluminum alloy as the electrode material.

【0021】[0021]

【発明の効果】いままでの素子構成では有機材料に電子
を注入するために余分な印加電圧を必要とした。実験的
には10V以上の電圧を必要とした。本発明の構成で駆
動電圧を10V以下に、通常は5V程度まで下げること
が可能となった。さらに安定に動作することも確認し
た。
According to the device structure thus far, an extra applied voltage is required to inject electrons into the organic material. Experimentally, a voltage of 10 V or higher was required. With the configuration of the present invention, the drive voltage can be reduced to 10 V or less, usually to about 5 V. We also confirmed that it operates more stably.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態における有機発光素子の構
成断面図
FIG. 1 is a cross-sectional configuration diagram of an organic light emitting device according to an embodiment of the present invention.

【図2】本発明の実施の形態における有機発光素子に用
いる材料のエネルギーダイヤグラムを示す図
FIG. 2 is a diagram showing an energy diagram of a material used for the organic light emitting device in the embodiment of the present invention.

【図3】本発明の実施の形態における有機発光素子に用
いる電極の仕事関数の測定結果を示す図
FIG. 3 is a diagram showing a measurement result of a work function of an electrode used for an organic light emitting element in an embodiment of the present invention.

【図4】本発明の実施の形態における有機発光素子に用
いる電極の仕事関数の測定結果を示す図
FIG. 4 is a diagram showing a measurement result of a work function of an electrode used for an organic light emitting element in an embodiment of the present invention.

【図5】本発明の実施の形態における有機発光素子に用
いる電極の仕事関数の測定結果を示す図
FIG. 5 is a diagram showing measurement results of work functions of electrodes used in the organic light emitting device according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 ガラス基板 12 ITO透明電極 13 ホ−ル輸送材料層 14 電子輸送材料層 15 金属電極 11 Glass Substrate 12 ITO Transparent Electrode 13 Hole Transport Material Layer 14 Electron Transport Material Layer 15 Metal Electrode

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】基板上に形成された第1の電極と、前記第
1の電極上に形成されたホール輸送材料層と、前記ホー
ル輸送材料層上に形成された有機材料の電子輸送材料層
と、前記電子輸送材料層上に形成された第2の電極とを
有する有機発光素子であって、前記第2の電極の材料と
して、一価の金属、二価の金属または三価の金属を用
い、かつ前記電子輸送材料層と前記第2の電極との界面
に前記第2の電極表面を酸化または水酸化した層が形成
されたことを特徴とする有機発光素子。
1. A first electrode formed on a substrate, a hole-transporting material layer formed on the first electrode, and an electron-transporting material layer made of an organic material formed on the hole-transporting material layer. And a second electrode formed on the electron transporting material layer, wherein a monovalent metal, a divalent metal or a trivalent metal is used as the material of the second electrode. An organic light-emitting device, which is used and has a layer formed by oxidizing or hydroxylating the surface of the second electrode at the interface between the electron transport material layer and the second electrode.
【請求項2】基板上に形成された第1の電極と、前記第
1の電極上に形成されたホール輸送材料層と、前記ホー
ル輸送材料層上に形成された有機材料の電子輸送材料層
と、前記電子輸送材料層上に形成された第2の電極とを
有する有機発光素子であって、前記第2の電極の材料と
して、一価の金属、二価の金属または三価の金属と他の
金属との二元合金あるいは三元合金を用い、かつ前記電
子輸送材料層と前記第2の電極との界面に前記第2の電
極表面を酸化または水酸化した層が形成されたことを特
徴とする有機発光素子。
2. A first electrode formed on a substrate, a hole transport material layer formed on the first electrode, and an electron transport material layer made of an organic material formed on the hole transport material layer. And a second electrode formed on the electron transporting material layer, wherein a monovalent metal, a divalent metal or a trivalent metal is used as the material of the second electrode. A binary or ternary alloy with another metal is used, and a layer formed by oxidizing or hydroxylating the surface of the second electrode is formed at the interface between the electron transport material layer and the second electrode. Characteristic organic light emitting device.
【請求項3】第2の電極としてMg、Ca、アルミニウ
ムまたはその合金を用いることを特徴とする請求項1ま
たは2に記載の有機発光素子。
3. The organic light emitting device according to claim 1, wherein Mg, Ca, aluminum or an alloy thereof is used as the second electrode.
【請求項4】酸化または水酸化した層の厚みを50オン
グストローム以下であることを特徴とする請求項1また
は2に記載の有機発光素子。
4. The organic light emitting device according to claim 1, wherein the oxidized or hydroxylated layer has a thickness of 50 angstroms or less.
【請求項5】電子輸送材料層と第2の電極との界面の電
極の仕事関数またはイオン化ポテンシャルを前記第2の
電極の金属より小さくして用いることを特徴とする請求
項1〜4いずれかに記載の有機発光素子。
5. The work function or ionization potential of the electrode at the interface between the electron transporting material layer and the second electrode is set to be smaller than that of the metal of the second electrode before use. The organic light emitting device according to.
【請求項6】基板上に第1の電極を形成する工程と、前
記第1の電極上にホール輸送材料層を形成する工程と、
前記ホール輸送材料層上に有機材料の電子輸送材料層を
形成する工程と、前記電子輸送材料層上に第2の電極を
真空蒸着またはスッパッタリングにより形成する工程と
を有する有機発光素子の製造方法であって、前記第2の
電極の材料として、一価の金属、二価の金属または三価
の金属を用い、かつ、前記第2の電極を形成する工程に
おいて、雰囲気を酸素分子または水素分子の濃度を高く
することにより前記電子輸送材料層と前記第2の電極と
の界面に前記第2の電極表面を酸化または水酸化した層
を形成することを特徴とする有機発光素子の製造方法。
6. A step of forming a first electrode on a substrate, and a step of forming a hole transport material layer on the first electrode,
Manufacture of an organic light emitting device, comprising: forming an electron transporting material layer of an organic material on the hole transporting material layer; and forming a second electrode on the electron transporting material layer by vacuum deposition or spattering. In the method, a monovalent metal, a divalent metal or a trivalent metal is used as a material of the second electrode, and in the step of forming the second electrode, an atmosphere of oxygen molecules or hydrogen is used. A method for manufacturing an organic light emitting device, characterized in that a layer in which the surface of the second electrode is oxidized or hydroxylated is formed at the interface between the electron transport material layer and the second electrode by increasing the concentration of molecules. .
【請求項7】基板上に第1の電極を形成する工程と、前
記第1の電極上にホール輸送材料層を形成する工程と、
前記ホール輸送材料層上に有機材料の電子輸送材料層を
形成する工程と、前記電子輸送材料層上に第2の電極を
真空蒸着またはスッパッタリングにより形成する工程と
を有する有機発光素子の製造方法であって、前記第2の
電極の材料として、一価の金属、二価の金属または三価
の金属と他の金属との二元合金あるいは三元合金を用
い、かつ、前記第2の電極を形成する工程において、雰
囲気を酸素分子または水素分子の濃度を高くすることに
より前記電子輸送材料層と前記第2の電極との界面に前
記第2の電極表面を酸化または水酸化した層を形成する
ことを特徴とする有機発光素子の製造方法。
7. A step of forming a first electrode on a substrate, and a step of forming a hole transport material layer on the first electrode,
Manufacture of an organic light emitting device, comprising: forming an electron transporting material layer of an organic material on the hole transporting material layer; and forming a second electrode on the electron transporting material layer by vacuum deposition or spattering. In the method, a binary alloy or a ternary alloy of a monovalent metal, a divalent metal or a trivalent metal and another metal is used as a material of the second electrode, and the second electrode is used. In the step of forming an electrode, a layer obtained by oxidizing or hydroxylating the surface of the second electrode is formed at the interface between the electron transport material layer and the second electrode by increasing the concentration of oxygen molecules or hydrogen molecules in the atmosphere. A method of manufacturing an organic light-emitting device, which comprises forming.
JP8052777A 1996-03-11 1996-03-11 Organic light emitting element and manufacture thereof Pending JPH09245968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8052777A JPH09245968A (en) 1996-03-11 1996-03-11 Organic light emitting element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8052777A JPH09245968A (en) 1996-03-11 1996-03-11 Organic light emitting element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09245968A true JPH09245968A (en) 1997-09-19

Family

ID=12924296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8052777A Pending JPH09245968A (en) 1996-03-11 1996-03-11 Organic light emitting element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09245968A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580214B2 (en) 1998-02-27 2003-06-17 Sanyo Electric Co., Ltd. Color display apparatus having electroluminescence elements
US6630784B2 (en) 1998-02-27 2003-10-07 Sanyo Electric Co., Ltd. Electroluminescence display apparatus having an opaque anode electrode and manufacturing method thereof
US6797414B2 (en) 2001-06-08 2004-09-28 Samsung Sdi Co., Ltd. Organic EL device and method of manufacturing organic EL device
JP2015153574A (en) * 2014-02-13 2015-08-24 株式会社デンソー Organic el element and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580214B2 (en) 1998-02-27 2003-06-17 Sanyo Electric Co., Ltd. Color display apparatus having electroluminescence elements
US6630784B2 (en) 1998-02-27 2003-10-07 Sanyo Electric Co., Ltd. Electroluminescence display apparatus having an opaque anode electrode and manufacturing method thereof
US6951495B2 (en) 1998-02-27 2005-10-04 Sanyo Electric Co., Ltd. Display apparatus having electroluminescence elements
US6797414B2 (en) 2001-06-08 2004-09-28 Samsung Sdi Co., Ltd. Organic EL device and method of manufacturing organic EL device
KR100477105B1 (en) * 2001-06-08 2005-03-17 삼성에스디아이 주식회사 Organic el device and method of manufacturing organic el device
DE10225389B4 (en) * 2001-06-08 2008-02-21 Samsung SDI Co., Ltd., Suwon Process for producing an organic EL device
JP2015153574A (en) * 2014-02-13 2015-08-24 株式会社デンソー Organic el element and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR100776872B1 (en) Low-voltage organic light-emitting device
JP5116992B2 (en) Organic EL device
JP3704883B2 (en) Organic electroluminescent device and method for manufacturing the same
US20090230842A9 (en) Electroluminescent devices with low work function anode
TWI485898B (en) Organic light emitting diode device
JP3963712B2 (en) Organic EL element structure
JPH1074586A (en) Two layer electron injection electrode used in electroluminescence device
JPH11307264A (en) Organic electroluminescent element
KR100477105B1 (en) Organic el device and method of manufacturing organic el device
KR20070000262A (en) Formation method of the unique cathode electrodes utilizing mg-ag single thin films in organic light-emitting devices
JPH10261487A (en) Organic electroluminescent element and manufacture thereof
JP3903038B2 (en) Organic light emitting device
JPH10261484A (en) Organic electroluminescent element and manufacture thereof
JPH08222373A (en) Organic thin-film electroluminescent element
JP3531680B2 (en) Manufacturing method of organic EL device
JP4310843B2 (en) Method for manufacturing organic electroluminescent device
JP2000243567A (en) Organic electroluminescence element
JPH10340787A (en) Organic electroluminescent element and its manufacture
JPH09245968A (en) Organic light emitting element and manufacture thereof
JP2581165B2 (en) Organic thin film EL device
JP2003031360A (en) Organic el element and its manufacturing method
US7009749B2 (en) Optical element and manufacturing method therefor
US20050122041A1 (en) Organic electroluminescent device
JPH11111461A (en) Organic electroluminescent element
JPH11260563A (en) Organic el element