JPH10256157A - Method of growing n-type gaas semiconductor - Google Patents

Method of growing n-type gaas semiconductor

Info

Publication number
JPH10256157A
JPH10256157A JP5763597A JP5763597A JPH10256157A JP H10256157 A JPH10256157 A JP H10256157A JP 5763597 A JP5763597 A JP 5763597A JP 5763597 A JP5763597 A JP 5763597A JP H10256157 A JPH10256157 A JP H10256157A
Authority
JP
Japan
Prior art keywords
gaas
type
substrate
doped
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5763597A
Other languages
Japanese (ja)
Inventor
Koji Muraki
康二 村木
Yoshio Hirayama
祥郎 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5763597A priority Critical patent/JPH10256157A/en
Publication of JPH10256157A publication Critical patent/JPH10256157A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a semiconductor device including a p- and n-type high-quality modulation doped structures on a GaAs substrate having a specified orientation plane by growing an n-type GaAs layer with a dopant of Sn of the substrate by the molecular beam epitaxy. SOLUTION: To grow an n-type GaAs layer on a GaAs substrate having a plane (311) A by the molecular beam epitaxy, at least Sn is used as a dopant to obtain a semiconductor structure contg. n- and p-type dopants on a GaAs semi-insulating substrate 1 having a plane (311) A. This substrate contains a Si-doped AlGaAs/GaAs modulation doped structure and Sn-doped AlGaAs/ GaAs modulation doped structure. Thus, at the interfaces on both sides of a central thicken undoped GaAs layer 4 a two-dimensional electron gas 2DEG 6 and two-dimensional hole gas 2DHG 7 are formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はGaAs(311)
A基板上に、高品質のn型半導体層を成長する方法に関
する。
The present invention relates to GaAs (311).
The present invention relates to a method for growing a high-quality n-type semiconductor layer on an A substrate.

【0002】[0002]

【従来の技術】従来、GaAsおよびInP系化合物半
導体をベースとした高易動度(移動度)トランジスタの
作製方法として、分子線エピタキシー(MBE)法が一
般的に用いられており、基板としては(100)方位の
基板、ドーパントとしては、n型はSiなど、p型はB
eなどが用いられている。しかし、p型では、正孔の有
効質量が大きいことに加え、Beのチャネルへの拡散
や、Beソース自体の純度の問題があり、また易動度が
小さいという問題があった。これに対し、GaAs(3
11)A基板を用いると、Siがアクセプタとして取り
込まれることを利用して、Siをアクセプタとしたp型
のAlGaAs/GaAs変調ドープ構造が作製され、
易動度μ>100m2/Vsの超高易動度が実現されて
いる〔M.Henini,P.J.Rodgers,P.A.Crump,B.L.Gallaghe
r,and G.Hill,J.Cryst.Growth,Vol.150,(1995)p.451-
454.〕。しかし、GaAs(311)A基板を用いた場
合、適切なn型ドーパントがないことが問題となる。S
iは両極性であるから、低温、高As圧下で成長するこ
とでn型となるが〔N.Sakamoto,K.Hirakawa,and T.Ikom
a,Appl.Phys.Lett.,Vol.67,No.10.(1995)p.1444-144
6.〕、そのような条件下では制御性良く高品質のn型半
導体層を得ることは難しかった。
2. Description of the Related Art Conventionally, a molecular beam epitaxy (MBE) method has been generally used as a method for manufacturing a high mobility (mobility) transistor based on GaAs and InP-based compound semiconductors. (100) -oriented substrate, n-type dopant such as Si, p-type dopant B
e and the like are used. However, in the p-type, in addition to the large effective mass of holes, there are problems of diffusion of Be into the channel, purity of the Be source itself, and low mobility. On the other hand, GaAs (3
11) When the A substrate is used, a p-type AlGaAs / GaAs modulation doped structure using Si as an acceptor is produced by utilizing the fact that Si is taken in as an acceptor.
An ultra-high mobility of μ> 100 m 2 / Vs has been realized [M. Henini, PJ Rodgers, PACrump, BLGallaghe
r, and G.Hill, J.Cryst.Growth, Vol.150, (1995) p.451-
454.]. However, when a GaAs (311) A substrate is used, there is a problem that there is no appropriate n-type dopant. S
Since i is bipolar, it becomes n-type by growing at low temperature and high As pressure [N. Sakamoto, K. Hirakawa, and T. Ikom
a, Appl.Phys.Lett., Vol.67, No.10. (1995) p.1444-144
6.] Under such conditions, it was difficult to obtain a high-quality n-type semiconductor layer with good controllability.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、Ga
As(311)A基板の特色であるSiがアクセプタと
して働き高品質のp型半導体層が形成できるという特性
を活かし、さらにGaAs(311)A基板面上に、p
型、n型両タイプの高品質変調ドープ構造を含む半導体
装置の形成を可能とするn型ドーピング方法によるn型
GaAsの成長方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a Ga
Taking advantage of the characteristic that Si, which is a feature of the As (311) A substrate, acts as an acceptor to form a high-quality p-type semiconductor layer, p-type semiconductor layers are further formed on the GaAs (311) A substrate surface.
It is an object of the present invention to provide a method for growing n-type GaAs by an n-type doping method which enables formation of a semiconductor device including a high-quality modulation doping structure of both the n-type and the n-type.

【0004】[0004]

【課題を解決するための手段】上記本発明の目的を達成
するために、本発明は特許請求の範囲に記載のような構
成とするものである。すなわち、請求項1に記載のよう
に、(311)A面を有するGaAs基板上に、分子線
エピタキシー法によりn型GaAs半導体を成長する方
法において、少なくともSnをドーパントとして用いる
n型GaAs半導体の成長方法とするものである。本発
明は、請求項1に記載のように、GaAs(311)A
基板上への分子線エピタキシー法によるn型GaAs層
の成長において、少なくともSnをドーパントとして用
いることにより、容易に高品質のn型ドーピング層を形
成できる効果がある。
Means for Solving the Problems In order to achieve the object of the present invention, the present invention is configured as described in the claims. That is, in the method of growing an n-type GaAs semiconductor on a GaAs substrate having a (311) A plane by a molecular beam epitaxy method, the growth of the n-type GaAs semiconductor using at least Sn as a dopant is as described in claim 1. Method. The present invention provides a GaAs (311) A
In growing an n-type GaAs layer on a substrate by a molecular beam epitaxy method, using at least Sn as a dopant has an effect of easily forming a high-quality n-type doping layer.

【0005】[0005]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〈実施の形態1〉表1に、本実施の形態を示す。本実施
の形態では、1μmの厚さのSnドープGaAs層を分
子線エピタキシー法により、520℃で、GaAs(3
11)A基板上に成長した場合を示す。得られたn型エ
ピタキシャル層のキャリア濃度n(1/cm3)、易動
度μ(cm2/Vs)共に、通常用いられる(100)
基板上のSiドープn型エピタキシャル層と遜色がな
く、GaAs(311)A基板上でSnが安定したドナ
ーとして振舞っていることが分かる。
<Embodiment 1> Table 1 shows this embodiment. In the present embodiment, a Sn-doped GaAs layer having a thickness of 1 μm is formed at 520 ° C. by GaAs (3
11) This shows the case where the substrate is grown on the A substrate. Both the carrier concentration n (1 / cm 3 ) and the mobility μ (cm 2 / Vs) of the obtained n-type epitaxial layer are usually used (100)
It can be seen that Sn behaves as a stable donor on the GaAs (311) A substrate, comparable to the Si-doped n-type epitaxial layer on the substrate.

【0006】[0006]

【表1】 [Table 1]

【0007】〈実施の形態2〉本実施の形態として、
(311)A GaAs半絶縁性基板1の上に、n型、
p型両方のドーピングを含む半導体構造を図1に示す。
本構造中には、SiドープのAlGaAs/GaAs変
調ドープ構造と、SnドープのAlGaAs/GaAs
変調ドープ構造が含まれている。したがって、中央に符
号4で示す、厚いノンドープGaAs層の両側の界面
に、二次元電子ガス(2DEG)6と、二次元正孔ガス
(2DHG)7が形成されている。測定された易動度μ
は、(2DEG)6に対して106cm2/Vs(1.6
K)、(2DHG)7に対して5×105cm2/Vs
(1.6K)であり、高易動度の2DEG、2DHGが
同一(311)A GaAs基板1上に形成されている
ことが分かる。本実施の形態では、高品質のn型、p型
層の形成を示すために、変調ドープ構造を取り上げた
が、この実施の形態から明らかなように、Snドープと
Siドープを組み合わせれば、GaAs(311)A面
上のpn接合も可能となる。また、図1の構造で、ノン
ドープGaAs層4の厚さを制御することなどを行え
ば、(2DEG)6と(2DHG)7が近接したシステ
ムにも適用可能である。
<Embodiment 2> In this embodiment,
(311) A n-type, on the GaAs semi-insulating substrate 1
A semiconductor structure including both p-type dopings is shown in FIG.
This structure includes a Si-doped AlGaAs / GaAs modulation-doped structure and a Sn-doped AlGaAs / GaAs.
A modulation doping structure is included. Therefore, a two-dimensional electron gas (2DEG) 6 and a two-dimensional hole gas (2DHG) 7 are formed at the interface on both sides of the thick non-doped GaAs layer indicated by reference numeral 4 in the center. Measured mobility μ
Is 10 6 cm 2 / Vs (1.6 for (2DEG) 6).
K), 5 × 10 5 cm 2 / Vs for (2DHG) 7
(1.6K), indicating that 2DEG and 2DHG having high mobility are formed on the same (311) A GaAs substrate 1. In the present embodiment, the modulation doping structure is described in order to show the formation of high quality n-type and p-type layers. A pn junction on the GaAs (311) A plane is also possible. In addition, if the thickness of the non-doped GaAs layer 4 is controlled in the structure of FIG.

【0008】[0008]

【発明の効果】本発明によれば、GaAs(311)A
基板上に、p型、n型両タイプの高品質ドープ構造の形
成が可能であり、これにより、従来の(100)面上に
おけるSiドープ、Beドープで得られていたn、p構
造よりも高品質のp型、n型を含む半導体装置を実現す
ることができる。
According to the present invention, GaAs (311) A
It is possible to form both p-type and n-type high-quality doped structures on a substrate, which makes it possible to form a higher quality than the conventional n-type and p-type structures obtained by Si doping and Be doping on the (100) plane. A high-quality semiconductor device including p-type and n-type can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態2で例示した(311)A
GaAs半絶縁性基板上に、n型、p型両タイプのド
ーピング構造を形成した場合の一例を示す模式図。
FIG. 1 illustrates (311) A exemplified in Embodiment 2 of the present invention.
FIG. 3 is a schematic diagram showing an example in which both n-type and p-type doping structures are formed on a GaAs semi-insulating substrate.

【符号の説明】[Explanation of symbols]

1…(311)A GaAs半絶縁性基板とバッファ層 2…ノンドープのAlGaAs層 3…SiドープAlGaAs層 4…ノンドープGaAs層 5…SnドープAlGaAs層 6…二次元電子ガス(2DEG) 7…二次元正孔ガス(2DHG) DESCRIPTION OF SYMBOLS 1 ... (311) A GaAs semi-insulating substrate and buffer layer 2 ... Non-doped AlGaAs layer 3 ... Si-doped AlGaAs layer 4 ... Non-doped GaAs layer 5 ... Sn-doped AlGaAs layer 6 ... 2D electron gas (2DEG) 7 ... 2D Hole gas (2DHG)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(311)A面を有するGaAs基板上
に、分子線エピタキシー法によりn型GaAs半導体を
成長する方法において、少なくともSnをドーパントと
して用いることを特徴とするn型GaAs半導体の成長
方法。
1. A method for growing an n-type GaAs semiconductor on a GaAs substrate having an A-plane by molecular beam epitaxy, wherein at least Sn is used as a dopant. .
JP5763597A 1997-03-12 1997-03-12 Method of growing n-type gaas semiconductor Pending JPH10256157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5763597A JPH10256157A (en) 1997-03-12 1997-03-12 Method of growing n-type gaas semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5763597A JPH10256157A (en) 1997-03-12 1997-03-12 Method of growing n-type gaas semiconductor

Publications (1)

Publication Number Publication Date
JPH10256157A true JPH10256157A (en) 1998-09-25

Family

ID=13061363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5763597A Pending JPH10256157A (en) 1997-03-12 1997-03-12 Method of growing n-type gaas semiconductor

Country Status (1)

Country Link
JP (1) JPH10256157A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785976B2 (en) 2010-06-24 2014-07-22 The University Of Sheffield Polarization super-junction low-loss gallium nitride semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785976B2 (en) 2010-06-24 2014-07-22 The University Of Sheffield Polarization super-junction low-loss gallium nitride semiconductor device

Similar Documents

Publication Publication Date Title
US4959702A (en) Si-GaP-Si heterojunction bipolar transistor (HBT) on Si substrate
US20070259510A1 (en) Semiconductor device, semiconductor layer and production method thereof
JP3478005B2 (en) Method for etching nitride-based compound semiconductor and method for manufacturing semiconductor device
JP3368452B2 (en) Compound semiconductor device and method of manufacturing the same
JP3792390B2 (en) Semiconductor device and manufacturing method thereof
US20160079370A1 (en) Semiconductor device, semiconductor wafer, and semiconductor device manufacturing method
JPH08335588A (en) Semiconductor of inp base
JPH10256157A (en) Method of growing n-type gaas semiconductor
JP3603603B2 (en) III-nitride semiconductor light emitting device substrate
JP2007042936A (en) Group iii-v compound semiconductor epitaxial wafer
JP3615068B2 (en) Heterojunction nitride semiconductor device
JP2001111037A (en) Semiconductor wafer and field effect transistor
JP2757364B2 (en) Semiconductor device
JP2621854B2 (en) High mobility transistor
JP2004140038A (en) Method for manufacturing thin film crystal wafer, semiconductor device and its manufacturing method
JP2007103925A (en) Semiconductor device and method for manufacturing the same
US20230343589A1 (en) Semiconductor structures and manufacturing methods thereof
JP2002083816A (en) Compound semiconductor hetero junction structure
JPH06267867A (en) Crystal growing method of compound semiconductor and formation of ohmic contact using same
JP3120436B2 (en) Method of manufacturing epitaxial crystal for semiconductor device
JP2000124444A (en) Semiconductor device and epitaxial wafer
JP2703349B2 (en) Method for manufacturing semiconductor device
JP2000323491A (en) Heterojunction bipolar transistor and manufacture thereof
JP2643546B2 (en) Manufacturing method of heterojunction bipolar transistor using germanium and gallium arsenide
JP2679336B2 (en) Germanium / gallium arsenide junction manufacturing method