JP3704883B2 - Organic electroluminescent device and method for manufacturing the same - Google Patents

Organic electroluminescent device and method for manufacturing the same Download PDF

Info

Publication number
JP3704883B2
JP3704883B2 JP11384997A JP11384997A JP3704883B2 JP 3704883 B2 JP3704883 B2 JP 3704883B2 JP 11384997 A JP11384997 A JP 11384997A JP 11384997 A JP11384997 A JP 11384997A JP 3704883 B2 JP3704883 B2 JP 3704883B2
Authority
JP
Japan
Prior art keywords
organic
substrate
reduced pressure
light emitting
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11384997A
Other languages
Japanese (ja)
Other versions
JPH10302965A (en
Inventor
秀昭 植田
慶一 古川
佳久 寺阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP11384997A priority Critical patent/JP3704883B2/en
Priority to US09/067,746 priority patent/US6908638B2/en
Publication of JPH10302965A publication Critical patent/JPH10302965A/en
Application granted granted Critical
Publication of JP3704883B2 publication Critical patent/JP3704883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機エレクトロルミネセンス素子及びその製造方法に関する。
【0002】
【従来の技術】
有機エレクトロルミネセンス素子は、電気信号に応じて発光しかつ発光物質として有機化合物を用いて構成された素子である。
【0003】
有機エレクトロルミネセンス素子は、基本的には有機発光層および該層をはさんだ一対の対向電極より構成されている。発光は電極の一方から電子が注入され、もう一方の電極から正孔が注入されることにより、発光層中の発光体がより高いエネルギー準位に励起され、励起された発光体が元の基底状態に戻る際に、その余分なエネルギーを光として放出する現象である。
そして、発光効率を上げるために、上記基本的構成に加え、正孔を注入する電極にはさらに正孔注入層を設けたり、電子を注入する電極には電子輸送層を設けたりする構成が取られている。
【0004】
有機エレクトロルミネセンス素子の例としては、発光体として単結晶アントラセンなどが用いられたものが、米国特許第3539325号明細書に記載されている。
また、特開昭59−194393号公報には正孔注入層と有機発光体層を組み合わせたものが提案されている。
【0005】
特開昭63−295695号公報には有機質正孔注入輸送層、有機質電子注入輸送層を組み合わせたものが提案されている。
これら積層構造の有機エレクトロルミネセンス素子は、有機蛍光体と電荷輸送性の有機物(電荷輸送材)及び電極を積層した構造となっており、それぞれの電極より注入された正孔と電子が電荷輸送材中を移動して、それらが再結合することによって発光する。有機蛍光体としては、8−キノリノールアルミニウム錯体やクマリン化合物など蛍光を発する有機色素などが用いられている。また、電荷輸送材としては、例えばN,N’−ジ(m−トリル)N,N’−ジフェニルベンジジンや、1,1−ビス[N,N−ジ(p−トリル)アミノフェニル]シクロヘキサンといったジアミノ化合物や、4−(N,N−ジフェニル)アミノベンズアルデヒド−N,N−ジフェニルヒドラゾン化合物等があげられる。さらに、銅フタロシアニンのようなポルフィリン化合物も提案されている。
【0006】
ところで、有機エレクトロルネセンス素子は、高い発光特性を有しているが、発光時の安定性や保存安定性の点で充分ではなく、実用化には至っていない。
上記のような有機エレクトロルミネセンス素子の実用化に向けての改善例の一つとして、特開平7−142168号公報には、陽極をプラズマ表面処理を行った後、陽極を大気中に晒すことなく、次いで陽極上に有機物層を形成することが報告されている。
また、特開平7−220873号公報には陽極のプラズマ表面処理の方法としてドライエッチングを応用してもよいことが記載されているが、ドライエッチングそのものについては何ら詳細に記載されていない。
【0007】
【発明が解決しようとする課題】
本発明は以上のような事情に鑑みてなされたもので、その目的とするところは、発光面中に黒斑点状の未発光部分がなく、発光開始電位が低く、安定した発光特性を示す有機エレクトロルミネセンス素子を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために本発明は、第1の発明として、
透明電極を減圧下でドライエッチングし陽極基板を形成する工程;
該陽極基板を大気に晒すことなく減圧下に連続して乾式洗浄処理を行う工程;
電極基板上に有機発光層を含む有機層を形成する工程;および
該有機層上に陰極を形成する工程;
を含んでなる有機エレクトロルミネセス素子の製造方法および該方法により製造された有機エレクトロルミネセス素子を提供するものである。
【0009】
第2の発明として、ガラス基板上に透明電極を減圧下で形成し陽極基板を得る工程;
該陽極基板を大気に晒すことなく減圧下に連続して乾式洗浄処理を行う工程;
乾式洗浄処理を行った陽極基板上に有機発光層を含む有機層を形成する工程;および
該有機層上陰極を形成する工程;
を含んでなる有機エレクトロルミネセンス素子の製造方法および該製造方法により製造された有機エレクトロルミネセス素子を提供するものである。
【0010】
第3の発明として、透明電極をドライエッチングし陽極基板を形成する工程;
該陽極基板を乾式洗浄処理する工程;
電極基板上に有機発光層を含む有機層を形成する工程;および
該有機層上に陰極を形成する工程;
からなり、上記工程を減圧下に連続して行うことを特徴とする有機エレクトロルミネセス素子の製造方法および該方法により製造された有機エレクトロルミネセスを提供するものである。
【0011】
第4の発明として、ガラス基板上に透明電極を形成し陽極基板を得る工程;
該陽極基板を乾式洗浄処理を行う工程;
乾式洗浄処理を行った陽極基板上に有機発光層を含む有機層を形成する工程;および
該有機層上陰極を形成する工程;
からなり、上記工程を減圧下に連続して行うことを特徴とする有機エレクトロルミネセス素子の製造方法および該方法により製造された有機エレクトロルミネセスを提供するものである。
【0012】
本発明の有機エレクトロルミネセンス素子は電極基板間に少なくとも有機発光層と所望により有機正孔輸送層で構成される。
本発明においては、透明電極をドライエッチングしてパターニングを行い、そのパターニングした電極基板を大気に晒す事なく減圧下連続して乾式洗浄処理した透明電極基板を用いて有機エレクトロルミネセス素子を形成することを基本的な特徴としている。
【0013】
本発明で行うドライエッチング方法としては、並行平板型の電極を用いたプラズマエッチング装置が用いられる。
使用されるエッチングガスとしては、CH4、HCl、HBr、HI、C25I等が使 用されるが、エッチングレートが高いことやテーパー角度の点(エッチング断面のテーパーがほとんどなくなる)でHI、C25Iが好ましい。
こららのガスには、希釈用や補助的に水素、アルゴン、窒素、メタノール、水蒸気等を混合してもよい。
【0014】
エッチングガスの流量によって、陽極の分解物を除去する程度を調整する。
エッチングガスの流量は、基板の大きさにもよるが200〜600sccm程度流せばよい。
RFパワーは基板の大きさにもよるが、600W〜3000Wぐらいのものが使用される。
エッチングによりパターニングされた電極基板は、大気に晒す事なく減圧下連続して乾式洗浄に付される。
【0015】
本発明で使用される乾式洗浄法としては、酸素によるプラズマ処理、UV/オゾン洗浄法、エキシマーランプの照射等色々な方法が使用可能である。
酸素によるプラズマ処理は、空気中または減圧下で酸素濃度(ガス圧)を0.01torr以上とし、市販の平行平板型プラズマ装置でプラズマ処理を行う。
UV/オゾン洗浄は、空気中または減圧下で酸素濃度(ガス圧)を0.01torr以上とし、市販のUV/オゾン装置を用いてUV/オゾン処理を行う。
処理時間はいずれの場合もITO膜の表面の水との接触角を調べることにより調整されるが、通常10〜60分である。
エキシマーランプの照射は、空気中または減圧下で酸素濃度(ガス圧)を0.01torr以上とし、市販のエキシマーランプを用いて0.1〜10mmの間隔で照射を行う。
照射時間はITO膜表面の水との接触角を調べることにより調整されるが、通常1〜10分である。
【0016】
本発明に使用されるエキシマーランプとしては310nm以下の光を発するランプであればどのようなエキシマーランプでもよいが、特に短波長の紫外線を単一波長で発生するようなものが好ましい。
また、発生する紫外線は特に170nm付近の短波長のものほど洗浄効果が大きく、発光特性も向上する。
具体的にはエキシマーランプとして例えば誘電体バリアエキシマーランプがあげられるが、これにに限定されることはない。
【0017】
【本発明の作用】
本発明では陽極のパターニングを減圧下でドライエッチングにて行うことにより、不純物の混入がなく、テーパーエッジのきれいな電極を作製することができる。また乾式洗浄を減圧下で連続して行うことでさらに、陽極に付着している有機物の化学結合を切断し、揮発除去するため、陽極表面が非常に清浄になる。その上に作製する有機薄膜と電極基板との接着がよくなり、均質な有機薄膜を形成することができる。
また励起酸素原子によって陽極表面が酸化されているので、イオン化ポテンシャルが大きくなり、正孔の注入がよくなる。
そのため、発光層の発光が均一で、しかも正孔が注入しやすいため低電位で発光を開始し、高輝度が得られる。そのため、同一の輝度で連続発光した場合には長寿命となる。
【0018】
従来技術では、湿式のエッチングを行うことによって生じる有機物や無機物等の不純物が電極基板表面へ付着し、それによって有機エレクトロルミネセンス素子の発光開始電圧が高くなる、あるいは均一な面発光をしない、劣化が速いというような問題があった。
また、陽極をあまり酸化させると導電性が低下し、発光不良や、発光開始電圧が高くなるというような問題が発生した。
【0019】
本発明では、上記の点が解消され、短時間で陽極表面の汚れや不純物が除去でき、しかも陽極が適度に酸化されることによって正孔注入性が改善され、発光面中に黒斑点状の未発光部分がなく、発光開始電位が低く、安定した発光特性を示す有機エレクトロルミネセンス素子を作製することができる。
【0020】
図1〜図4に本発明による有機エレクトロルミネセンス素子を模式的に示した。図1中、(1)は陽極であり、その上に、正孔注入輸送層(2)と有機発光層(3)陰極(4)および封止膜(5)が順次積層された構成をとっている。
【0021】
図2において、(1)は陽極であり、その上に、正孔注入輸送層(2)と有機発光層(3)、電子注入輸送層(6)および陰極(4)、封止膜(5)が順次積層された構成をとっている。
【0022】
図3において、(1)は陽極であり、その上に、有機発光層(3)と電子注入輸送層(6)および陰極(4)、封止膜(5)が順次積層された構成をとっている。
【0023】
図4において、(1)は陽極であり、その上に、有機発光層(3)および陰極(4)、封止膜(5)が順次積層された構成をとっており、該有機発光層に有機発光材料(7)と電荷輸送材料(8)が含まれている。
【0024】
上記構成の各エレクトロルミネセス素子は陽極(1)と陰極(4)がリード線により接続され、陽極(1)と陰極(4)に電圧を印加することにより有機発光層(3)が発光する。
【0025】
本発明はこれ以外にも陽極と陰極にいろいろな機能の有機膜を設けたものならどんな構成であってももちろん構わない。
有機エレクトロルミネセンス素子の陽極(1)として使用される導電性物質としては4eVよりも大きい仕事関数をもつものがよく、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、銅、亜鉛、タングステン、銀、錫、金などおよびそれらの合金、酸化錫、酸化インジウム、酸化アンチモン、酸化亜鉛、酸化ジルコニウムなどの導電性金属化合物が用いられる。
【0026】
有機エレクトロルミネセンス素子においては、発光が見られるように、少なくとも陽極(1)あるいは陰極(4)は透明電極にする必要がある。この際、陰極に透明電極を使用すると、透明性が損なわれやすいので、陽極を透明電極にすることが好ましい。
透明電極を形成する場合、透明基板上に、上記したような導電性物質を用い、蒸着、スパッタリング等の手段を用いて所望の透光性と導電性が確保されるように形成すればよい。
【0027】
透明基板としては、適度の強度を有し、有機エレクトロルミネセンス素子作製時、蒸着等による熱に悪影響を受けず、透明なものであれば特に限定されないが、係るものを例示すると、ガラス基板、透明な樹脂、例えばポリエチレン、ポリプロピレン、ポリエーテルサルホン、ポリエーテルエーテルケトン等を使用することも可能である。ガラス基板上に透明電極が形成されたものとしてはITO、NESA等の市販品が知られているがこれらを使用してもよい。
【0028】
本発明においては上記したように透明電極をドライエッチングしてパターニングを行い、そのパターニングした電極基板を大気に晒す事なく減圧下連続して乾式洗浄処理した透明電極基板を用いる。透明電極を減圧下に形成する場合は、エッチング、乾式洗浄はそのまま減圧下に行うことが好ましい。
【0029】
陽極として透明電極が形成された後、いろいろな形状にパターニングする。このパターニングの方法は、例えば図2に示すような、窓が形成されたマスクを用いてドライエッチングを行うことで例えば図5に示すような、パターン電極1が形成される。もちろん、透明電極形成時に図6に示すようなマスクを使用し、電極形成とパターニングを同時に行ってもよい。
上記電極を用いて図2の構成のエレクトロルミネセンス素子の作製を例示的に説明する。
【0030】
まず、上記した陽極(1)上に正孔注入輸送層(2)を設ける。正孔注入輸送層に用いられる正孔注入輸送材としては、公知のものが使用可能で、例えばN,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−1,1’−ジフェニル−4,4’−ジアミン、N,N’−ジフェニル−N,N’−ビス(4−メチルフェニル)−1,1’−ジフェニル−4,4’−ジアミン、N,N’−ジフェニル−N,N’−ビス(1−ナフチル)−1,1’−ジフェニル−4,4’−ジアミン、N,N’−ジフェニル−N,N’−ビス(2−ナフチル)−1,1’−ジフェニル−4,4’−ジアミン、N,N’−テトラ(4−メチルフェニル)−1,1’−ジフェニル−4,4’−ジアミン、N,N’−テトラ(4−メチルフェニル)−1,1’−ビス(3−メチルフェニル)−4,4’−ジアミン、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−1,1’−ビス(3−メチルフェニル)−4,4’−ジアミン、N,N’−ビス(N−カルバゾリル)−1,1’−ジフェニル−4,4’−ジアミン、4,4’,4”−トリス(N−カルバゾリル)トリフェニルアミン、N,N’,N”−トリフェニル−N,N’,N”−トリス(3−メチルフェニル)−1,3,5−トリ(4−アミノフェニル)ベンゼン、4,4’,4”−トリス[N,N’,N”−トリフェニル−N,N’,N”−トリス(3−メチルフェニル)]トリフェニルアミンなどを挙げることができる。こららのものは2種以上を混合して使用してもよい。
【0031】
正孔輸送層(2)を蒸着法で形成する場合、その厚さは通常30〜100nmであり、塗布法で形成する場合は、50〜200nmに形成すればよい。
上記正孔輸送層(2)上には有機発光層(3)を形成する。有機発光層に用いられる有機発光体としては、公知のものを使用可能で、例えばトリス(8−ヒドロキシキノリン)アルミニウム錯体、エピドリジン、2,5−ビス[5,7−ジ−t−ペンチル−2−ベンゾオキサゾリル]チオフェン、2,2’−(1,4−フェニレンジビニレン)ビスベンゾチアゾール、2,2’−(4,4’−ビフェニレン)ビスベンゾチアゾール、5−メチル−2−{2−[4−(5−メチル−2−ベンゾオキサゾリル)フェニル]ビニル}ベンゾオキサゾール、2,5−ビス(5−メチル−2−ベンゾオキサゾリル)チオフェン、アントラセン、ナフタレン、フェナントレン、ピレン、クリセン、ペリレン、ペリノン、1,4−ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、アクリジン、スチルベン、2−(4−ビフェニル)−6−フェニルベンゾオキサゾール、アルミニウムトリスオキシン、マグネシウムビスオキシン、ビス(ベンゾ−8−キノリノール)亜鉛、ビス(2−メチル−8−キノリノール)アルミニウムオキサイド、インジウムトリスオキシン、アルミニウムトリス(5−メチルオキシン)、リチウムオキシン、ガリウムトリスオキシン、カルシウムビス(5−クロロオキシン)、ポリ亜鉛−ビス(8−ヒドロキシ−5−キノリノリル)メタン、ジリチウムエピンドリジオン、亜鉛ビスオキシン、1,2−フタロペリノン、1,2−ナフタロペリノンなどを挙げることができる。
【0032】
また、一般的な螢光染料、例えば螢光クマリン染料、螢光ペリレン染料、螢光ピラン染料、螢光チオピラン染料、螢光ポリメチン染料、螢光メシアニン染料、螢光イミダゾール染料等も、使用できる。このうち、特に、好ましいものとしては、キレート化オキシノイド化合物が挙げられる。
有機発光層(3)は上記した発光物質の単層構成でもよいし、発光の色、発光の強度等の特性を調整するために、多層構成としてもよい。また、2種以上の発光物質を混合したり発光層にドープしてもよい。
【0033】
有機発光層(3)は、上記のような発光物質を蒸着して形成してもよいし、該発光物質を溶解した溶液や適当な樹脂とともに溶解した液をディップコートやスピンコートして形成してもよい。
蒸着法で形成する場合、その厚さは、通常1〜500nm、好ましくは1〜200nmであり、塗布法で形成する場合は、5〜1000nm、好ましくは5〜500nm程度に形成すればよい。
形成する膜厚が厚いほど発光させるための印加電圧を高くする必要があり発光効率が悪く有機エレクトロルミネセンス素子の劣化を招きやすい。また膜厚が薄くなると発光効率はよくなるがブレイクダウンしやすくなり有機エレクトロルミネセンス素子の寿命が短くなる。
【0034】
有機発光層(3)上に形成される電子注入輸送層(6)に使用される電子注入輸送材料としては、公知のものが使用可能で、例えば、2−(4−ビフェニルイル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール、2−(1−ナフチル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール、1,4−ビス{2−[5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾリル]}ベンゼン、1,3−ビス{2−[5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾリル]}ベンゼン、4,4’−ビス{2−[5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾリル]}ビフェニル、2−(4−ビフェニルイル)−5−(4−tert−ブチルフェニル)−1,3,4−チオジアゾール、2−(1−ナフチル)−5−(4−tert−ブチルフェニル)−1,3,4−チオジアゾール、1,4−ビス{2−[5−(4−tert−ブチルフェニル)−1,3,4−チオジアゾリル]}ベンゼン、1,3−ビス{2−[5−(4−tert−ブチルフェニル)−1,3,4−チオジアゾリル]}ベンゼン、4,4’−ビス{2−[5−(4−tert−ブチルフェニル)−1,3,4−チオジアゾリル]}ビフェニル、3−(4−ビフェニルイル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール、3−(1−ナフチル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール、1,4−ビス{3−[4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾリル]}ベンゼン、1,3−ビス{3−[4−フェニル−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾリル]}ベンゼン、4,4’−ビス{2−[4−フェニル−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾリル]}ビフェニル、1,3,5−トリス{2−[5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾリル]}ベンゼンなどを挙げることができる。これらのものは、2種以上を混合して使用してもよい。
【0035】
電子注入輸送層は、蒸着法で形成される場合は、その厚さが1〜500nmであり、塗布法で形成する場合は、5〜1000nm程度に形成すればよい。
次に、電子注入輸送層(6)上に、前記した陰極を形成する。陰極(4)を形成する金属としては4eVよりも小さい仕事関数を持つものがよく、マグネシウム、カルシウム、チタニウム、イットリウムリチウム、ガドリニウム、イッテルビウム、ルテニウム、マンガンおよびそれらの合金が用いられる。
陰極と陽極の1組の透明電極は、各電極にニクロム線、金線、銅線、白金線等の適当なリード線(9)を接続し、有機ルミネセンス装置は両電極に適当な電圧(Vs)を印加することにより発光する。
【0036】
図2の構成のエレクトロルミネセンス素子においては、陰極(4)上に、さらに封止膜(5)が形成される。封止膜(5)は有機物層及び陰極の酸化防止や防湿を目的として、SiO2、SiO、GeO、MgF2等を用い、それらの蒸着膜を形成することにより、厚さ5〜1000nm程度に形成される。
上記では図2の構成の有機エレクトロルミネセンス素子の作製について述べたが、その他の図1、図3〜図4の構成の有機エレクトロルミネセンス素子も上記作製例に倣い製造可能である。
【0037】
図1から図4の構成の有機エレクトロルミネセス素子の作製に際しては、電極基板を乾式洗浄後、基板を大気に晒す事なく、引き続き減圧下に、有機発光層を含む有機層、陰極、所望により封止膜を形成する手段を採用することが好ましい。したがって、正孔注入輸送層(2)、有機発光層(3)、電子注入輸送層(6)、陰極(4)、封止膜(5)の各層を減圧下に連続して形成できる蒸着、スパッタリング法等の方法を採用することが好ましい。
乾式洗浄処理の後、電極基板を大気に晒さずに発光層、陰極あるいは封止膜等を順次形成することによって、大気中の酸素や湿度による素子の劣化を防止でき、未発光部分の少ない長寿命の有機エレクトロルミネセンス素子を作製することができる。
本発明の有機エレクトロルミネセンス素子は、各種の表示装置、あるいはディスプレイ装置等に適用可能である。
【0038】
【実施例】
以下に実施例を記載し本発明を説明する。
参考例1
市販のITO膜付きガラス基板(ジオマテック社製)のITO膜を蒸留水、アセトンでそれぞれ20分間超音波洗浄した後、パターニングしたメタルマスク(タングステン製)とともにプラズマ照射装置内のホルダーにセットし、チャンバー内を1.0×10−5Torr以下の真空度まで減圧した。
続いてチャンバー内に5.0×10−2TorrになるまでCI/Ar混合ガスを導入し、1W/cmの条件で15分間ドライエッチングを行った。続いて0.1Torrで20%までオーバーエッチングした。ガスの流量は400sccmであった。
このようにして得られたITO膜は、エッチングした部分は導通が無く、エッジの奇麗なパターンが得られた。
得られたITO基板は取り出さないでそのままにし、チャンバー内を1.0×10−5Torr以下の真空度まで減圧した後、チャンバー内に0.2TorrになるまでOガスを導入し、0.2W/cmの条件で30分間高周波電圧を印加し、ITO基板のプラズマ洗浄を行った。
チャンバー内を一旦大気圧にもどし、得られたITO基板を取り出した。その基板を別の成膜装置内のホルダーに再セットし、1.0×10−5Torr以下の減圧下で下記化学式(A)で表わされるトリフェニルアミン誘導体(N,N’−ジフェニル−N,N’ビス(3−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミン)層を抵抗加熱法によって蒸着速度5Å/secで65nm成膜し、正孔注入輸送層を形成した。
続いて、チャンバー内は減圧状態を維持しつつ、トリス(8−ヒドロキシキノリン)アルミニウム錯体を蒸着速度6Å/secで65nm成膜し、発光層を形成した。
【0039】
【化1】

Figure 0003704883
【0040】
減圧状態は破る事なく、さらにその上に、MgおよびAgを蒸着源とし、抵抗加熱法の共蒸着により蒸着速度の比を10:1とし、約200nm成膜し、陰極を形成した。
以上のような工程で、有機エレクトロルミネセンス素子を作製した。
【0041】
参考例2
市販のITO膜付きガラス基板(ジオマテック社製)のITO膜を蒸留水、アセトンでそれぞれ20分間超音波洗浄した後、パターニングしたメタルマスク(タングステン製)とともにプラズマ照射装置内のホルダーにセットし、チャンバー内を1.0×10−5Torr以下の真空度まで減圧した。
続いて減圧状態を維持しつつチャンバー内に2.0×10−2TorrになるまでHI/Ar混合ガスを導入し、1W/cmの条件で3分間ドライエッチングを行った。続いて0.1Torrで20%までオーバーエッチングした。ガス流量は300sccmであった。
このようにして得られたITO膜は、エッチングした部分は導通が無く、エッジの奇麗なパターンが得られた。
その後続いて大気に晒すことなくチャンバー内を1.0×10−5Torr以下の真空度まで減圧した後、チャンバー内に0.2TorrになるまでOガスを導入し、0.2W/cmの条件で30分間高周波電圧を印加し、ITO基板のプラズマ洗浄を行った。
チャンバー内を大気圧に戻し、得られたITO基板を取り出し、それを別の成膜装置内のホルダーにセットした。チャンバー内を1.0×10−5Torr以下に減圧し、基板上に化学式(A)で表わされるトリフェニルアミン誘導体層を抵抗加熱法によって蒸着速度5Å/secで65nm成膜し、正孔注入輸送層を形成した。
続いて、減圧状態を破る事なく、該輸送層上にトリス(8−ヒドロキシキノリン)アルミニウム錯体を蒸着速度6Å/secで65nm成膜し、発光層を形成した。
【0042】
減圧状態は維持しつつ、さらに発光層上に、MgおよびAgを蒸着源とし、抵抗加熱法の共蒸着により蒸着速度の比を10:1とし、約200nm成膜し、陰極を形成した。
以上のような工程で、有機エレクトロルミネセンス素子を作製した。
【0043】
実施例
参考例2と同様にしてITO基板のパターニングおよびプラズマ洗浄を行なったが、プラズマ処理後、基板を大気に晒すことなく成膜装置内に移動した。該基板上に、1.0×10−5Torr以下の減圧下で化学式(A)で表わされるトリフェニルアミン誘導体層を抵抗加熱法によって蒸着速度5Å/secで65nm成膜し、正孔注入輸送層を形成した。
減圧状態を破る事なく、該輸送層上に、トリス(8−ヒドロキシキノリン)アルミニウム錯体を蒸着速度6Å/secで65nm成膜し、発光層を形成した。
【0044】
引き続き、減圧状態を維持しつつ、MgおよびAgを蒸着源とし、抵抗加熱法の共蒸着により蒸着速度の比を10:1とし、該発光層の上に、約200nm成膜し、陰極を形成した。
以上のような工程で、有機エレクトロルミネセンス素子を作製した。
【0045】
実施例
ガラス基板を蒸留水、アセトンでそれぞれ20分間超音波洗浄した後、ガラス基板をパターニング用マスクとともに成膜装置内のホルダーにセットし、チャンバー内を1.0×10−5Torr以下の真空度まで減圧した。
ITO合金をスパッタリング法により蒸着速度5Å/secで200nm成膜し、陽極を形成した。続いて大気に晒さずに、パターニング用マスクをはずし、実施例と同様にプラズマ洗浄および有機化合物層、陰極の成膜を行った。
以上のような工程で、有機エレクトロルミネセンス素子を作製した。
【0046】
参考例3
市販のITO膜付きガラス基板(ジオマテック社製)のITO膜を蒸留水、アセトンでそれぞれ20分間超音波洗浄した後、パターニングしたメタルマスク(タングステン製)とともに成膜装置内のホルダーにセットし、チャンバー内を1.0×10−5Torr以下の真空度まで減圧した。
続いて減圧状態を維持しつつ、チャンバー内に2.0×10−2TorrになるまでHBr/Ar混合ガスを導入し、1W/cmの条件で3分間ドライエッチングを行った。続いて0.1Torrで20%までオーバーエッチングした。
このようにして、得られたITO膜は、エッチングした部分は導通が無く、エッジの奇麗なパターンが得られた。
得られたITO基板を大気にさらす事なくエキシマーランプ照射装置内にセットし、チャンバー内を1.0×10−5Torr以下の真空度まで減圧した後、チャンバー内に0.2Torrになるまで純エアーガスを導入し、172nmのエキシマー光を3分間照射した。
チャンバー内を一旦大気圧に戻し得られたITO基板を取り出した。該基板を成膜装置内のホルダーに再セットし、1.0×10−5Torr以下の減圧下で化学式(A)で表わされるトリフェニルアミン誘導体層を抵抗加熱法によって蒸着速度5Å/secで65nm成膜し、正孔注入輸送層を形成した。引き続き減圧状態を維持しつつ、トリス(8−ヒドロキシキノリン)アルミニウム錯体を蒸着速度6Å/secで65nm成膜し、発光層を形成した。
【0047】
減圧状態は破る事なく、さらにMgおよびAgを蒸着源とし、抵抗加熱法の共蒸着により蒸着速度の比を10:1とし、約200nm成膜し、陰極を形成した。
以上のような工程で、有機エレクトロルミネセンス素子を作製した。
【0048】
参考例4
ガラス基板を蒸留水、アセトンでそれぞれ20分間超音波洗浄した後、ガラス基板をパターニング用マスクとともに成膜装置内のホルダーにセットし、チャンバー内を1×10−5Torr以下の真空度まで減圧した。
ITO合金をスパッタリング法により蒸着速度5Å/secで200nm成膜し、陽極を形成した。続いて大気に晒さずに得られたITO基板を大気にさらす事なくエキシマーランプ照射装置内にセットし、チャンバー内を1.0×10−5Torr以下の真空度まで減圧した後、チャンバー内に0.2Torrになるまで純エアーガスを導入し、172nmのエキシマー光を3分間照射した。
チャンバー内を大気圧に戻し、得られたITO基板を一旦取り出した。該基板を成膜装置内のホルダーに再セットし、1.0×10−5Torr以下の減圧下で化学式(A)で表わされるトリフェニルアミン誘導体層を抵抗加熱法によって蒸着速度5Å/secで65nm成膜し、正孔注入輸送層を形成した。続いて、減圧状態を破る事なく、トリス(8−ヒドロキシキノリン)アルミニウム錯体を蒸着速度6Å/secで65nm成膜し、発光層を形成した。
【0049】
減圧状態を維持しつつ、さらに該発光層上に、MgおよびAgを蒸着源とし、抵抗加熱法の共蒸着により蒸着速度の比を10:1とし、約200nm成膜し、陰極を形成した。
引き続き、減圧状態を維持しつつ、ふっ化マグネシウムを蒸着源として抵抗加熱法の真空蒸着により300nmの封止膜を形成した。
このようにして、有機エレクトロルミネセンス素子を作製した。
【0050】
参考例5
ガラス基板を蒸留水、アセトンでそれぞれ20分間超音波洗浄した後、ガラス基板をパターニング用マスクとともに成膜装置内のホルダーにセットし、チャンバー内を1×10−5Torr以下の真空度まで減圧した。
ITO合金をスパッタリング法により蒸着速度5Å/secで200nm成膜し、陽極を形成した。得られたITO基板を大気にさらす事なくUV/オゾン洗浄装置の入ったチャンバー内にセットし、チャンバー内を1.0×10−5Torr以下の真空度まで減圧した後、チャンバー内に0.2Torrになるまで酸素ガスを導入し、30分間照射を行った。
チャンバー内を大気圧に戻し、得られたITO基板を一旦取り出した。該基板を成膜装置内のホルダーに再セットし、1.0×10−5Torr以下の減圧下で化学式(A)で表わされるトリフェニルアミン誘導体層を抵抗加熱法によって蒸着速度5Å/secで65nm成膜し、正孔注入輸送層を形成した。続いて、減圧状態を破る事なくトリス(8−ヒドロキシキノリン)アルミニウム錯体を蒸着速度6Å/secで65nm成膜し、発光層を形成した。
【0051】
減圧状態を維持しつつ、さらに該発光層上に、MgおよびAgを蒸着源とし、抵抗加熱法の共蒸着により蒸着速度の比を10:1とし、約200nm成膜し、陰極を形成した。
引き続き、減圧状態を維持しつつ、ふっ化マグネシウムを蒸着源として抵抗加熱法の真空蒸着により300nmの封止膜を形成した。
このようにして、有機エレクトロルミネセンス素子を作製した。
【0052】
参考例6
ガラス基板を蒸留水、アセトンでそれぞれ20分間超音波洗浄した後、ガラス基板をパターニング用マスクとともに成膜装置内のホルダーにセットし、チャンバー内を1×10−5Torr以下の真空度まで減圧した。
ITO合金をスパッタリング法により蒸着速度5Å/secで200nm成膜し、陽極を形成した。得られたITO基板を大気にさらす事なくエキシマーランプ照射装置のあるチャンバー内にセットし、チャンバー内を1.0×10−5Torr以下の真空度まで減圧した後、チャンバー内に0.2Torrになるまで純エアーガスを導入し、172nmのエキシマー光を3分間照射した。
チャンバー内を大気圧に戻し、得られたITO基板を一旦取り出した。該基板を成膜装置内のホルダーに再セットし、1.0×10−5Torr以下の減圧下で化学式(A)で表わされるトリフェニルアミン誘導体層を抵抗加熱法によって蒸着速度5Å/secで65nm成膜し、正孔注入輸送層を形成した。続いて、減圧状態を破る事なく、トリス(8−ヒドロキシキノリン)アルミニウム錯体を蒸着速度6Å/secで65nm成膜し、発光層を形成した。
【0053】
減圧状態を維持しつつ、さらに該発光層上に、MgおよびAgを蒸着源とし、抵抗加熱法の共蒸着により蒸着速度の比を10:1とし、約200nm成膜し、陰極を形成した。
引き続き、減圧状態を維持しつつ、酸化ケイ素を蒸着源として抵抗加熱法の真空蒸着により300nmの封止膜を形成した。
このようにして、有機エレクトロルミネセンス素子を作製した。
【0054】
比較例1
市販のITO膜付きガラス基板(ジオマテック社製)のITO膜を蒸留水、アセトンでそれぞれ20分間超音波洗浄した後、スクリーン印刷によりレジストをパターニング塗布し、80℃で15分間乾燥後、塩酸のエッチング液でエッチングした。
導通が無いことを確認した後、基板を2%水酸化ナトリウム溶液に浸漬させ、レジストを溶解させた。
続いて界面活性剤、水、イソプロパノールおよびメタノールで順次超音波洗浄し、続いて希硫酸で酸洗浄した後、蒸留水で超音波洗浄し乾燥させた。
このようにして、得られたITO膜は、エッチングした部分は導通が無く、エッジの奇麗なパターンが得られた。
このようにして得られたITO基板を、UV/オゾン洗浄装置の入ったチャンバー内にセットし、チャンバー内を1.0×10-5Torr以下の真空度まで減圧した後、チャンバー内に0.2Torrになるまで酸素ガスを導入し、30分間照射を行った。
こうして得られたITO基板を取り出して、別の成膜装置内のホルダーにセットし、1.0×10-5Torr以下の減圧下で化学式(A)で表わされるトリフェニルアミン誘導体層を抵抗加熱法によって蒸着速度5Å/secで65nm成膜し、正孔注入輸送層を形成した。続いて、減圧状態を破る事なく、トリス(8−ヒドロキシキノリン)アルミニウム錯体を蒸着速度6Å/secで65nm成膜し、発光層を形成した。
【0055】
減圧状態を維持しつつ、さらに該発光層上に、MgおよびAgを蒸着源とし、抵抗加熱法の共蒸着により蒸着速度の比を10:1で、約200nm成膜し、陰極を形成した。
以上のような工程で、有機エレクトロルミネセンス素子を作製した。
【0056】
比較例2
市販のITO膜付きガラス基板(ジオマテック社製)のITO膜を蒸留水、アセトンでそれぞれ20分間超音波洗浄した後、スクリーン印刷によりレジストをパターニング塗布し、80℃で15分間乾燥後、塩酸のエッチング液でエッチングした。
導通が無いことを確認した後、基板を2%水酸化ナトリウム溶液に浸漬させ、レジストを溶解させた。
続いて界面活性剤、水、イソプロパノールおよびメタノールで順次超音波洗浄し、続いて希硫酸で酸洗浄した後、蒸留水で超音波洗浄し乾燥させた。
このようにして、得られたITO膜は、エッチングした部分は導通が無く、エッジの奇麗なパターンが得られた。
このようにして得られたITO基板をチャンバー内にセットし、チャンバー内を1.0×10-5Torr以下の真空度まで減圧した後、チャンバー内に0.2TorrになるまでO2ガスを導入し、0.2W/cm2の条件で30分間高周波電圧を印加し、ITO基板のプラズマ洗浄を行った。
こうして得られたITO基板を減圧状態のままで成膜装置内のホルダーに移動させ、1.0×10-5Torr以下の減圧下で化学式(A)で表わされるトリフェニルアミン誘導体層を抵抗加熱法によって蒸着速度5Å/secで65nm成膜し、正孔注入輸送層を形成した。続いて、トリス(8−ヒドロキシキノリン)アルミニウム錯体を蒸着速度6Å/secで65nm成膜し、発光層を形成する。
減圧状態を維持しつつ、さらに、該発光層上にMgおよびAgを蒸着源とし、抵抗加熱法の共蒸着により蒸着速度の比を10:1とし、約200nm成膜し、陰極を形成した。
以上のような工程で、有機エレクトロルミネセンス素子を作製した。
【0057】
比較例3
市販のITO膜付きカラス基板(ジオマテック社製)のITO膜を蒸留水、アセトンでそれぞれ20分間超音波洗浄した後、スクリーン印刷によりレジストをバターニング塗布し、80℃で15分間乾燥後、塩酸のエッチング液でエッチングした。
導通が無いことを確認した後、基板を2%水酸化ナトリウム溶液に浸漬させ、レジストを溶解させた。
続いて界面活性剤、水、イソプロパノールおよびメタノールで順次超音波洗浄し、続いて希硫酸で酸洗浄した後、蒸留水で超音波洗浄し乾燥させた。
このようにして、得られたITO膜は、エッチングした部分は導通が無く、エッジの奇麗なパターンが得られた。
得られたITO基板を、エキシマーランプ照射装置内にセットし、チャンバー内を1.0×10-5Torr以下の真空度まで減圧した後、チャンバー内に0.2Torrになるまで純エアーガスを導入し、172nmのエキシマー光を3分間照射した。
得られたITO基板を取り出して、別の成膜装置内にホルダーにセットし、10×10-5Torr以下の減圧下で化学式(A)で表わされるトリフェニルアミン誘導体層を抵抗加熱法によって蒸着速度5Å/secで65nm成膜し、正孔注入輸送層を形成した。続いて、トリス(8−ヒドロキシキノリン)アルミニウム錯体を蒸着速度6Å/secで65nm成膜し、発光層を形成する。
【0058】
その上に、MgおよびAgを蒸着源とし、抵抗加熱法の共蒸着により蒸着速度の比を10:1とし、約200nm成膜し陰極を形成した。
以上のような工程で、有機エレクロトルミネセンス素子を作製した。
【0060】
評価
実施例1〜2、参考例1〜6および比較例1〜3で得られた有機エレクトロルミネセンス素子を、そのガラス電極を陽極として、直流電圧を連続的に印加していった時の発光開始電圧(V)および10Vの直流電圧をかけた時の発光輝度(cd/m)、発光の状態(発光ムラ、ダークスポット)を測定した。また、素子を4個作製したときの素子性能の再現性を測定した。
また、上記素子を、窒素ガス不活性雰囲気下、室温で初期発光輝度100cd/mで連続発光させて、その発光輝度の半減期(輝度が50cd/mになるまでの時間)を測定した。
測定結果を表1にまとめて示す。
【0061】
【表1】
Figure 0003704883
【0062】
表1中、
◎はすこぶる良好、
○は良好
△は普通
×は悪い
状態であることを表す。
表1からわかるように、本発明の有機エレクトロルミネセンス素子は均一な面発光で発光開始電位が低く、低電位でも良好な発光輝度を示した。
本発明の有機エレクトロルミネセンス素子は発光効率、発光輝度の向上と長寿命化を達成するものであり、併せて使用される発光物質、発光補助材料、電荷輸送材料、増感剤、樹脂、電極材料等および素子作製方法に限定されるものではない。
【0063】
【発明の効果】
本発明の有機エレクトロルミネセス素子は、未発光部分がなく均一に発光し、耐久性に優れている。また、発光輝度が大きく発光開始電圧が低い。
【図面の簡単な説明】
【図1】 有機エレクトロルミネセンス素子構成例の概略断面図。
【図2】 有機エレクトロルミネセンス素子構成例の概略断面図。
【図3】 有機エレクトロルミネセンス素子構成例の概略断面図。
【図4】 有機エレクトロルミネセンス素子構成例の概略断面図。
【図5】 有機エレクトロルミネセンス素子構成例の概略断面図。
【図6】 図1中の陽極1をパターニングする際に用いるメタルマスクの平面図。
【符号の説明】
1:陽極
2:正孔注入輸送層
3:有機発光層
4:陰極
5:封止膜
6:電子注入輸送層
7:有機発光材料
8:電荷輸送材料
9:リード線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic electroluminescent element and a method for manufacturing the same.
[0002]
[Prior art]
An organic electroluminescent element is an element that emits light in response to an electric signal and is configured using an organic compound as a light-emitting substance.
[0003]
An organic electroluminescence element is basically composed of an organic light emitting layer and a pair of counter electrodes sandwiching the layer. In light emission, electrons are injected from one of the electrodes and holes are injected from the other electrode, so that the illuminant in the luminescent layer is excited to a higher energy level, and the excited illuminant becomes the original base. When returning to the state, the excess energy is emitted as light.
In order to increase luminous efficiency, in addition to the above basic structure, a structure in which a hole injection layer is further provided for the electrode for injecting holes, or an electron transport layer is provided for the electrode for injecting electrons. It has been.
[0004]
As an example of the organic electroluminescence element, one using single crystal anthracene as a light emitter is described in US Pat. No. 3,539,325.
JP-A-59-194393 proposes a combination of a hole injection layer and an organic light emitting layer.
[0005]
Japanese Patent Application Laid-Open No. 63-295695 proposes a combination of an organic hole injecting and transporting layer and an organic electron injecting and transporting layer.
These organic electroluminescent devices with a laminated structure have a structure in which an organic phosphor, a charge transporting organic substance (charge transporting material), and an electrode are laminated, and holes and electrons injected from each electrode are charged. Light is emitted by moving through the material and recombining them. As organic phosphors, organic dyes that emit fluorescence, such as 8-quinolinol aluminum complexes and coumarin compounds, are used. Examples of the charge transport material include N, N′-di (m-tolyl) N, N′-diphenylbenzidine and 1,1-bis [N, N-di (p-tolyl) aminophenyl] cyclohexane. Examples include diamino compounds and 4- (N, N-diphenyl) aminobenzaldehyde-N, N-diphenylhydrazone compounds. Furthermore, porphyrin compounds such as copper phthalocyanine have also been proposed.
[0006]
By the way, the organic electroluminescence element has high light emission characteristics, but is not sufficient in terms of stability during light emission and storage stability, and has not yet been put into practical use.
As one example of improvement for the practical application of the organic electroluminescence device as described above, JP-A-7-142168 discloses that after the anode is subjected to plasma surface treatment, the anode is exposed to the atmosphere. And then forming an organic layer on the anode has been reported.
Japanese Patent Application Laid-Open No. 7-220873 describes that dry etching may be applied as a method for plasma surface treatment of the anode, but the dry etching itself is not described in any detail.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the circumstances as described above. The object of the present invention is to provide an organic material that has no black spots on the light emitting surface, has a low light emission starting potential, and exhibits stable light emitting characteristics. The object is to provide an electroluminescent device.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a first invention as follows:
Forming a positive electrode substrate by dry etching the transparent electrode under reduced pressure;
Performing a dry cleaning process continuously under reduced pressure without exposing the anode substrate to the atmosphere;
Forming an organic layer including an organic light emitting layer on the electrode substrate; and
Forming a cathode on the organic layer;
The manufacturing method of the organic electroluminescent element containing this and the organic electroluminescent element manufactured by this method are provided.
[0009]
As a second invention, forming a transparent electrode on a glass substrate under reduced pressure to obtain an anode substrate;
Performing a dry cleaning process continuously under reduced pressure without exposing the anode substrate to the atmosphere;
Forming an organic layer including an organic light emitting layer on the anode substrate subjected to the dry cleaning treatment; and
Forming the cathode on the organic layer;
The manufacturing method of the organic electroluminescent element containing this and the organic electroluminescent element manufactured by this manufacturing method are provided.
[0010]
As a third invention, a step of dry etching the transparent electrode to form an anode substrate;
A step of dry-cleaning the anode substrate;
Forming an organic layer including an organic light emitting layer on the electrode substrate; and
Forming a cathode on the organic layer;
The present invention provides a method for producing an organic electroluminescence device characterized in that the above steps are continuously carried out under reduced pressure, and an organic electroluminescence produced by the method.
[0011]
As a fourth invention, forming a transparent electrode on a glass substrate to obtain an anode substrate;
Performing a dry cleaning process on the anode substrate;
Forming an organic layer including an organic light emitting layer on the anode substrate subjected to the dry cleaning treatment; and
Forming the cathode on the organic layer;
The present invention provides a method for producing an organic electroluminescence device characterized in that the above steps are continuously carried out under reduced pressure, and an organic electroluminescence produced by the method.
[0012]
The organic electroluminescent device of the present invention is composed of at least an organic light emitting layer and, if desired, an organic hole transport layer between electrode substrates.
In the present invention, a transparent electrode is patterned by dry etching, and an organic electroluminescence element is formed using a transparent electrode substrate that has been subjected to dry cleaning treatment continuously under reduced pressure without exposing the patterned electrode substrate to the atmosphere. This is a basic feature.
[0013]
As a dry etching method performed in the present invention, a plasma etching apparatus using parallel plate type electrodes is used.
The etching gas used is CHFour, HCl, HBr, HI, C2HFiveI, etc. are used, but HI, C due to the high etching rate and the taper angle (the taper of the etching cross section is almost eliminated).2HFiveI is preferred.
These gases may be mixed with hydrogen, argon, nitrogen, methanol, water vapor or the like for dilution or supplementary purposes.
[0014]
The degree to which the decomposition product of the anode is removed is adjusted by the flow rate of the etching gas.
The flow rate of the etching gas may be about 200 to 600 sccm although it depends on the size of the substrate.
RF power of about 600W to 3000W is used, although it depends on the size of the substrate.
The electrode substrate patterned by etching is continuously subjected to dry cleaning under reduced pressure without being exposed to the atmosphere.
[0015]
As the dry cleaning method used in the present invention, various methods such as plasma treatment with oxygen, UV / ozone cleaning method, and excimer lamp irradiation can be used.
In the plasma treatment with oxygen, the oxygen concentration (gas pressure) is set to 0.01 torr or higher in air or under reduced pressure, and the plasma treatment is performed with a commercially available parallel plate plasma apparatus.
In the UV / ozone cleaning, the oxygen concentration (gas pressure) is set to 0.01 torr or higher in air or under reduced pressure, and UV / ozone treatment is performed using a commercially available UV / ozone apparatus.
The treatment time is adjusted by examining the contact angle with water on the surface of the ITO film in any case, but is usually 10 to 60 minutes.
The excimer lamp is irradiated at an interval of 0.1 to 10 mm using a commercially available excimer lamp with an oxygen concentration (gas pressure) of 0.01 torr or higher in air or under reduced pressure.
Although irradiation time is adjusted by investigating the contact angle with the water of the ITO film | membrane surface, it is 1 to 10 minutes normally.
[0016]
The excimer lamp used in the present invention may be any excimer lamp as long as it emits light having a wavelength of 310 nm or less, and in particular, a lamp that generates ultraviolet light having a short wavelength at a single wavelength is preferable.
In addition, the ultraviolet rays that are generated have a greater cleaning effect, and the light emission characteristics are improved, especially those having a short wavelength of around 170 nm.
Specific examples of the excimer lamp include a dielectric barrier excimer lamp. However, the excimer lamp is not limited to this.
[0017]
[Operation of the present invention]
In the present invention, by patterning the anode by dry etching under reduced pressure, it is possible to manufacture an electrode with no tapered impurities and a clean tapered edge. Further, the dry cleaning is continuously performed under reduced pressure, and further, chemical bonds of organic substances adhering to the anode are cut and removed by volatilization, so that the anode surface becomes very clean. Adhesion between the organic thin film produced thereon and the electrode substrate is improved, and a homogeneous organic thin film can be formed.
Moreover, since the anode surface is oxidized by the excited oxygen atoms, the ionization potential is increased and the injection of holes is improved.
Therefore, light emission of the light emitting layer is uniform and holes are easily injected, so that light emission is started at a low potential and high luminance can be obtained. For this reason, when continuous light emission is performed with the same luminance, a long lifetime is obtained.
[0018]
In the prior art, impurities such as organic substances and inorganic substances generated by wet etching adhere to the electrode substrate surface, thereby increasing the light emission starting voltage of the organic electroluminescent element, or not causing uniform surface light emission, or deterioration. There was a problem that was fast.
In addition, if the anode is oxidized too much, the conductivity is lowered, causing problems such as poor light emission and high light emission start voltage.
[0019]
In the present invention, the above-mentioned points are eliminated, the dirt and impurities on the anode surface can be removed in a short time, and the anode is appropriately oxidized to improve the hole injecting property. An organic electroluminescent element that has no light-emitting portion, has a low light emission starting potential, and exhibits stable light emission characteristics can be manufactured.
[0020]
1 to 4 schematically show an organic electroluminescent device according to the present invention. In FIG. 1, (1) is an anode, on which a hole injecting and transporting layer (2), an organic light emitting layer (3), a cathode (4) and a sealing film (5) are sequentially laminated. ing.
[0021]
In FIG. 2, (1) is an anode, on which a hole injecting and transporting layer (2), an organic light emitting layer (3), an electron injecting and transporting layer (6), a cathode (4), and a sealing film (5 ) Are sequentially stacked.
[0022]
In FIG. 3, (1) is an anode, on which an organic light emitting layer (3), an electron injection transport layer (6), a cathode (4), and a sealing film (5) are sequentially laminated. ing.
[0023]
In FIG. 4, (1) is an anode, on which an organic light emitting layer (3), a cathode (4), and a sealing film (5) are sequentially laminated. An organic light emitting material (7) and a charge transport material (8) are included.
[0024]
In each electroluminescence element having the above-described configuration, the anode (1) and the cathode (4) are connected by a lead wire, and the organic light emitting layer (3) emits light by applying a voltage to the anode (1) and the cathode (4). .
[0025]
Of course, the present invention may have any configuration as long as an organic film having various functions is provided on the anode and the cathode.
As the conductive material used as the anode (1) of the organic electroluminescence element, those having a work function larger than 4 eV are preferable, and carbon, aluminum, vanadium, iron, cobalt, nickel, copper, zinc, tungsten, silver In addition, conductive metal compounds such as tin, gold and the like and alloys thereof, tin oxide, indium oxide, antimony oxide, zinc oxide and zirconium oxide are used.
[0026]
In the organic electroluminescence element, at least the anode (1) or the cathode (4) needs to be a transparent electrode so that light emission can be seen. At this time, if a transparent electrode is used for the cathode, the transparency is likely to be impaired. Therefore, the anode is preferably a transparent electrode.
When the transparent electrode is formed, the above-described conductive material may be used on the transparent substrate so as to ensure desired translucency and conductivity using means such as vapor deposition and sputtering.
[0027]
The transparent substrate has an appropriate strength, and is not particularly limited as long as it is transparent as long as it is transparent without being adversely affected by heat due to vapor deposition or the like during the production of an organic electroluminescent element. Transparent resins such as polyethylene, polypropylene, polyethersulfone, polyetheretherketone and the like can also be used. Commercial products such as ITO and NESA are known as transparent electrodes formed on a glass substrate, but these may be used.
[0028]
In the present invention, as described above, the transparent electrode is patterned by dry etching, and the patterned electrode substrate is subjected to continuous dry cleaning treatment under reduced pressure without exposure to the atmosphere. In the case where the transparent electrode is formed under reduced pressure, it is preferable to perform etching and dry cleaning as it is under reduced pressure.
[0029]
After the transparent electrode is formed as the anode, it is patterned into various shapes. In this patterning method, for example, a pattern electrode 1 as shown in FIG. 5 is formed by performing dry etching using a mask in which windows are formed as shown in FIG. Of course, a mask as shown in FIG. 6 may be used when forming the transparent electrode, and the electrode formation and patterning may be performed simultaneously.
The production of the electroluminescent element having the configuration shown in FIG.
[0030]
First, a hole injecting and transporting layer (2) is provided on the anode (1) described above. As the hole injecting and transporting material used in the hole injecting and transporting layer, known materials can be used, for example, N, N′-diphenyl-N, N′-bis (3-methylphenyl) -1,1′- Diphenyl-4,4′-diamine, N, N′-diphenyl-N, N′-bis (4-methylphenyl) -1,1′-diphenyl-4,4′-diamine, N, N′-diphenyl- N, N′-bis (1-naphthyl) -1,1′-diphenyl-4,4′-diamine, N, N′-diphenyl-N, N′-bis (2-naphthyl) -1,1′- Diphenyl-4,4′-diamine, N, N′-tetra (4-methylphenyl) -1,1′-diphenyl-4,4′-diamine, N, N′-tetra (4-methylphenyl) -1 , 1'-bis (3-methylphenyl) -4,4'-diamine, N, N'- Phenyl-N, N′-bis (3-methylphenyl) -1,1′-bis (3-methylphenyl) -4,4′-diamine, N, N′-bis (N-carbazolyl) -1,1 '-Diphenyl-4,4'-diamine, 4,4', 4 "-tris (N-carbazolyl) triphenylamine, N, N ', N" -triphenyl-N, N', N "-tris ( 3-methylphenyl) -1,3,5-tri (4-aminophenyl) benzene, 4,4 ′, 4 ″ -tris [N, N ′, N ″ -triphenyl-N, N ′, N ″ − And tris (3-methylphenyl)] triphenylamine. These may be used as a mixture of two or more.
[0031]
When the hole transport layer (2) is formed by a vapor deposition method, the thickness is usually 30 to 100 nm. When the hole transport layer (2) is formed by a coating method, the thickness may be 50 to 200 nm.
An organic light emitting layer (3) is formed on the hole transport layer (2). As the organic light-emitting material used in the organic light-emitting layer, known materials can be used. For example, tris (8-hydroxyquinoline) aluminum complex, epidolidine, 2,5-bis [5,7-di-t-pentyl-2 -Benzoxazolyl] thiophene, 2,2 '-(1,4-phenylenedivinylene) bisbenzothiazole, 2,2'-(4,4'-biphenylene) bisbenzothiazole, 5-methyl-2- { 2- [4- (5-Methyl-2-benzoxazolyl) phenyl] vinyl} benzoxazole, 2,5-bis (5-methyl-2-benzoxazolyl) thiophene, anthracene, naphthalene, phenanthrene, pyrene Chrysene, perylene, perinone, 1,4-diphenylbutadiene, tetraphenylbutadiene, coumarin, acridine, stilbe 2- (4-biphenyl) -6-phenylbenzoxazole, aluminum trisoxine, magnesium bisoxin, bis (benzo-8-quinolinol) zinc, bis (2-methyl-8-quinolinol) aluminum oxide, indium trisoxin, Aluminum tris (5-methyloxin), lithium oxine, gallium trisoxine, calcium bis (5-chlorooxin), polyzinc-bis (8-hydroxy-5-quinolinolyl) methane, dilithium epindridione, zinc bisoxin, 1,2-phthaloperinone, 1,2-naphthaloperinone and the like can be mentioned.
[0032]
Also, general fluorescent dyes such as fluorescent coumarin dyes, fluorescent perylene dyes, fluorescent pyran dyes, fluorescent thiopyran dyes, fluorescent polymethine dyes, fluorescent methocyanine dyes, fluorescent imidazole dyes and the like can be used. Of these, particularly preferred are chelated oxinoid compounds.
The organic light emitting layer (3) may have a single layer structure of the light emitting material described above, or may have a multilayer structure in order to adjust characteristics such as the color of light emission and the intensity of light emission. Two or more kinds of luminescent materials may be mixed or doped in the luminescent layer.
[0033]
The organic light emitting layer (3) may be formed by vapor-depositing a light emitting material as described above, or formed by dip coating or spin coating a solution in which the light emitting material is dissolved or a solution dissolved with an appropriate resin. May be.
When forming by a vapor deposition method, the thickness is 1-500 nm normally, Preferably it is 1-200 nm, When forming by the apply | coating method, what is necessary is just to form 5-1000 nm, Preferably it is about 5-500 nm.
The thicker the film is formed, the higher the applied voltage for causing light emission, and the lower the light emission efficiency, the more likely the deterioration of the organic electroluminescent element. Further, when the film thickness is reduced, the light emission efficiency is improved, but breakdown is easily caused and the life of the organic electroluminescence element is shortened.
[0034]
As the electron injecting and transporting material used for the electron injecting and transporting layer (6) formed on the organic light emitting layer (3), known materials can be used, for example, 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole, 2- (1-naphthyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole, 1, 4-bis {2- [5- (4-tert-butylphenyl) -1,3,4-oxadiazolyl]} benzene, 1,3-bis {2- [5- (4-tert-butylphenyl) -1 , 3,4-oxadiazolyl]} benzene, 4,4′-bis {2- [5- (4-tert-butylphenyl) -1,3,4-oxadiazolyl]} biphenyl, 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-thiodiazo 2- (1-naphthyl) -5- (4-tert-butylphenyl) -1,3,4-thiodiazole, 1,4-bis {2- [5- (4-tert-butylphenyl) -1 , 3,4-thiodiazolyl]} benzene, 1,3-bis {2- [5- (4-tert-butylphenyl) -1,3,4-thiodiazolyl]} benzene, 4,4′-bis {2- [5- (4-tert-butylphenyl) -1,3,4-thiodiazolyl]} biphenyl, 3- (4-biphenylyl) -4-phenyl-5- (4-tert-butylphenyl) -1,2 , 4-triazole, 3- (1-naphthyl) -4-phenyl-5- (4-tert-butylphenyl) -1,2,4-triazole, 1,4-bis {3- [4-phenyl-5 -(4-tert-butylphenyl) -1,2,4-triazolyl]} benze 1,3-bis {3- [4-phenyl-5- (4-tert-butylphenyl) -1,3,4-oxadiazolyl]} benzene, 4,4′-bis {2- [4-phenyl- 5- (4-tert-butylphenyl) -1,3,4-oxadiazolyl]} biphenyl, 1,3,5-tris {2- [5- (4-tert-butylphenyl) -1,3,4- Oxadiazolyl]} benzene and the like. These may be used in combination of two or more.
[0035]
The electron injecting and transporting layer has a thickness of 1 to 500 nm when formed by a vapor deposition method, and may be formed to have a thickness of about 5 to 1000 nm when formed by a coating method.
Next, the cathode described above is formed on the electron injecting and transporting layer (6). The metal forming the cathode (4) is preferably one having a work function smaller than 4 eV, and magnesium, calcium, titanium, yttrium lithium, gadolinium, ytterbium, ruthenium, manganese, and alloys thereof are used.
A pair of transparent electrodes of a cathode and an anode is connected to each electrode with an appropriate lead wire (9) such as a nichrome wire, a gold wire, a copper wire, or a platinum wire, and the organic luminescence device has an appropriate voltage ( Light is emitted by applying Vs).
[0036]
In the electroluminescent element having the configuration shown in FIG. 2, a sealing film (5) is further formed on the cathode (4). The sealing film (5) is made of SiO for the purpose of preventing oxidation and moisture of the organic layer and the cathode.2, SiO, GeO, MgF2Etc. are used to form such a deposited film, and the thickness is about 5 to 1000 nm.
In the above description, the production of the organic electroluminescence element having the configuration shown in FIG. 2 has been described. However, other organic electroluminescence elements having the configuration shown in FIGS. 1 and 3 to 4 can be manufactured in accordance with the above production example.
[0037]
In the production of the organic electroluminescence device having the configuration shown in FIGS. 1 to 4, after the electrode substrate is dry-cleaned, the organic layer including the organic light-emitting layer, the cathode, and the like are optionally removed without exposing the substrate to the atmosphere. It is preferable to employ means for forming a sealing film. Therefore, vapor deposition that can continuously form each layer of the hole injecting and transporting layer (2), the organic light emitting layer (3), the electron injecting and transporting layer (6), the cathode (4), and the sealing film (5) under reduced pressure, It is preferable to employ a method such as sputtering.
After the dry cleaning process, the light emitting layer, cathode, or sealing film is formed in order without exposing the electrode substrate to the atmosphere, so that deterioration of the device due to oxygen and humidity in the atmosphere can be prevented, and the length of the non-light emitting part is small. A long-life organic electroluminescence element can be produced.
The organic electroluminescent element of the present invention can be applied to various display devices, display devices, and the like.
[0038]
【Example】
  Hereinafter, the present invention will be described with reference to examples.
  referenceExample 1
  The ITO film of a commercially available glass substrate with ITO film (manufactured by Geomatek) was ultrasonically cleaned with distilled water and acetone for 20 minutes, respectively, and then set in a holder in the plasma irradiation apparatus together with a patterned metal mask (made of tungsten). Inside is 1.0 × 10-5The pressure was reduced to a degree of vacuum below Torr.
  Then 5.0 × 10 in the chamber-2C until Torr2H5I / Ar mixed gas is introduced and 1 W / cm2Dry etching was performed for 15 minutes under the above conditions. Subsequently, overetching was performed up to 20% at 0.1 Torr. The gas flow rate was 400 sccm.
  In the ITO film thus obtained, the etched portion was not conductive, and a beautiful pattern of edges was obtained.
  The obtained ITO substrate is left without taking out, and the inside of the chamber is 1.0 × 10-5After depressurizing to a vacuum level of less than Torr, O until the pressure reaches 0.2 Torr in the chamber.2Gas is introduced and 0.2 W / cm2A high frequency voltage was applied for 30 minutes under the above conditions to perform plasma cleaning of the ITO substrate.
  The chamber was once returned to atmospheric pressure, and the obtained ITO substrate was taken out. The substrate is reset in a holder in another film forming apparatus, and 1.0 × 10-5A triphenylamine derivative (N, N′-diphenyl-N, N′bis (3-methylphenyl) -1,1′-biphenyl-4,4′- represented by the following chemical formula (A) under a reduced pressure of Torr or less A (diamine) layer was formed to a thickness of 65 nm by a resistance heating method at a deposition rate of 5 Å / sec to form a hole injection transport layer.
  Subsequently, a tris (8-hydroxyquinoline) aluminum complex was formed to a thickness of 65 nm at a deposition rate of 6 Å / sec while maintaining a reduced pressure in the chamber to form a light emitting layer.
[0039]
[Chemical 1]
Figure 0003704883
[0040]
The reduced pressure state was not broken, and on top of that, Mg and Ag were used as vapor deposition sources, and the vapor deposition rate ratio was 10: 1 by co-evaporation using the resistance heating method, and a film having a thickness of about 200 nm was formed to form a cathode.
The organic electroluminescent element was produced by the above process.
[0041]
  referenceExample 2
  The ITO film of a commercially available glass substrate with ITO film (manufactured by Geomatek) was ultrasonically cleaned with distilled water and acetone for 20 minutes, respectively, and then set in a holder in the plasma irradiation apparatus together with a patterned metal mask (made of tungsten). Inside is 1.0 × 10-5The pressure was reduced to a degree of vacuum below Torr.
  Subsequently, while maintaining a reduced pressure state, 2.0 × 10-2HI / Ar mixed gas is introduced until it reaches Torr, 1 W / cm2Dry etching was performed for 3 minutes under the above conditions. Subsequently, overetching was performed up to 20% at 0.1 Torr. The gas flow rate was 300 sccm.
  In the ITO film thus obtained, the etched portion was not conductive, and a beautiful pattern of edges was obtained.
  Subsequently, 1.0 × 10 in the chamber without being exposed to the atmosphere.-5After depressurizing to a vacuum level of less than Torr, O until the pressure reaches 0.2 Torr in the chamber.2Gas is introduced and 0.2 W / cm2A high frequency voltage was applied for 30 minutes under the above conditions to perform plasma cleaning of the ITO substrate.
  The inside of the chamber was returned to atmospheric pressure, and the obtained ITO substrate was taken out and set in a holder in another film forming apparatus. 1.0 × 10 in the chamber-5The pressure was reduced to below Torr, and a triphenylamine derivative layer represented by the chemical formula (A) was formed on the substrate at a thickness of 65 nm by a resistance heating method at a deposition rate of 5 Å / sec to form a hole injecting and transporting layer.
  Subsequently, without breaking the reduced pressure state, a tris (8-hydroxyquinoline) aluminum complex was formed on the transport layer at a deposition rate of 6 nm / sec to a thickness of 65 nm to form a light emitting layer.
[0042]
While maintaining the reduced pressure state, a cathode was formed on the light emitting layer by using Mg and Ag as a deposition source, forming a deposition rate ratio of 10: 1 by co-evaporation using a resistance heating method, and depositing about 200 nm.
The organic electroluminescent element was produced by the above process.
[0043]
  Example1
  referenceThe ITO substrate was patterned and plasma cleaned in the same manner as in Example 2, but after the plasma treatment, the substrate was moved into the film forming apparatus without being exposed to the atmosphere. On this substrate, 1.0 × 10-5A triphenylamine derivative layer represented by the chemical formula (A) was formed into a 65 nm film at a deposition rate of 5 加熱 / sec by a resistance heating method under a reduced pressure of Torr or less to form a hole injecting and transporting layer.
  Without breaking the reduced pressure state, a tris (8-hydroxyquinoline) aluminum complex was deposited on the transport layer at a deposition rate of 6 nm / sec to 65 nm to form a light emitting layer.
[0044]
Subsequently, while maintaining the reduced pressure state, Mg and Ag are used as the evaporation source, the ratio of the evaporation rate is set to 10: 1 by the co-evaporation by the resistance heating method, and the cathode is formed on the light emitting layer by depositing about 200 nm. did.
The organic electroluminescent element was produced by the above process.
[0045]
  Example2
  After the glass substrate was ultrasonically cleaned with distilled water and acetone for 20 minutes, the glass substrate was set together with a patterning mask on a holder in the film forming apparatus, and the inside of the chamber was 1.0 × 10-5The pressure was reduced to a degree of vacuum below Torr.
  An ITO alloy was deposited to a thickness of 200 nm by a sputtering method at a deposition rate of 5 Å / sec to form an anode. Next, remove the patterning mask without exposing it to the atmosphere.1In the same manner as described above, plasma cleaning and organic compound layer and cathode film formation were performed.
  The organic electroluminescent element was produced by the above process.
[0046]
  Reference example 3
  The ITO film of a commercially available glass substrate with ITO film (manufactured by Geomatek) was ultrasonically cleaned with distilled water and acetone for 20 minutes, respectively, and then set in a holder in the film forming apparatus together with a patterned metal mask (made of tungsten). Inside is 1.0 × 10-5The pressure was reduced to a degree of vacuum below Torr.
  Subsequently, while maintaining the reduced pressure state, 2.0 × 10-2Introduce HBr / Ar mixed gas until Torr, 1 W / cm2Dry etching was performed for 3 minutes under the above conditions. Subsequently, overetching was performed up to 20% at 0.1 Torr.
  In this way, the obtained ITO film had no conductivity in the etched portion, and a beautiful pattern of edges was obtained.
  The obtained ITO substrate is set in an excimer lamp irradiation apparatus without exposing to the atmosphere, and the inside of the chamber is 1.0 × 10-5After depressurizing to a vacuum level of Torr or lower, pure air gas was introduced into the chamber until 0.2 Torr and irradiated with 172 nm excimer light for 3 minutes.
  The ITO substrate that was once returned to atmospheric pressure in the chamber was taken out. The substrate is reset in the holder in the film forming apparatus, and 1.0 × 10-5A triphenylamine derivative layer represented by the chemical formula (A) was formed into a 65 nm film at a deposition rate of 5 加熱 / sec by a resistance heating method under a reduced pressure of Torr or less to form a hole injecting and transporting layer. Subsequently, while maintaining the reduced pressure state, a tris (8-hydroxyquinoline) aluminum complex was formed to a thickness of 65 nm at a deposition rate of 6 Å / sec to form a light emitting layer.
[0047]
The reduced pressure state was not broken, and Mg and Ag were further used as the evaporation source, and the ratio of the evaporation rate was set to 10: 1 by co-evaporation by the resistance heating method, and a film was formed to about 200 nm to form a cathode.
The organic electroluminescent element was produced by the above process.
[0048]
  Reference example 4
  After the glass substrate was ultrasonically cleaned with distilled water and acetone for 20 minutes each, the glass substrate was set together with a patterning mask on the holder in the film forming apparatus, and the inside of the chamber was 1 × 10-5The pressure was reduced to a degree of vacuum below Torr.
  An ITO alloy was deposited to a thickness of 200 nm by a sputtering method at a deposition rate of 5 Å / sec to form an anode. Subsequently, the ITO substrate obtained without being exposed to the atmosphere was set in an excimer lamp irradiation device without being exposed to the atmosphere, and the inside of the chamber was 1.0 × 10 6.-5After depressurizing to a vacuum level of Torr or lower, pure air gas was introduced into the chamber until 0.2 Torr and irradiated with 172 nm excimer light for 3 minutes.
  The inside of the chamber was returned to atmospheric pressure, and the obtained ITO substrate was once taken out. The substrate is reset in the holder in the film forming apparatus, and 1.0 × 10-5A triphenylamine derivative layer represented by the chemical formula (A) was formed into a 65 nm film at a deposition rate of 5 加熱 / sec by a resistance heating method under a reduced pressure of Torr or less to form a hole injecting and transporting layer. Subsequently, without breaking the reduced pressure state, a tris (8-hydroxyquinoline) aluminum complex was formed to a thickness of 65 nm at a deposition rate of 6 Å / sec to form a light emitting layer.
[0049]
While maintaining the reduced pressure state, a cathode was formed on the light emitting layer by using Mg and Ag as a deposition source, forming a deposition rate ratio of 10: 1 by co-evaporation using a resistance heating method, and depositing about 200 nm.
Subsequently, a 300 nm sealing film was formed by resistance heating vacuum deposition using magnesium fluoride as a deposition source while maintaining a reduced pressure state.
In this way, an organic electroluminescence element was produced.
[0050]
  Reference Example 5
  After the glass substrate was ultrasonically cleaned with distilled water and acetone for 20 minutes each, the glass substrate was set together with a patterning mask on the holder in the film forming apparatus, and the inside of the chamber was 1 × 10-5The pressure was reduced to a degree of vacuum below Torr.
  An ITO alloy was deposited to a thickness of 200 nm by a sputtering method at a deposition rate of 5 Å / sec to form an anode. The obtained ITO substrate is set in a chamber containing a UV / ozone cleaning device without being exposed to the atmosphere.-5After the pressure was reduced to a vacuum level of Torr or lower, oxygen gas was introduced into the chamber until the pressure reached 0.2 Torr, and irradiation was performed for 30 minutes.
  The inside of the chamber was returned to atmospheric pressure, and the obtained ITO substrate was once taken out. The substrate is reset in the holder in the film forming apparatus, and 1.0 × 10-5A triphenylamine derivative layer represented by the chemical formula (A) was formed into a 65 nm film at a vapor deposition rate of 5 Å / sec by a resistance heating method under a reduced pressure of Torr or less to form a hole injecting and transporting layer. Subsequently, a tris (8-hydroxyquinoline) aluminum complex was formed to a thickness of 65 nm at a deposition rate of 6 Å / sec without breaking the reduced pressure state, thereby forming a light emitting layer.
[0051]
While maintaining the reduced pressure state, a cathode was formed on the light emitting layer by using Mg and Ag as a deposition source, forming a deposition rate ratio of 10: 1 by co-evaporation using a resistance heating method, and depositing about 200 nm.
Subsequently, a 300 nm sealing film was formed by resistance heating vacuum deposition using magnesium fluoride as a deposition source while maintaining a reduced pressure state.
In this way, an organic electroluminescence element was produced.
[0052]
  Reference Example 6
  After the glass substrate was ultrasonically cleaned with distilled water and acetone for 20 minutes each, the glass substrate was set together with a patterning mask on the holder in the film forming apparatus, and the inside of the chamber was 1 × 10-5The pressure was reduced to a degree of vacuum below Torr.
  An ITO alloy was deposited to a thickness of 200 nm by a sputtering method at a deposition rate of 5 Å / sec to form an anode. The obtained ITO substrate was set in a chamber with an excimer lamp irradiation device without being exposed to the atmosphere.-5After depressurizing to a vacuum level of Torr or lower, pure air gas was introduced into the chamber until 0.2 Torr and irradiated with 172 nm excimer light for 3 minutes.
  The inside of the chamber was returned to atmospheric pressure, and the obtained ITO substrate was once taken out. The substrate is reset in the holder in the film forming apparatus and 1.0 × 10-5A triphenylamine derivative layer represented by the chemical formula (A) was formed into a 65 nm film at a vapor deposition rate of 5 Å / sec by a resistance heating method under a reduced pressure of Torr or less to form a hole injecting and transporting layer. Subsequently, without breaking the reduced pressure state, a tris (8-hydroxyquinoline) aluminum complex was formed to a thickness of 65 nm at a deposition rate of 6 Å / sec to form a light emitting layer.
[0053]
While maintaining the reduced pressure state, a cathode was formed on the light emitting layer by using Mg and Ag as a deposition source, forming a deposition rate ratio of 10: 1 by co-evaporation using a resistance heating method, and depositing about 200 nm.
Subsequently, a 300 nm sealing film was formed by resistance heating vacuum deposition using silicon oxide as a deposition source while maintaining a reduced pressure state.
In this way, an organic electroluminescence element was produced.
[0054]
Comparative Example 1
The ITO film of a commercially available glass substrate with an ITO film (manufactured by Geomatek) was ultrasonically cleaned with distilled water and acetone for 20 minutes, respectively, resist was applied by patterning by screen printing, dried at 80 ° C. for 15 minutes, and then etched with hydrochloric acid. Etched with liquid.
After confirming that there was no conduction, the substrate was immersed in a 2% sodium hydroxide solution to dissolve the resist.
Subsequently, ultrasonic cleaning was sequentially performed with a surfactant, water, isopropanol and methanol, followed by acid cleaning with dilute sulfuric acid, and then ultrasonic cleaning with distilled water and drying.
In this way, the obtained ITO film had no conductivity in the etched portion, and a beautiful pattern of edges was obtained.
The ITO substrate thus obtained was set in a chamber containing a UV / ozone cleaning device, and the inside of the chamber was 1.0 × 10-FiveAfter reducing the pressure to a vacuum level of Torr or lower, oxygen gas was introduced into the chamber until the pressure reached 0.2 Torr, and irradiation was performed for 30 minutes.
The ITO substrate thus obtained is taken out and set in a holder in another film forming apparatus, and 1.0 × 10-FiveA triphenylamine derivative layer represented by the chemical formula (A) was deposited at 65 nm at a deposition rate of 5 Å / sec by a resistance heating method under a reduced pressure of Torr or less to form a hole injecting and transporting layer. Subsequently, without breaking the reduced pressure state, a tris (8-hydroxyquinoline) aluminum complex was formed to a thickness of 65 nm at a deposition rate of 6 Å / sec to form a light emitting layer.
[0055]
While maintaining the reduced pressure state, a cathode was formed on the light emitting layer by using Mg and Ag as a deposition source and depositing about 200 nm at a deposition rate ratio of 10: 1 by co-evaporation using a resistance heating method.
The organic electroluminescent element was produced by the above process.
[0056]
Comparative Example 2
The ITO film of a commercially available glass substrate with an ITO film (manufactured by Geomatek) was ultrasonically cleaned with distilled water and acetone for 20 minutes, respectively, resist was applied by patterning by screen printing, dried at 80 ° C. for 15 minutes, and then etched with hydrochloric acid. Etched with liquid.
After confirming that there was no conduction, the substrate was immersed in a 2% sodium hydroxide solution to dissolve the resist.
Subsequently, ultrasonic cleaning was sequentially performed with a surfactant, water, isopropanol and methanol, followed by acid cleaning with dilute sulfuric acid, and then ultrasonic cleaning with distilled water and drying.
In this way, the obtained ITO film had no conductivity in the etched portion, and a beautiful pattern of edges was obtained.
The ITO substrate thus obtained was set in a chamber, and the inside of the chamber was 1.0 × 10-FiveAfter depressurizing to a vacuum level of less than Torr, O until the pressure reaches 0.2 Torr in the chamber.2Gas is introduced and 0.2 W / cm2A high frequency voltage was applied for 30 minutes under the above conditions to perform plasma cleaning of the ITO substrate.
The ITO substrate thus obtained is moved to a holder in the film forming apparatus while maintaining a reduced pressure, and is 1.0 × 10-FiveA triphenylamine derivative layer represented by the chemical formula (A) was formed into a 65 nm film at a vapor deposition rate of 5 Å / sec by a resistance heating method under a reduced pressure of Torr or less to form a hole injecting and transporting layer. Subsequently, a tris (8-hydroxyquinoline) aluminum complex is deposited to a thickness of 65 nm at a deposition rate of 6 Å / sec to form a light emitting layer.
While maintaining the reduced pressure state, a cathode was formed by forming Mg and Ag on the light emitting layer as a deposition source, forming a deposition rate ratio of 10: 1 by co-evaporation using a resistance heating method, and depositing about 200 nm.
The organic electroluminescent element was produced by the above process.
[0057]
Comparative Example 3
The ITO film of a commercially available crow substrate with an ITO film (manufactured by Geomatek) was ultrasonically washed with distilled water and acetone for 20 minutes respectively, then the resist was applied by buttering by screen printing, dried at 80 ° C. for 15 minutes, Etched with an etchant.
After confirming that there was no conduction, the substrate was immersed in a 2% sodium hydroxide solution to dissolve the resist.
Subsequently, ultrasonic cleaning was sequentially performed with a surfactant, water, isopropanol and methanol, followed by acid cleaning with dilute sulfuric acid, and then ultrasonic cleaning with distilled water and drying.
In this way, the obtained ITO film had no conductivity in the etched portion, and a beautiful pattern of edges was obtained.
The obtained ITO substrate was set in an excimer lamp irradiation apparatus, and the inside of the chamber was 1.0 × 10-FiveAfter depressurizing to a vacuum level of Torr or lower, pure air gas was introduced into the chamber until 0.2 Torr and irradiated with 172 nm excimer light for 3 minutes.
The obtained ITO substrate is taken out and set in a holder in another film forming apparatus, and 10 × 10-FiveA triphenylamine derivative layer represented by the chemical formula (A) was formed into a 65 nm film at a vapor deposition rate of 5 Å / sec by a resistance heating method under a reduced pressure of Torr or less to form a hole injecting and transporting layer. Subsequently, a tris (8-hydroxyquinoline) aluminum complex is deposited to a thickness of 65 nm at a deposition rate of 6 Å / sec to form a light emitting layer.
[0058]
On top of that, Mg and Ag were used as vapor deposition sources, and the ratio of vapor deposition rates was set to 10: 1 by co-evaporation using a resistance heating method.
The organic electroluminescent element was produced by the above process.
[0060]
  Evaluation
  Example 12, Reference Examples 1-6The organic electroluminescent elements obtained in Comparative Examples 1 to 3 were subjected to a light emission starting voltage (V) and a DC voltage of 10 V when a DC voltage was continuously applied using the glass electrode as an anode. Emission luminance (cd / m2), And the state of light emission (light emission unevenness, dark spot) was measured. Moreover, the reproducibility of the element performance when four elements were produced was measured.
  In addition, the above device was manufactured at an initial emission luminance of 100 cd / m at room temperature in an inert atmosphere of nitrogen gas.2The half-life of the emission luminance (luminance is 50 cd / m2Was measured).
  The measurement results are summarized in Table 1.
[0061]
[Table 1]
Figure 0003704883
[0062]
In Table 1,
◎ is very good,
○ is good
△ is normal
× is bad
Represents a state.
As can be seen from Table 1, the organic electroluminescent device of the present invention had uniform surface emission, a low emission start potential, and good emission luminance even at a low potential.
The organic electroluminescent device of the present invention achieves improvement in luminous efficiency, luminous luminance and long life, and is used together with luminous substances, luminous auxiliary materials, charge transport materials, sensitizers, resins, electrodes It is not limited to the material and the element manufacturing method.
[0063]
【The invention's effect】
The organic electroluminescence element of the present invention has no non-light emitting portion, emits light uniformly, and is excellent in durability. In addition, the emission luminance is high and the emission start voltage is low.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a configuration example of an organic electroluminescence element.
FIG. 2 is a schematic cross-sectional view of a configuration example of an organic electroluminescence element.
FIG. 3 is a schematic cross-sectional view of a configuration example of an organic electroluminescence element.
FIG. 4 is a schematic cross-sectional view of a configuration example of an organic electroluminescence element.
FIG. 5 is a schematic cross-sectional view of a configuration example of an organic electroluminescence element.
6 is a plan view of a metal mask used when patterning an anode 1 in FIG. 1. FIG.
[Explanation of symbols]
1: Anode
2: Hole injection transport layer
3: Organic light emitting layer
4: Cathode
5: Sealing film
6: Electron injection transport layer
7: Organic light-emitting material
8: Charge transport material
9: Lead wire

Claims (4)

透明導電性膜をドライエッチングし陽極基板を形成する工程と、
前記陽極基板を乾式洗浄処理する工程と、
前記陽極基板上に有機発光層を含む有機層を形成する工程と、
前記有機層上に陰極を形成する工程と
を有し、前記全ての工程を減圧下に連続して行うことを特徴とする有機エレクトロルミネセス素子の製造方法。
A step of dry etching the transparent conductive film to form an anode substrate;
A step of dry-cleaning the anode substrate;
Forming an organic layer including an organic light emitting layer on the anode substrate;
And a step of forming a cathode on the organic layer, and performing all the steps continuously under reduced pressure.
透明電極を形成し陽極基板を得る工程と、
前記陽極基板を乾式洗浄処理する工程と、
前記陽極基板上に有機発光層を含む有機層を形成する工程と、
前記有機層上に陰極を形成する工程と
を有し、前記全ての工程を減圧下に連続して行うことを特徴とする有機エレクトロルミネセス素子の製造方法。
Forming a transparent electrode to obtain an anode substrate;
A step of dry-cleaning the anode substrate;
Forming an organic layer including an organic light emitting layer on the anode substrate;
And a step of forming a cathode on the organic layer, and performing all the steps continuously under reduced pressure.
さらに、前記陰極上に封止膜を形成する工程を有することを特徴とする請求項1または2に記載の有機エレクトロルミネセス素子の製造方法。  Furthermore, the manufacturing method of the organic electroluminescent element of Claim 1 or 2 which has the process of forming a sealing film on the said cathode. 前記乾式洗浄処理がプラズマ処理、エキシマーランプ処理、UV/オゾン処理のいずれかであることを特徴とする請求項1〜3のいずれかに記載の有機エレクトロルミネセンス素子の製造方法。  The method for producing an organic electroluminescent element according to any one of claims 1 to 3, wherein the dry cleaning treatment is any one of plasma treatment, excimer lamp treatment, and UV / ozone treatment.
JP11384997A 1997-05-01 1997-05-01 Organic electroluminescent device and method for manufacturing the same Expired - Fee Related JP3704883B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11384997A JP3704883B2 (en) 1997-05-01 1997-05-01 Organic electroluminescent device and method for manufacturing the same
US09/067,746 US6908638B2 (en) 1997-05-01 1998-04-28 Organic electroluminescent element and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11384997A JP3704883B2 (en) 1997-05-01 1997-05-01 Organic electroluminescent device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10302965A JPH10302965A (en) 1998-11-13
JP3704883B2 true JP3704883B2 (en) 2005-10-12

Family

ID=14622612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11384997A Expired - Fee Related JP3704883B2 (en) 1997-05-01 1997-05-01 Organic electroluminescent device and method for manufacturing the same

Country Status (2)

Country Link
US (1) US6908638B2 (en)
JP (1) JP3704883B2 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6106352A (en) * 1998-03-18 2000-08-22 Sanyo Electric Co., Ltd. Method for fabrication of organic electroluminescent device
EP1069628A3 (en) * 1999-07-14 2004-03-17 Nec Corporation Organic electroluminescent device and method for fabricating same
TW511298B (en) * 1999-12-15 2002-11-21 Semiconductor Energy Lab EL display device
JP2001284059A (en) * 2000-03-29 2001-10-12 Honda Motor Co Ltd Transparent electrode, organic electroluminescent element, treating device and treating method of transparent electrode
SG125891A1 (en) * 2000-09-08 2006-10-30 Semiconductor Energy Lab Light emitting device, method of manufacturing thesame, and thin film forming apparatus
SG138467A1 (en) * 2000-12-28 2008-01-28 Semiconductor Energy Lab Luminescent device
CN101397649B (en) * 2001-02-01 2011-12-28 株式会社半导体能源研究所 Deposition device for manufacturing organic compound on substrate
JP4704605B2 (en) * 2001-05-23 2011-06-15 淳二 城戸 Continuous vapor deposition apparatus, vapor deposition apparatus and vapor deposition method
JP4707271B2 (en) * 2001-06-29 2011-06-22 三洋電機株式会社 Method for manufacturing electroluminescence element
JP2003017254A (en) * 2001-06-29 2003-01-17 Sanyo Electric Co Ltd Manufacturing method of electroluminescent display
JP2003017255A (en) * 2001-06-29 2003-01-17 Sanyo Electric Co Ltd Manufacturing method of electroluminescent display
JP2003031375A (en) * 2001-07-16 2003-01-31 Rohm Co Ltd Organic el display device
JP2003264075A (en) * 2002-03-08 2003-09-19 Pioneer Electronic Corp Manufacturing method of organic electroluminescent element
JP2004087439A (en) * 2002-07-05 2004-03-18 Toyota Industries Corp Lighting system and liquid crystal display device
SG130013A1 (en) * 2002-07-25 2007-03-20 Semiconductor Energy Lab Method of fabricating light emitting device
US6982179B2 (en) 2002-11-15 2006-01-03 University Display Corporation Structure and method of fabricating organic devices
CN100459060C (en) * 2003-02-05 2009-02-04 株式会社半导体能源研究所 Manufacture method of display device
EP1592052A4 (en) * 2003-02-05 2014-04-23 Semiconductor Energy Lab Method for manufacturing display
WO2004070809A1 (en) * 2003-02-06 2004-08-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display
JP4748990B2 (en) * 2003-02-06 2011-08-17 株式会社半導体エネルギー研究所 Manufacturing method of semiconductor device
WO2004070821A1 (en) * 2003-02-06 2004-08-19 Semiconductor Energy Laboratory Co., Ltd. Display manufacturing method
KR100490553B1 (en) * 2003-03-18 2005-05-17 삼성에스디아이 주식회사 Method of manufacturing thin type flat display device and flat display device using the same
JP2005063679A (en) * 2003-08-11 2005-03-10 Fuji Photo Film Co Ltd Organic electroluminescent element
JP2005158392A (en) * 2003-11-25 2005-06-16 Pioneer Electronic Corp Manufacturing method of organic electroluminescent element and manufacturing device using the same
US20080268136A1 (en) * 2007-04-27 2008-10-30 Canon Kabushiki Kaisha Method of producing organic light emitting apparatus
JP4873736B2 (en) * 2007-06-19 2012-02-08 キヤノン株式会社 Manufacturing method of organic light emitting device
JP5367344B2 (en) * 2008-11-12 2013-12-11 株式会社ジャパンディスプレイ Manufacturing method of organic light emitting device
US20100279021A1 (en) 2009-05-04 2010-11-04 Samsung Mobile Display Co., Ltd. Apparatus for depositing organic material and depositing method thereof
KR102056865B1 (en) * 2013-05-29 2020-01-15 삼성디스플레이 주식회사 The film for a display apparatus, The organic light emitting display device comprising the film and the manufacturing method thereof
EP3089229B1 (en) * 2013-12-26 2018-10-17 Tokyo Institute of Technology Organic electroluminescence element and organic solar cell provided with metal oxide thin film
KR102050805B1 (en) * 2018-02-13 2020-01-08 고려대학교 세종산학협력단 Manufacturing method of organic light emitting device
WO2020208774A1 (en) * 2019-04-11 2020-10-15 シャープ株式会社 Light-emitting element and display device

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3530325A (en) 1967-08-21 1970-09-22 American Cyanamid Co Conversion of electrical energy into light
US4344010A (en) * 1979-10-19 1982-08-10 The United States Of America As Represented By The Secretary Of The Army Acceleration resistant combination of opposite-handed piezoelectric crystals
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
US4548699A (en) * 1984-05-17 1985-10-22 Varian Associates, Inc. Transfer plate rotation system
US4842680A (en) * 1985-10-24 1989-06-27 Texas Instruments Incorporated Advanced vacuum processor
US4720432A (en) 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
US5188901A (en) * 1987-03-31 1993-02-23 Hoya Corporation Electroluminescent panel having a fluoroesin layer
US4937653A (en) * 1988-07-21 1990-06-26 American Telephone And Telegraph Company Semiconductor integrated circuit chip-to-chip interconnection scheme
US5130603A (en) * 1989-03-20 1992-07-14 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US5652067A (en) * 1992-09-10 1997-07-29 Toppan Printing Co., Ltd. Organic electroluminescent device
JPH06151395A (en) * 1992-11-10 1994-05-31 Matsushita Electric Ind Co Ltd Formation of clean surface of si
US5286337A (en) * 1993-01-25 1994-02-15 North American Philips Corporation Reactive ion etching or indium tin oxide
JPH06260413A (en) * 1993-03-09 1994-09-16 Hitachi Ltd Dry etching multilayer film and its device
JP3502411B2 (en) * 1993-04-30 2004-03-02 株式会社小松製作所 Method of etching transparent electrode thin film
JPH0753952A (en) * 1993-08-19 1995-02-28 Mitsubishi Chem Corp Organic electroluminescent element
JP3531680B2 (en) * 1993-11-16 2004-05-31 松下電器産業株式会社 Manufacturing method of organic EL device
JP2705023B2 (en) * 1993-11-26 1998-01-26 ウシオ電機株式会社 Oxidation method of workpiece
JP2917795B2 (en) 1994-02-04 1999-07-12 住友電気工業株式会社 Organic electroluminescence device and method of manufacturing the same
US5709959A (en) * 1994-09-16 1998-01-20 Ricoh Company, Ltd. Organic thin film electroluminescence device
US5834053A (en) * 1994-11-30 1998-11-10 The Regents Of The University Of California Blue light emitting thiogallate phosphor
US5703436A (en) * 1994-12-13 1997-12-30 The Trustees Of Princeton University Transparent contacts for organic devices
US5622564A (en) * 1995-01-20 1997-04-22 Compu-Vac Systems, Inc. Metallizing apparatus
JP3615817B2 (en) * 1995-02-14 2005-02-02 株式会社アルバック Method for manufacturing organic electroluminescence element
US5701168A (en) * 1995-06-29 1997-12-23 Bell Communications Research, Inc. Inverse twisted and super-twisted nematic liquid crystal device
US5747135A (en) * 1995-12-08 1998-05-05 Aluminum Company Of America Thin film pretreatment for memory disks and associated methods
US5902688A (en) * 1996-07-16 1999-05-11 Hewlett-Packard Company Electroluminescent display device
JP2845856B2 (en) * 1997-03-10 1999-01-13 出光興産株式会社 Method for manufacturing organic electroluminescence device
JP3782245B2 (en) * 1998-10-28 2006-06-07 Tdk株式会社 Manufacturing apparatus and manufacturing method of organic EL display device

Also Published As

Publication number Publication date
US6908638B2 (en) 2005-06-21
JPH10302965A (en) 1998-11-13
US20010003601A1 (en) 2001-06-14

Similar Documents

Publication Publication Date Title
JP3704883B2 (en) Organic electroluminescent device and method for manufacturing the same
JP2793373B2 (en) Method for patterning organic electroluminescent device
US6060826A (en) Organic electroluminescent element having an excimer light irradiated positive electrode and method of manufacturing the same
JP3736071B2 (en) Organic electroluminescence device
JPH10321376A (en) Organic electroluminescent element
JP3987770B2 (en) Organic electroluminescence device and method for manufacturing the same
US5709959A (en) Organic thin film electroluminescence device
JP4094804B2 (en) Manufacturing method of organic EL device
JP2917795B2 (en) Organic electroluminescence device and method of manufacturing the same
JP3531680B2 (en) Manufacturing method of organic EL device
JP2000091078A (en) Organic electroluminescence element
JPH11102786A (en) Organic electroluminescence element
JP3948046B2 (en) Organic electroluminescence device
JP4310843B2 (en) Method for manufacturing organic electroluminescent device
JP3777812B2 (en) Organic electroluminescence device
JPH07166160A (en) Organic thin film el element
JPH10335061A (en) Method and device for manufacturing organic electroluminescent element
JP3772540B2 (en) Organic electroluminescence device
JPH05347188A (en) Electroluminescence element
JP2001035669A (en) Organic electroluminescence element and its manufacture
US20040195966A1 (en) Method of providing a layer including a metal or silicon or germanium and oxygen on a surface
JP3868061B2 (en) Organic electroluminescence device
JPH05299174A (en) Organic thin film type el element
JPH11111461A (en) Organic electroluminescent element
JP2007273487A (en) Organic electroluminescent element and its manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees