JPH10249393A - Method for simultaneously removing phenol, ammoniacal nitrogen and nitrate nitrogen in waste water - Google Patents

Method for simultaneously removing phenol, ammoniacal nitrogen and nitrate nitrogen in waste water

Info

Publication number
JPH10249393A
JPH10249393A JP5902397A JP5902397A JPH10249393A JP H10249393 A JPH10249393 A JP H10249393A JP 5902397 A JP5902397 A JP 5902397A JP 5902397 A JP5902397 A JP 5902397A JP H10249393 A JPH10249393 A JP H10249393A
Authority
JP
Japan
Prior art keywords
water
tank
treated
phenol
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5902397A
Other languages
Japanese (ja)
Inventor
Hisashi Miyagawa
久司 宮川
Hiroyuki Sugano
博行 菅野
Masayasu Kitagawa
正恭 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI KANKYO GIJUTSU ITEN KE
KOKUSAI KANKYO GIJUTSU ITEN KENKYU CENTER
Toyo Engineering Corp
Original Assignee
KOKUSAI KANKYO GIJUTSU ITEN KE
KOKUSAI KANKYO GIJUTSU ITEN KENKYU CENTER
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI KANKYO GIJUTSU ITEN KE, KOKUSAI KANKYO GIJUTSU ITEN KENKYU CENTER, Toyo Engineering Corp filed Critical KOKUSAI KANKYO GIJUTSU ITEN KE
Priority to JP5902397A priority Critical patent/JPH10249393A/en
Publication of JPH10249393A publication Critical patent/JPH10249393A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique by which the phenol, ammoniacal nitrogen and nitrate nitrogen contained in the waste water discharged from the petroleum refining, heavy oil reforming, thermal cracking, etc. SOLUTION: The raw water contg. phenol, ammoniacal nitrogen and nitrate nitrogen is treated by a biological circulation-type nitrating and denitrifying method. In this case, the water to be treated is passed successively through a denitrification tank 1 packed with a suspended filter medium 3 on which phenol-resistant bacteria are immobilized and acclimatized and the nitration tank 2 packed with the suspended filter medium 4 on which nitrating bacteria are immobilized and acclimatized and treated, a part of of the water at the outlet of the nitration tank 2 is obtained as the treated water, a part of the treated water at the outlet of the tank 2 is circulated to a treated water tank 6 through a water dividing tank 5, the raw water and the circulating water are mixed and treated in the denitrification tank 1, and the water is controlled to pH6.5 to 9.0 and the weight ratio of the chemical oxygen demand to nitrate nitrogen to 2 to 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、石油精製工場等の
排水中に含まれるフェノールとアンモニア体窒素並びに
硝酸体窒素の同時除去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for simultaneously removing phenol, ammonia nitrogen and nitrate nitrogen contained in wastewater from an oil refinery or the like.

【0002】[0002]

【従来の技術】石油精製工場において、石油精製、重質
油の改質・熱分解装置等の設備から排出される排水中に
は、難分解性物質であるフェノールおよびアンモニア体
窒素並びに硝酸体窒素等を含んでいる。窒素については
閉鎖性水域の富栄養化対策として規制値以下に除去され
ることが要求されており、また、フェノールは水域への
排出が規制されていると共に生物処理にとって阻害性の
ある物質であるため、上記難分解性物質の適切な処理
は、石油精製工場においては重要な課題の一つである。
2. Description of the Related Art At a petroleum refinery, wastewater discharged from equipment such as a petroleum refinery, heavy oil reforming / pyrolysis equipment contains phenol, ammonia nitrogen and nitrate nitrogen which are hardly decomposable substances. Etc. are included. Nitrogen is required to be eliminated below the regulation level as a measure of eutrophication in closed water bodies, and phenol is a substance that is regulated for release into water bodies and has an inhibitory effect on biological treatment Therefore, proper treatment of the above-mentioned hardly decomposable substances is one of the important issues in a petroleum refinery.

【0003】従来、数10mg/l程度の低濃度のフェ
ノールを含む排水の処理方法の一つとして、浮遊微生物
による活性汚泥法があった。また浮遊微生物による生物
学的硝化脱窒法はし尿処理や下水道の分野に適用されて
いるが、大きな槽容量と広い設置面積を要する上、増殖
速度の遅い硝化菌が流亡する問題があり汚泥管理を注意
深く行うことが必要であった。
Conventionally, there has been an activated sludge method using suspended microorganisms as one of the methods for treating wastewater containing phenol having a low concentration of about several tens of mg / l. Biological nitrification and denitrification by suspended microorganisms is applied to the field of human waste treatment and sewage, but it requires a large tank capacity and a large installation area, and there is a problem that nitrifying bacteria with a slow growth rate run off and sludge management is required. It needed to be done carefully.

【0004】ところで、フェノールは、その濃度が1〜
3%のものは、消毒滅菌剤として用いられる医療用薬品
であることは広く知られており、該フェノール濃度では
硝化菌および脱窒菌はほとんど死滅する。このように、
フェノールが微生物に対し殺菌効果を有するため、フェ
ノール及びアンモニア体窒素並びに硝酸体窒素を含む排
水の処理では、これらを同時に処理するのが困難である
と考えられ、最初にフェノールを活性汚泥法で処理し、
次に硝化槽と脱窒槽の順に配列して処理を行っていた。
すなわち循環を行わない方式である。
By the way, phenol has a concentration of 1 to 1.
It is widely known that 3% is a medical drug used as a disinfecting sterilant, and nitrifying bacteria and denitrifying bacteria almost die at the phenol concentration. in this way,
Because phenol has a bactericidal effect on microorganisms, it is considered difficult to treat phenol, ammonia nitrogen and nitrate nitrogen in wastewater containing these at the same time, and phenol is first treated by the activated sludge method. And
Next, the treatment was performed by arranging the nitrification tank and the denitrification tank in this order.
That is, the method does not perform circulation.

【0005】この方式では最初の硝化槽で完全に硝化が
行われるためには有機物が除去されていなければならな
い。有機物が存在すると、硝化槽の入口で好気性の分解
菌が優勢となって独立栄養細菌である硝化菌の活動が極
端に阻害されるため、化学的酸素要求量を20mg/l
程度以下とする必要がある。しかし、脱窒槽で硝酸体窒
素の還元に必要な水素供与体である有機物がないので、
例えば、メタノールなどの有機物を新たに硝酸体窒素除
去に相当する量を全量注入しなければならなかった。す
なわち、この方法では、排水中の有機物が利用できな
い。原水中の有機物量が少ない場合にはこの方式が適し
ているが、石油精製工場の排水のように有機物量がかな
りある場合には適用し難い。
In this method, organic substances must be removed for complete nitrification in the first nitrification tank. When organic matter is present, aerobic decomposing bacteria predominate at the entrance of the nitrification tank, and the activity of nitrifying bacteria, which is an autotrophic bacterium, is extremely inhibited.
Must be less than or equal to the degree. However, since there is no organic substance that is a hydrogen donor necessary for the reduction of nitrate nitrogen in the denitrification tank,
For example, it was necessary to inject a whole amount of an organic substance such as methanol in an amount corresponding to the removal of nitrate nitrogen. That is, in this method, the organic matter in the wastewater cannot be used. This method is suitable when the amount of organic matter in the raw water is small, but is difficult to apply when the amount of organic matter is considerable, such as wastewater from an oil refinery.

【0006】さらにこの方法では、最初の硝化槽で完全
に硝化が行われるためには原水中に含まれる化学的酸素
要求量(以下CODと称す。)及び生物学的酸素要求量
(以下、BODと称す。)を示す有機物が除去されてい
なければならない。硝化槽の入口でCODが20mg/
l程度以上のときには好気性のBOD分解菌が優勢とな
って硝化菌の活動が極端に阻害される。そのため、原水
のCOD/アンモニア体窒素の重量比が2程度以下の有
機物の少ない排水が対象となる。前述したように、好気
性処理でCODを除去し、硝化槽入り口でのCODが2
0mg/l程度以下になるようにするとアンモニアが硝
酸に酸化される。またこのときに硝化を進めるために
は、酸化に使用される無機炭素の量がアンモニア体窒素
に見合う量だけ含まれていることが必要である。硝化が
進んでいるときには無機炭素/アンモニア体窒素の減少
の重量比が1.5から2.0程度になる。この時、好気
性処理で分解されたCODが無機炭素として排水中に溶
解するようにアルカリを注入するなどの対策を行う。ま
た、後段の脱窒槽では硝酸を窒素ガスに還元するための
水素供与体としてメタノールなどの有機物を化学量論的
な量の数倍注入する必要がある。例えばメタノールであ
れば3g−メタノール/g−硝酸体窒素が注入される。
この方法は原水の中の有機物量が少ない場合に有効に適
用できる方法であるといえる。原水の組成でCOD/硝
酸体窒素の重量比が約2未満である場合にはこの方式が
適しているが、該重量比が2以上10以下である石油精
製工場には適用し難い。
Further, in this method, in order to completely perform nitrification in the first nitrification tank, the chemical oxygen demand (hereinafter referred to as COD) and the biological oxygen demand (hereinafter referred to as BOD) contained in the raw water. ) Must be removed. COD 20mg / at the entrance of the nitrification tank
At about 1 or more, aerobic BOD-degrading bacteria predominate and the activity of nitrifying bacteria is extremely inhibited. For this reason, wastewater containing a small amount of organic substances having a COD / ammonia nitrogen weight ratio of about 2 or less is targeted. As described above, COD is removed by aerobic treatment, and COD at the entrance of the nitrification tank becomes 2%.
If the amount is set to about 0 mg / l or less, ammonia is oxidized to nitric acid. In addition, in order to promote nitrification at this time, it is necessary that the amount of inorganic carbon used for oxidation is included in an amount corresponding to the amount of ammonia nitrogen. When nitrification is progressing, the weight ratio of the reduction of inorganic carbon / ammonia nitrogen becomes about 1.5 to 2.0. At this time, countermeasures such as injecting an alkali so that the COD decomposed by the aerobic treatment is dissolved in the wastewater as inorganic carbon are taken. Further, in the subsequent denitrification tank, it is necessary to inject an organic substance such as methanol several times the stoichiometric amount as a hydrogen donor for reducing nitric acid to nitrogen gas. For example, in the case of methanol, 3 g-methanol / g-nitrogen nitrate is injected.
This method can be said to be a method that can be effectively applied when the amount of organic matter in the raw water is small. This method is suitable when the weight ratio of COD / nitrate nitrogen is less than about 2 in the composition of raw water, but it is difficult to apply to a petroleum refinery where the weight ratio is 2 or more and 10 or less.

【0007】このような状況下、浮遊微生物による生物
学的硝化脱窒法をフェノールとして50〜500mg/
lおよびアンモニア体窒素として30〜50mg/lを
含む石油精製工場の排水処理に直接適用しても、該排水
の水質変動が激しいため処理が不安定になり汚泥管理が
難しいなどの問題があると予想され未だに実用化はなさ
れていなかった。
Under these circumstances, the biological nitrification and denitrification method using suspended microorganisms is carried out at 50 to 500 mg / phenol as phenol.
Even if it is directly applied to wastewater treatment of a petroleum refining plant containing 30 to 50 mg / l as nitrogen and ammonia nitrogen, there is a problem that the treatment of water becomes unstable due to severe fluctuations in the water quality of the wastewater and sludge management is difficult. It was expected and had not yet been put to practical use.

【0008】[0008]

【発明が解決しようとする課題】本発明は、石油精製、
重質油の改質・熱分解装置等の設備から排出されるフェ
ノールおよびアンモニア体窒素並びに硝酸体窒素を含む
排水中からこれらを同時に処理できる合理的な技術を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention relates to a petroleum refinery,
It is an object of the present invention to provide a rational technique capable of simultaneously processing phenol, ammonia nitrogen, and nitrate nitrogen contained in wastewater discharged from equipment such as a heavy oil reforming / pyrolysis apparatus.

【0009】[0009]

【課題を解決するための手段】本発明は、上記事情に鑑
みなされたもので、本発明の目的は、下記の手段で達成
される。すなわち、本発明は、(1)フェノールおよび
アンモニア体窒素並びに硝酸体窒素を含む原水を生物学
的循環式硝化脱窒法で処理する方法において、被処理水
をフェノール耐性を有する脱窒菌を付着順養した浮遊濾
材が充填された脱窒槽、硝化菌を付着順養した浮遊濾材
が充填された硝化槽の順に通して処理し、該硝化槽出口
から処理済み水を得ると共に、該硝化槽出口の処理済み
水の一部を脱窒素槽に循環し、上記原水と該循環水を混
合し被処理水として処理する方法であって、上記混合被
処理水のpHを6.5以上9.0以下に調整し、かつ、
上記被処理水中の化学的酸素要求量/硝酸体窒素の重量
比を2〜10に調整する排水中のフェノールおよびアン
モニア体窒素並びに硝酸体窒素の同時除去方法であり、
(2)脱窒槽出口における処理水の硝酸濃度が3mg/
l以下になるように上記被処理水に有機物を注入する上
記(1)記載の排水中のフェノールおよびアンモニア体
窒素並びに硝酸体窒素の同時除去方法を含む。
The present invention has been made in view of the above circumstances, and the object of the present invention is achieved by the following means. That is, the present invention provides (1) a method for treating raw water containing phenol, ammonia nitrogen and nitrate nitrogen by a biological circulation type nitrification denitrification method, wherein the treated water is adhered to phenol-resistant denitrifying bacteria. And treated through a denitrification tank filled with the floating filter medium filled therein and a nitrification tank filled with the floating filter medium adhering to the nitrifying bacteria to obtain treated water from the outlet of the nitrification tank and treatment at the outlet of the nitrification tank. A method of circulating a part of the used water to a denitrification tank, mixing the raw water and the circulating water and treating the mixed water as water to be treated, wherein the pH of the mixed water to be treated is 6.5 or more and 9.0 or less. Adjust, and
A method for simultaneously removing phenol, ammonia nitrogen and nitrate nitrogen in wastewater, wherein the weight ratio of chemical oxygen demand / nitrate nitrogen in the water to be treated is adjusted to 2 to 10,
(2) The concentration of nitric acid in the treated water at the outlet of the denitrification tank is 3 mg /
Including the method for simultaneously removing phenol, ammonia nitrogen and nitrate nitrogen in wastewater as described in (1) above, wherein an organic substance is injected into the water to be treated so as to be 1 or less.

【0010】[0010]

【発明の実施の形態】本発明者らは、フェノール耐性資
化特性を有する脱窒菌によってフェノール濃度が500
mg/l程度以下なら生物的に脱窒処理が可能であるこ
とを見いだし本発明に到達した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have determined that a phenol concentration of 500
The present inventors have found that if the amount is not more than about mg / l, it is possible to biologically perform the denitrification treatment, and have reached the present invention.

【0011】本発明は、図1に示すとおり、被処理水を
脱窒槽及び硝化槽の順に処理し、硝化槽処理水の一部を
処理済み水として抜き出し、残りの処理済み水を原水と
混合し被処理水とするものである。
According to the present invention, as shown in FIG. 1, the water to be treated is treated in the order of a denitrification tank and a nitrification tank, a part of the treated water in the nitrification tank is extracted as treated water, and the remaining treated water is mixed with raw water. Water to be treated.

【0012】以下説明において使用する水質を表す記号
・単位は以下の通りである。水質の濃度の単位につい
て、生物学的酸素要求量(以下、BODと称す)、化学
的酸素要求量(以下、CODと称す)、全窒素(以下、
TNと称す)、アンモニア体窒素(以下、NH4 +−Nと
称す)、硝酸体窒素(以下、NO3 -−Nと称す)、亜硝
酸体窒素(以下、NO2 -−Nと称す)および無機炭素
(以下、ICと称す)の単位はmg/lであり、これら
の重量比、例えば、COD/NO3 -−N、IC/NH4 +
−Nは無次元である。なお、TNは、NH4 +−N、NO
3 -−NおよびNO2 -−Nの総和である。また、本発明の
フェノールとはフェノール誘導体も含む意味である。
The symbols and units representing the water quality used in the following description are as follows. Regarding the unit of the concentration of water quality, biological oxygen demand (hereinafter, referred to as BOD), chemical oxygen demand (hereinafter, referred to as COD), total nitrogen (hereinafter, referred to as COD)
TN), ammonia nitrogen (hereinafter referred to as NH 4 + -N), nitrate nitrogen (hereinafter referred to as NO 3 -- N), nitrite nitrogen (hereinafter referred to as NO 2 -- N) And the unit of inorganic carbon (hereinafter referred to as IC) is mg / l, and their weight ratios, for example, COD / NO 3 −N, IC / NH 4 +
-N is dimensionless. TN is NH 4 + -N, NO
It is the sum of 3 -- N and NO 2 -- N. Further, the phenol of the present invention is meant to include a phenol derivative.

【0013】本発明において、脱窒槽及び硝化槽に充填
する浮遊濾材は水より軽い高分子性のもので、ポリプロ
ピレン、ポリエチレン等のごとく公知のものであり、発
泡しているかどうかは特に制限はない。また、その形状
に特に制限はないが、粒度分布として5mm〜15mm
のものが通常選択される。
In the present invention, the floating filter medium to be filled in the denitrification tank and the nitrification tank is of a high molecular weight that is lighter than water, is a known material such as polypropylene, polyethylene, etc., and is not particularly limited as to whether or not it is foamed. . Although the shape is not particularly limited, the particle size distribution is 5 mm to 15 mm.
Are usually selected.

【0014】この浮遊濾材に活性汚泥を付着させ、脱窒
槽を単独にワン・パス方式で運転し、原水のフェノール
濃度を低濃度から段階的に濃度を上げて、フェノール耐
性資化特性を有するように順養することができる。硝化
菌については、硝化槽を単独にワン・パス方式で運転し
順養すればフェノール耐性のある菌となる。ワンパス方
式ではなく循環式であっても順養が可能である。尚、脱
窒菌並びに硝化菌は、いわゆる活性汚泥中に存在する菌
であり、通常の活性汚泥処理装置から採取することがで
きる。
Activated sludge is attached to the floating filter medium, and the denitrification tank is operated independently in a one-pass system to gradually increase the phenol concentration of the raw water from a low concentration so as to have phenol-resistant assimilation characteristics. Can be acclimated. Nitrifying bacteria can be phenol-resistant if the nitrification tank is operated alone in a one-pass system and acclimated. Even if it is not a one-pass system but a recirculation system, recuperation is possible. Incidentally, the denitrifying bacteria and the nitrifying bacteria are bacteria present in so-called activated sludge, and can be collected from a usual activated sludge treatment device.

【0015】本発明の方式のように濾材の表面に生物膜
を形成させる場合には微生物のフェノールに対する耐性
がつきやすい。菌はある厚みを有して浮遊濾材に付着し
ているため、菌全体が死滅することはない。排水中のフ
ェノールに直接接触する表面部の菌の一部は死滅する
が、表面部から浮遊濾材に向かって形成する厚み部に存
在する菌は生きているからである。さらに、表面部の菌
は、初期にはフェノール濃度によりほとんど死滅するこ
ともあるが、死滅した表面部の菌が剥げ落ちることによ
り新たに菌が表面部に現れ、これを繰り返すうちに該菌
にフェノール耐性が発現する。本発明による循環式硝化
脱窒法では、脱窒槽において脱窒菌がフェノールをほぼ
完全に分解することができるため、次の硝化槽では、硝
化菌に対するフェノール阻害が少なくなる。
[0015] When a biofilm is formed on the surface of the filter medium as in the method of the present invention, the microorganisms tend to have resistance to phenol. Since the bacterium has a certain thickness and adheres to the floating filter medium, the whole bacterium does not die. This is because some of the bacteria on the surface that directly comes into contact with phenol in the wastewater are killed, but bacteria existing in the thickness formed from the surface to the floating filter medium are alive. Furthermore, the bacteria on the surface may be almost completely killed due to the phenol concentration in the initial stage, but the bacteria on the dead surface will peel off and new bacteria will appear on the surface. Phenol resistance develops. In the circulating nitrification denitrification method according to the present invention, denitrification bacteria can almost completely decompose phenol in the denitrification tank, and therefore, in the next nitrification tank, phenol inhibition on nitrification bacteria is reduced.

【0016】本発明において、脱窒槽と硝化槽は、脱窒
槽と硝化槽の順に連結され、硝化槽において処理された
処理済み水の一部を脱窒槽に循環することによりフェノ
ールおよびアンモニア体窒素並びに硝酸体窒素が同時に
除去される。
In the present invention, the denitrification tank and the nitrification tank are connected in the order of the denitrification tank and the nitrification tank, and a part of the treated water treated in the nitrification tank is circulated to the denitrification tank so that phenol and ammonia nitrogen and nitrogen are removed. The nitrate nitrogen is removed at the same time.

【0017】脱窒槽では、嫌気性の条件で、硝酸体窒素
を還元するための水素供与体としてフェノールを活用
し、フェノール除去と硝酸体窒素をアンモニア体窒素に
変換する。前述した通常の好気性処理、硝化、脱窒の順
に処理する方法では、好気性処理の段階で有機物である
フェノールを除いてしまうことになり、脱窒では新たに
メタノールなどの有機物の添加が必要になるが、本発明
では、脱窒で必要とする水素供与体としてフェノールを
利用することができるためその必要がない。原水中のフ
ェノールは全量、またフェノール以外に含まれるCOD
と共に脱窒槽でNO3 -−Nの還元に用いられる。脱窒槽
でフェノールは、500mg/l以下においては水素供
与体として有効に働き他の有機物と変わるところはな
い。硝酸体窒素の含有量の多い被処理水の処理には有機
物が不足する場合があり、メタノールなどを追加する。
なお、脱窒槽での生物化学反応式は下記の式で表され
る。
In the denitrification tank, phenol is used as a hydrogen donor for reducing nitrate nitrogen under anaerobic conditions, and phenol is removed and nitrate nitrogen is converted to ammonia nitrogen. In the above-described method of processing in the usual order of aerobic treatment, nitrification, and denitrification, phenol, which is an organic substance, is removed at the stage of aerobic treatment, and it is necessary to newly add an organic substance such as methanol in denitrification. However, in the present invention, phenol can be used as a hydrogen donor required for denitrification, so that it is not necessary. Total amount of phenol in raw water and COD other than phenol
In addition, it is used in a denitrification tank for the reduction of NO 3 -N. In a denitrification tank, phenol works effectively as a hydrogen donor at 500 mg / l or less, and does not differ from other organic substances. Organic matter may be insufficient in the treatment of the water to be treated having a high content of nitrate nitrogen, and methanol or the like is added.
The biochemical reaction equation in the denitrification tank is represented by the following equation.

【0018】式 5C65 OH+28NO3 -→14N2 +30CO2 +H2 O+28OH- (1)[0018] The formula 5C 6 H 5 OH + 28NO 3 - → 14N 2 + 30CO 2 + H 2 O + 28OH - (1)

【0019】この生物反応はあまりpHに依存せず、脱
窒槽内でのpHが6.0〜9.0の範囲ならばほぼ同じ
程度処理される。しかし、CODの分解によって発生し
た炭酸ガスを重炭酸イオンとして吸収させるために、水
酸化ナトリウム、重炭酸ナトリウム、水酸化カルシウム
等のアルカリ剤の注入によってpHを6.5以上に高く
維持することが必要である。ただしあまりpHを高くし
ても炭酸の溶け込み量には限界があること、処理水のp
Hが高くなってしまうことから効果的ではない。脱窒槽
入り口でのpHを6.5〜9.0にするとCODが分解
したときの炭酸が効果的に溶け込みICの量が増加す
る。
This biological reaction does not depend much on the pH, and if the pH in the denitrification tank is in the range of 6.0 to 9.0, it is almost the same. However, in order to absorb carbon dioxide gas generated by the decomposition of COD as bicarbonate ions, it is necessary to maintain the pH at 6.5 or higher by injecting an alkali agent such as sodium hydroxide, sodium bicarbonate, or calcium hydroxide. is necessary. However, even if the pH is too high, there is a limit to the amount of dissolved carbonic acid.
It is not effective because H becomes high. When the pH at the entrance of the denitrification tank is adjusted to 6.5 to 9.0, carbonic acid when COD is decomposed effectively dissolves and the amount of IC increases.

【0020】被処理水中のフェノールの濃度は500m
g/l程度までは処理が可能で、脱窒槽の出口において
後述の実施例1に示すように1mg/l以下に処理され
る。このことにより、硝化槽内の硝化菌がアンモニアを
酸化することに対するフェノールの生物阻害性をなくす
ることができる。
The concentration of phenol in the water to be treated is 500 m
The treatment can be performed up to about g / l, and at the outlet of the denitrification tank, the treatment is performed at 1 mg / l or less as shown in Example 1 described later. This makes it possible to eliminate the biological inhibition of phenol from nitrifying bacteria in the nitrification tank oxidizing ammonia.

【0021】本発明では、硝化槽から脱窒槽に戻る循環
水の組成・濃度は処理水と同じ組成・濃度となってい
る。高濃度の原水が流入してくると循環水によって希釈
されてから処理されるので、原水濃度の変動が緩和され
脱窒硝化処理の安定につながる。また、硝化槽では下記
式(2)により、硝化菌の働きでアンモニア体窒素を硝
酸体窒素に酸化する。硝酸体窒素は循環水に含まれて脱
窒槽に送られ、フェノールおよび排水中の有機物の処理
に利用される。
In the present invention, the composition and concentration of the circulating water returning from the nitrification tank to the denitrification tank have the same composition and concentration as the treated water. When high-concentration raw water flows in, it is diluted and then treated with circulating water, so that fluctuations in the raw water concentration are alleviated and the denitrification and nitrification treatment is stabilized. In the nitrification tank, the ammonia nitrogen is oxidized to nitrate nitrogen by the action of nitrifying bacteria according to the following equation (2). The nitrate nitrogen is contained in the circulating water and sent to the denitrification tank, where it is used for the treatment of phenol and organic substances in the wastewater.

【0022】式 NH4 ++2O2 →NO3 -+2H+ +H2 O (2)[0022] Formula NH 4 + + 2O 2 → NO 3 - + 2H + + H 2 O (2)

【0023】通常の浮遊微生物による硝化脱窒法では、
容積当たり窒素負荷量として脱窒槽においては、0.3
kg−N/m3 ・dで、硝化槽においては0.15kg
−N/m3 ・dであるが、本発明において該濾材容積当
たりの窒素負荷量は脱窒槽においては1.0kg−N/
3 ・d以下であり、硝化槽においては0.3kg−N
/m3 ・d以下であることが好ましい。これ以上の負荷
をかけて設備をより小型化することができるが、負荷変
動が少なく安定な処理を行うためには、過大な負荷をか
けることは好ましくない。なお、濾材容積当たりの窒素
負荷量とは、単位濾材容積当たり単位時間に処理する窒
素の量である。
In the ordinary nitrification and denitrification method using suspended microorganisms,
In the denitrification tank, the nitrogen load per volume is 0.3
kg-N / m 3 · d, 0.15 kg in a nitrification tank
-N / m 3 · d, the nitrogen load per filter medium volume in the present invention is 1.0 kg-N /
m 3 · d or less, and 0.3 kg-N
/ M 3 · d or less. Although it is possible to further reduce the size of the equipment by applying a load more than that, it is not preferable to apply an excessive load in order to perform stable processing with little load fluctuation. The nitrogen load per filter medium volume is the amount of nitrogen to be processed per unit time per unit filter medium volume.

【0024】循環水と原水の比を循環比rとする。硝化
槽の出口流出分の一部を循環比rで循環することによ
り、脱窒槽に硝酸体窒素を供給する。本発明の循環式脱
窒硝化法では脱窒槽、硝化槽でのそれぞれの処理が完全
に行われるならばアンモニア体窒素並びに硝酸体窒素の
合計である全窒素濃度、TNの除去率、ηは、下式で与
えられる。
The ratio of circulating water to raw water is referred to as a circulating ratio r. Nitrogen nitrogen is supplied to the denitrification tank by circulating a part of the outlet effluent of the nitrification tank at a circulation ratio r. In the recirculating denitrification nitrification method of the present invention, if the respective treatments in the denitrification tank and the nitrification tank are completely performed, the total nitrogen concentration which is the total of ammonia nitrogen and nitrate nitrogen, the removal rate of TN, η is It is given by the following equation.

【0025】式 η=r/(r+1) (3)Equation η = r / (r + 1) (3)

【0026】この式から、例えば除去率80%のときは
r=4となる。原水の全窒素濃度、TNを40mg/l
とすると、除去率80%で処理すると処理水の全窒素濃
度、TNは8mg/lに減少する。このように循環比r
は、原水の全窒素濃度、TNと硝化槽出口での全窒素濃
度、TNで決められる。設計時点でrを決められるが通
常2〜6が選択される。rが2未満であると、窒素除去
率は式(3)から2/3で66%程度以下に下がりあま
り効果なく、6を越えると固定床での圧力損失が高くな
りやすく、また硝化槽での硝化菌の流亡が増え望ましく
ない。
From this equation, for example, when the removal rate is 80%, r = 4. Total nitrogen concentration of raw water, TN 40mg / l
Then, when the treatment is performed at a removal rate of 80%, the total nitrogen concentration and TN of the treated water are reduced to 8 mg / l. Thus, the circulation ratio r
Is determined by the total nitrogen concentration of the raw water, TN and the total nitrogen concentration at the outlet of the nitrification tank, TN. Although r can be determined at the time of design, 2 to 6 are usually selected. When r is less than 2, the nitrogen removal rate drops to about 66% or less by 2/3 from the equation (3) and is not so effective. When it exceeds 6, the pressure loss in the fixed bed tends to increase, and in the nitrification tank, Of nitrifying bacteria is undesirably increased.

【0027】原水の窒素濃度の変動が激しいときには循
環比を設備的に調整する運転方法もある。すなわち、原
水の窒素濃度が低いときには循環ポンプの流量を減らし
不必要な循環量を流さないようにし、窒素濃度が高いと
きには循環量を増やすようにする。
When the nitrogen concentration of the raw water fluctuates greatly, there is also an operation method in which the circulation ratio is adjusted by equipment. That is, when the nitrogen concentration of the raw water is low, the flow rate of the circulation pump is reduced to prevent an unnecessary circulation amount from flowing, and when the nitrogen concentration is high, the circulation amount is increased.

【0028】脱窒槽で硝酸が十分に窒素ガスに還元され
CODの除去が良好であるためには、原水と循環水の組
成から脱窒槽入り口での被処理水のCOD/NO3 -−N
の重量比を2.0以上10.0以下に調整する必要があ
る。2.0未満であるとメタノール等の有機物の注入が
必要である。10.0を越えると未分解のCODが硝化
槽に流れて硝化を阻害することがある。なお、10.0
を越えるときCODを減らすために前曝気を行ってCO
D/NO3 -−Nの重量比を10以下にし循環式硝化脱窒
で処理できるようにする。また10.0以上20.0程
度になるときには窒素除去は通常の好気性処理の方法に
よってなされるのが望ましい。
In order for nitric acid to be sufficiently reduced to nitrogen gas in the denitrification tank and COD to be removed satisfactorily, COD / NO 3 −N
Must be adjusted to 2.0 or more and 10.0 or less. If it is less than 2.0, it is necessary to inject an organic substance such as methanol. If it exceeds 10.0, undecomposed COD may flow into the nitrification tank and inhibit nitrification. Note that 10.0
Pre-aeration to reduce COD
D / NO 3 - the weight ratio of -N to be processed by the circulating nitrification denitrification to 10 below. When it becomes 10.0 or more and about 20.0, nitrogen removal is desirably performed by a usual aerobic treatment method.

【0029】脱窒槽入り口において、前述のようにpH
を6.5〜9.0に調整することによって分解したCO
DはICに効率的に変換される。硝化槽での硝化が良好
であるときICの減少とアンモニア体窒素の減少の重量
比をとると、すなわち、IC/NH4 +−Nは、1.5以
上2.0以下になる。本発明の方法では、脱窒槽で排水
の中のCODを硝酸体窒素の還元に用いることができ、
CODの分解によって生じたICは硝化槽でアンモニア
体窒素の酸化に利用されるので省資源型である。
At the entrance of the denitrification tank, the pH was
Decomposed by adjusting the pH to 6.5 to 9.0
D is efficiently converted to an IC. When the nitrification in the nitrification tank is good, the weight ratio of the decrease of IC and the decrease of ammonia nitrogen is taken, that is, IC / NH 4 + −N becomes 1.5 or more and 2.0 or less. In the method of the present invention, COD in wastewater in a denitrification tank can be used for reduction of nitrate nitrogen,
Since the IC produced by the decomposition of COD is used for oxidizing ammonia nitrogen in the nitrification tank, it is resource saving.

【0030】生物化学反応の進行にともなってpHの変
化が生ずる。硝化槽での反応は、式(2)で示されるよ
うに、水素イオンが生じ、浮遊濾材槽の下部から上部に
かけてpHが下がる。硝化菌の最適pHは8前後が最適
であるとされているので、濾材槽下部から上部にかけて
pHが最適になるようにすることが望ましい。脱窒槽で
の反応は一般には排水の中の物質が複数種であり、その
場合は(1)式のような反応式では表わせない。しか
し、有機物が水素供与体となって硝酸を還元することか
ら次式で表すことができる。
A change in pH occurs as the biochemical reaction proceeds. In the reaction in the nitrification tank, as shown by the equation (2), hydrogen ions are generated, and the pH decreases from the lower part to the upper part of the floating filter medium tank. The optimum pH of nitrifying bacteria is said to be optimal around 8, so it is desirable to make the pH optimal from the lower part to the upper part of the filter medium tank. The reaction in the denitrification tank generally includes a plurality of types of substances in the wastewater, and in such a case, the reaction cannot be expressed by the reaction formula such as the formula (1). However, since the organic substance serves as a hydrogen donor to reduce nitric acid, it can be expressed by the following formula.

【0031】式 2NO3 -+10[H]→N2 +4H2 O+2OH- (4) ここで、[H]は水素供与体から供給される水素であ
る。
Formula 2NO 3 +10 [H] → N 2 + 4H 2 O + 2OH (4) where [H] is hydrogen supplied from a hydrogen donor.

【0032】この式から水酸イオンが生成するのでpH
が上がるはずであるが実際にはpHはあまり変わらな
い。硝酸イオンがなくなる代わりに有機物が分解して重
炭酸イオンが生成するからであると考えられる。重炭酸
イオンを溶け込ませるために、脱窒槽入り口でアルカリ
剤を注入しpHを6.5〜9.0にすると脱窒槽出口の
pHは8〜9程度になる。このことは硝化槽での最適p
Hを維持するうえで有効である。
Since hydroxyl ions are generated from this formula,
Should actually rise, but in practice the pH does not change much. This is probably because organic substances are decomposed to generate bicarbonate ions instead of eliminating nitrate ions. When an alkaline agent is injected at the entrance of the denitrification tank to make the pH 6.5 to 9.0 in order to dissolve the bicarbonate ions, the pH at the exit of the denitrification tank becomes about 8 to 9. This means that the optimal p
It is effective in maintaining H.

【0033】ところで、水質が変動したり、該被処理水
中のCODが小さく、含まれる硝酸体窒素量に比較して
不足する場合には、結果として脱窒槽出口で硝酸が残る
ので硝酸濃度を測定して、硝酸濃度が高すぎる場合は、
メタノールなどの有機物を炭素源として注入する必要が
ある。反応式(4)が好適に進行するためのCOD/N
3 -−Nの重量比は、2.0〜10.0である。2.0
未満であると、有機物が少ないために硝酸が還元され切
れずに残り、10.0を越えると有機物が硝化槽に流れ
て硝化菌の活動を阻害する。
If the water quality fluctuates or the COD in the water to be treated is small and insufficient compared to the amount of nitrate nitrogen contained, nitric acid remains at the outlet of the denitrification tank. And if the nitric acid concentration is too high,
It is necessary to inject an organic substance such as methanol as a carbon source. COD / N for Reaction Scheme (4) to Properly Proceed
The weight ratio of O 3 —N is 2.0 to 10.0. 2.0
When the amount is less than the above, the amount of the organic matter is small, so that the nitric acid is not completely reduced and remains. When the amount exceeds 10.0, the organic matter flows into the nitrification tank and inhibits the activity of the nitrifying bacteria.

【0034】本発明において、脱窒槽出口の硝酸体窒素
濃度を測定することによってCODが不足しているか否
かを判定し、不足しているならば、メタノール等の有機
物を注入する方法を用いる。処理水の全窒素を10mg
/l以下にするためには、脱窒槽出口での硝酸体窒素濃
度は2mg/l以下にすることが望ましい。2mg/l
を越えると循環水の中に硝酸が次第に蓄積して硝酸濃度
が増加する傾向がある。なお、原水中のCODを連続測
定することによってメタノール等の注入量を計算し注入
する方法も可能であるが、煩雑となるため必ずしも効果
的な方法ではない。
In the present invention, it is determined whether or not COD is insufficient by measuring the nitrate nitrogen concentration at the outlet of the denitrification tank. If COD is insufficient, a method of injecting an organic substance such as methanol is used. 10mg of total nitrogen in treated water
/ L or less, it is desirable that the nitrate nitrogen concentration at the outlet of the denitrification tank be 2 mg / l or less. 2mg / l
When the temperature exceeds, nitric acid gradually accumulates in the circulating water, and the nitric acid concentration tends to increase. Note that a method of calculating and injecting an amount of methanol or the like by continuously measuring COD in raw water is also possible, but it is not always an effective method because it is complicated.

【0035】図1は、本発明の一実施の形態を示す概念
図である。いうまでもないが、本発明は、これに限定さ
れるものではない。
FIG. 1 is a conceptual diagram showing an embodiment of the present invention. Needless to say, the present invention is not limited to this.

【0036】スタート・アップをするための前準備であ
る脱窒菌および硝化菌の育成を前述の手順の一つで行い
準備した。脱窒菌は、脱窒槽1で、硝化菌は硝化槽2で
それぞれ充填された浮遊濾材3および浮遊濾材4に付着
させた。
The preparation of denitrifying bacteria and nitrifying bacteria, which is a preparation for starting up, was performed by one of the above-described procedures. The denitrifying bacteria were attached to the floating filter medium 3 and the floating filter medium 4 filled in the nitrification tank 2, respectively.

【0037】以下、図1に従って説明する。フェノール
50〜500mg/lおよびアンモニア体窒素として3
0〜50mg/l並びに硝酸体窒素として30〜50m
g/lを含む原水はライン9を通り原水槽8に供給さ
れ、上記成分の流量と濃度の変動を原水槽8で緩和す
る。原水槽8からライン10および分水槽5からライン
16で循環される循環水が被処理水槽6で合流した後、
ライン11を通り、浮遊濾材3が充填された脱窒槽1に
上向流で空塔速度0.5〜5m/sで供給される。後述
の浮遊濾材4を充填した硝化槽2においても同様であ
る。脱窒槽1および硝化槽2では、浮遊濾材3および浮
遊濾材4によりいわゆる押し出し流れとなる。従って、
浮遊濾材を有さない完全混合槽とは異なり、上述した式
(1)および式(2)の反応が進みやすく、好適であ
る。なお、本発明では、上向流および下向流でも実施で
きるが、特に上向流が好ましい。上記浮遊濾材3および
浮遊濾材4で増殖した脱窒菌および硝化菌によって脱窒
槽1および硝化槽2の濾材層を閉塞し、槽内の差圧が上
昇する。逆洗工程に移るための該差圧を検知しつつ運転
するには、上向流が好ましい。重力流によって下向流と
する事もできるが濾材層の圧損によって水位が上昇し好
ましくない。なお逆洗操作は公知の方法による。
Hereinafter, description will be made with reference to FIG. Phenol 50-500 mg / l and ammonia nitrogen as 3
0-50mg / l and 30-50m as nitrate nitrogen
Raw water containing g / l is supplied to a raw water tank 8 through a line 9, and fluctuations in the flow rate and concentration of the above components are mitigated in the raw water tank 8. After the circulating water circulated in the line 10 from the raw water tank 8 and in the line 16 from the water separation tank 5 merges in the water tank 6 to be treated,
Through the line 11, the air is supplied to the denitrification tank 1 filled with the floating filter medium 3 in an upward flow at a superficial velocity of 0.5 to 5 m / s. The same applies to the nitrification tank 2 filled with a floating filter medium 4 described later. In the denitrification tank 1 and the nitrification tank 2, the floating filter medium 3 and the floating filter medium 4 form a so-called extrusion flow. Therefore,
Unlike the complete mixing tank having no floating filter medium, the reactions of the above-described formulas (1) and (2) are easy to proceed, and thus are preferable. In addition, in this invention, although it can implement also with an upward flow and a downward flow, the upward flow is especially preferable. The filter media layers in the denitrification tank 1 and the nitrification tank 2 are closed by the denitrifying bacteria and nitrifying bacteria grown in the floating filter medium 3 and the floating filter medium 4, and the pressure difference in the tanks increases. In order to operate while detecting the differential pressure for moving to the backwashing step, an upward flow is preferable. Although a downward flow can be caused by gravity flow, the water level rises due to the pressure loss of the filter medium layer, which is not preferable. The backwashing operation is performed by a known method.

【0038】さて、原水中にはフェノールおよびアンモ
ニア体窒素並びに硝酸体窒素が含まれ前述のライン16
からの循環水には硝酸体窒素が主として含まれる。これ
らが被処理水槽6にて混合されライン11から脱窒槽1
に送られる。硝酸体窒素は、脱窒槽1において硝酸体窒
素から窒素に変換される。このとき、フェノールは、上
述の式(1)に示すようにCOD源として脱窒菌に食わ
れ、脱窒槽1の出口ではほぼ1mg/l以下となる。一
方、アンモニア体窒素は、脱窒槽1をほとんどそのまま
の濃度で通過し、被処理水はライン13を通って、この
図には記載されていないが、ポンプで硝化槽2に導かれ
る。硝化槽2において、式(2)に示されるように硝化
菌によりアンモニア体窒素は硝酸体窒素に変換される。
硝化槽での空塔速度は窒素濃度や循環比によって異なる
が1〜5m/h程度になる。なお、脱窒槽1から硝化槽
2への送水は脱窒槽1の水面を硝化槽2のそれよりも2
0〜30cm高めることによって水位差によって重力流
としポンプを省略し、動力の節減を行うこともできる。
なお、図中20はライン11にメタノールを添加する薬
注設備、21はライン11にアルカリを添加する薬注設
備であり、22は硝酸イオン検出器、23はpHメータ
ーである。
The raw water contains phenol, ammonia nitrogen and nitrate nitrogen, and contains the above-mentioned line 16
The circulating water from contains mainly nitrate nitrogen. These are mixed in the treated water tank 6 and denitrification tank 1
Sent to The nitrate nitrogen is converted from the nitrate nitrogen to nitrogen in the denitrification tank 1. At this time, the phenol is eaten by the denitrifying bacteria as a COD source as shown in the above formula (1), and becomes approximately 1 mg / l or less at the outlet of the denitrification tank 1. On the other hand, the ammonia nitrogen passes through the denitrification tank 1 at almost the same concentration, and the water to be treated passes through the line 13 and is guided to the nitrification tank 2 by a pump (not shown in this figure). In the nitrification tank 2, ammonia nitrogen is converted into nitrate nitrogen by nitrifying bacteria as shown in equation (2).
The superficial velocity in the nitrification tank varies depending on the nitrogen concentration and the circulation ratio, but is about 1 to 5 m / h. In addition, the water supply from the denitrification tank 1 to the nitrification tank 2 is set such that the water surface of the denitrification tank 1 is two times larger than that of the nitrification tank 2.
By increasing the height by 0 to 30 cm, the pump can be omitted due to gravity flow due to the difference in water level, and power can be saved.
In the drawing, reference numeral 20 denotes a chemical injection facility for adding methanol to the line 11, reference numeral 21 denotes a chemical injection facility for adding an alkali to the line 11, reference numeral 22 denotes a nitrate ion detector, and reference numeral 23 denotes a pH meter.

【0039】硝化槽2の出口排水は、ライン14によっ
て分水槽5に送られ分水槽5で循環水と処理水に分けら
れる。循環水は、ライン16を通り脱窒槽1へ循環比r
で送られる。該循環水中のCODが不足している場合に
は、例えば、メタノールを被処理水槽6へ、脱窒槽1出
口の硝酸体窒素の濃度が3mg/l以下好ましくは2m
g/l以下になるように供給される。供給方法は、手動
または自動で行っても良いが、自動注入が好ましい。被
処理水槽6には、アルカリ剤として水酸化ナトリウムが
供給され、脱窒槽1の入り口のpHを6.5〜9.0に
調整される。このpHを調整することにより、脱窒槽1
において式(3)に使用されるCOD分が分解する際に
発生する二酸化炭素が、液中に重炭酸イオンとして溶解
する。この図には記載していないが、石油精製工場排水
の処理に行われているように、更に、栄養塩として燐酸
カリウム、硫化水素対策のための鉄塩の注入設備を設け
ることもできる。この場合、リンは原水中に含まれない
ため薬注によるが、その量は必要最小限とし原水当たり
リン1〜2mg/l以下を栄養塩として与えればよい。
The outlet waste water of the nitrification tank 2 is sent to a water separation tank 5 by a line 14 and separated into circulating water and treated water in the water separation tank 5. The circulating water passes through the line 16 to the denitrification tank 1 in a circulation ratio r.
Sent by When the COD in the circulating water is insufficient, for example, methanol is supplied to the water tank 6 to be treated, and the concentration of nitrate nitrogen at the outlet of the denitrification tank 1 is 3 mg / l or less, preferably 2 m / l.
g / l or less. The supply method may be manual or automatic, but automatic injection is preferred. Sodium hydroxide is supplied as an alkaline agent to the water tank 6 to be treated, and the pH at the inlet of the denitrification tank 1 is adjusted to 6.5 to 9.0. By adjusting this pH, the denitrification tank 1
In the above, carbon dioxide generated when the COD component used in the formula (3) is decomposed dissolves in the liquid as bicarbonate ions. Although not shown in this figure, as in the treatment of the wastewater from a petroleum refinery, an injection facility for potassium phosphate as a nutrient and an iron salt for preventing hydrogen sulfide can be further provided. In this case, phosphorus is not contained in the raw water, and therefore depends on the chemical injection. However, the amount thereof is required to be a minimum and phosphorus of 1 to 2 mg / l or less per raw water may be given as a nutrient salt.

【0040】硝化槽2の出口排水は、分水槽5で循環水
と処理水に分けられる。循環水については上述した。一
方、処理水はライン15を通り系外へ排出される。必要
に応じて処理水を図示しない沈殿槽に送り、処理水の固
液分離が行なわれ、より清澄な処理水とされる。沈殿槽
からの硝化菌を含む沈降した汚泥を硝化槽2に戻すこと
もできる。硝化菌は、増殖の遅い菌であるため、硝化菌
を硝化槽2に戻すことは、有効な方法である。硝化菌の
栄養源であるアンモニアを菌体量が十分となり、処理が
安定するまでに注入することもできる。
The drainage water from the outlet of the nitrification tank 2 is separated into circulating water and treated water in a water separation tank 5. The circulating water has been described above. On the other hand, the treated water is discharged out of the system through the line 15. If necessary, the treated water is sent to a sedimentation tank (not shown), and solid-liquid separation of the treated water is performed, so that clearer treated water is obtained. The settled sludge containing nitrifying bacteria from the settling tank can be returned to the nitrification tank 2. Since nitrifying bacteria are slow-growing bacteria, returning the nitrifying bacteria to the nitrification tank 2 is an effective method. Ammonia, which is a nutrient of nitrifying bacteria, can be injected until the amount of cells becomes sufficient and the treatment becomes stable.

【0041】沈殿槽からのより清澄な処理水は、放流水
として放流されるが、この図には記載されていないが、
該放流水は、脱窒槽1および硝化槽2の逆洗水として用
いることもできる。
The clearer treated water from the settling tank is discharged as effluent, which is not shown in this figure,
The discharged water can also be used as backwash water for the denitrification tank 1 and the nitrification tank 2.

【0042】[0042]

【実施例】以下、実施例を用いて本発明を更に詳細の説
明するが、本発明はこれに限定されることはない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

【0043】実施例1 図1に示す装置を用いて実験を行った。脱窒槽1および
硝化槽2は、それぞれ内径100mm、高さ3.7m
で、内部に粒度分布5mm〜15mmのポリプロピレン
製の浮遊濾材を3mの高さに充填したものを準備した。
原水はフェノールとアンモニアのみを含む排水を用い、
硝化菌および脱窒菌は通常の処理場から得られた活性汚
泥を種汚泥として硝化槽と脱窒槽に添加し浮遊濾材に付
着順養させた。順養運転では、原水としてグルコースと
アンモニアの混合液によって処理を開始し原水のフェノ
ール濃度を段階的に高めてフェノール耐性をつけてい
き、脱窒槽では脱窒菌が、硝化槽では硝化菌がそれぞれ
順養された。最終的にはアンモニアとフェノールのみを
水素供与体として100%となる混合排水を処理した。
その条件と結果を表1に示す。
Example 1 An experiment was conducted using the apparatus shown in FIG. The denitrification tank 1 and the nitrification tank 2 have an inner diameter of 100 mm and a height of 3.7 m, respectively.
A polypropylene filter material having a particle size distribution of 5 mm to 15 mm and a height of 3 m was filled therein.
Raw water uses wastewater containing only phenol and ammonia,
Nitrifying bacteria and denitrifying bacteria were obtained by adding activated sludge obtained from an ordinary treatment plant as a seed sludge to a nitrification tank and a denitrification tank, and adhered to a floating filter medium for acclimation. In the acclimatization operation, the treatment is started with a mixture of glucose and ammonia as raw water, and the phenol concentration of the raw water is gradually increased to make it phenol-resistant. In the denitrification tank, the denitrifying bacteria and in the nitrification tank, the nitrifying bacteria, respectively. Nourished. Finally, the mixed waste water which became 100% using only ammonia and phenol as hydrogen donors was treated.
Table 1 shows the conditions and results.

【0044】[0044]

【表1】 [Table 1]

【0045】本例ではアルカリ剤として重炭酸ソーダを
注入しているため、pHおよびICが高い。フェノール
の一部は脱窒槽入り口で減水と循環水が混合したときに
汚泥によって除去されている。
In this example, since sodium bicarbonate is injected as an alkaline agent, the pH and IC are high. Some of the phenol is removed by sludge when the reduced and circulating water mix at the entrance of the denitrification tank.

【0046】実施例2 実施例1と同じ装置を用いて実験を行った。脱窒槽1お
よび硝化槽2は、それぞれ内径350mm、高さ4.2
mで、内部に粒度分布5〜15mmのポリプロピレン製
の浮遊濾材を2.4mの高さに充填したものを準備し
た。順養運転では最初に脱窒素菌を含む種汚泥を脱窒槽
1に注入した。表2に示すフェノール、アンモニアおよ
び硝酸を含む原水を直接比較的遅い空塔速度0.2m/
hでワン・パス方式で通水した。脱窒槽1出口でのCO
D濃度が20mg/l程度に処理され、硝酸濃度の低下
が観察されフェノール耐性を有し実排水に馴致する脱窒
菌が順養された。なお循環運転のときの順養時の空塔速
度も0.2m/hとした。硝化槽2においても硝化菌を
含む種汚泥を注入して脱窒槽からの流出水を流入させ処
理を開始した。空塔速度は0.2m/hであり、硝化槽
2での出口アンモニア濃度が下がるようになって硝化菌
が順養したことを確認し、循環式に流れに組み替えて脱
窒菌と硝化菌を同時に順養した。脱窒槽の入り口でのp
Hは6.8、COD/NO3 -−Nは5.3であった。運
転条件と結果を表2に併記する。実施例1に示したのは
一定の水質の排水の処理であったが、工場排水は水質の
変動を伴う。この変動に対応するべくこの例では薬液注
入を手動で行った。
Example 2 An experiment was conducted using the same apparatus as in Example 1. The denitrification tank 1 and the nitrification tank 2 have an inner diameter of 350 mm and a height of 4.2, respectively.
m, a floating filter medium made of polypropylene having a particle size distribution of 5 to 15 mm was filled therein to a height of 2.4 m. In the acclimatization operation, seed sludge containing denitrifying bacteria was first injected into the denitrification tank 1. Raw water containing phenol, ammonia and nitric acid shown in Table 2 was directly added to a relatively low superficial velocity of 0.2 m /
In h, water was passed in a one-pass system. CO at denitrification tank 1 outlet
The treatment was carried out at a D concentration of about 20 mg / l, a decrease in nitric acid concentration was observed, and denitrifying bacteria which had phenol resistance and were compatible with actual wastewater were acclimated. In addition, the superficial superficial velocity at the time of recuperation during circulation operation was also set to 0.2 m / h. Also in the nitrification tank 2, seed sludge containing nitrifying bacteria was injected, and the effluent from the denitrification tank was introduced to start the treatment. The superficial tower speed was 0.2 m / h, and it was confirmed that the nitrification bacteria had acclimated due to the decrease in the outlet ammonia concentration in the nitrification tank 2. He was acclimated at the same time. P at the entrance of the denitrification tank
H is 6.8, COD / NO 3 - -N was 5.3. Table 2 shows the operating conditions and results. Although the treatment of wastewater having a constant water quality is shown in the first embodiment, factory wastewater is accompanied by fluctuations in water quality. In this example, the chemical solution was manually injected to cope with this variation.

【0047】[0047]

【表2】 [Table 2]

【0048】脱窒槽でCOD/NO3 -−Nが5.3と高
いため硝酸体窒素が十分除去され2mg/l以下になっ
た。脱窒槽の出口でフェノールは濃度零で硝化槽への影
響はなく、硝化槽入り口でのアンモニアが殆ど硝酸に変
わっている。
[0048] In the denitrification tank COD / NO 3 - -N nitrate body nitrogen for higher and 5.3 is equal to or less than sufficiently removed 2 mg / l. At the outlet of the denitrification tank, the concentration of phenol is zero and there is no effect on the nitrification tank, and the ammonia at the inlet of the nitrification tank is almost changed to nitric acid.

【0049】比較例1 この比較例は実施例2の継続でCODが少ない原水を引
き続き処理した例である。表3に運転条件・結果を示
す。本例では原水のCODは11mg/l、COD/T
Nは0.25で、脱窒槽入り口のCOD/NO3 -−Nは
0.8であり被処理水中の有機物が少ない。このために
脱窒槽での硝酸が12.1から9.9mg/lとあまり
除去されていない。pHは必ずしも高くないがアンモニ
アを酸化するために十分なICは確保されていた。硝化
槽のIC/NH4 +−Nは1.5でアンモニアは十分除去
されて硝酸になっているが循環処理しているうちに硝酸
が蓄積し濃度が高くなった。脱窒槽に有機物としてメタ
ノールなどを追加する必要がある。
Comparative Example 1 This comparative example is an example in which raw water having a low COD is continuously treated in the continuation of Example 2. Table 3 shows the operating conditions and results. In this example, the COD of raw water is 11 mg / l, COD / T
N is 0.25, COD / NO 3 denitrification tank inlet - -N is less there in the water to be treated organic matter 0.8. For this reason, nitric acid in the denitrification tank is not so much removed from 12.1 to 9.9 mg / l. Although the pH was not necessarily high, sufficient IC for oxidizing ammonia was secured. The nitric acid tank had an IC / NH 4 + -N of 1.5, and ammonia was sufficiently removed to form nitric acid. However, the nitric acid accumulated during the circulation treatment and the concentration increased. It is necessary to add methanol and the like as organic matter to the denitrification tank.

【0050】[0050]

【表3】 [Table 3]

【0051】[0051]

【発明の効果】本発明は脱窒槽で排水中のフェノールを
硝酸体窒素の水素供与体として用いフェノールと硝酸体
窒素を除去し、脱窒槽で処理されないアンモニア体窒素
を硝化槽で硝酸体窒素に変え、その処理液の一部を再び
脱窒槽に戻すため、下記の効果がある。 (1)石油精製工場等の排水中に含まれるフェノールお
よびアンモニア体窒素並びに硝酸体窒素を同時に処理で
きる。排水中のフェノールは水素供与体として働くため
省資源型のプロセスとなる。 (2)処理水を循環させるため原水が希釈される、排水
中の上記成分の変動があっても、安定して処理できる。 (3)循環比をかえることにより、放流水の水質を任意
に変えることができる。窒素の除去率によって循環比を
変えるが、必要最低の循環比を選択することができる。 (4)省スペースのプロセスである。窒素負荷量を従来
の浮遊微生物よりも大きくとれるため省スペースとする
ことができる。 (5)省エネルギー型のプロセスである。循環液のポン
プ動力が必要であるが、脱窒槽では曝気が不要で動力が
節減になる。
The present invention removes phenol and nitrate nitrogen by using phenol in wastewater as a hydrogen donor for nitrate nitrogen in a denitrification tank, and converts ammonia nitrogen not treated in the denitrification tank to nitrate nitrogen in a nitrification tank. In order to return a part of the treatment liquid to the denitrification tank again, the following effects can be obtained. (1) Phenol, ammonia nitrogen and nitrate nitrogen contained in wastewater from an oil refinery can be simultaneously treated. The phenol in the wastewater acts as a hydrogen donor, which is a resource-saving process. (2) Even if there is a fluctuation in the above components in the waste water, the raw water is diluted to circulate the treated water. (3) By changing the circulation ratio, the quality of the discharged water can be arbitrarily changed. Although the circulation ratio changes depending on the nitrogen removal rate, the minimum circulation ratio required can be selected. (4) It is a space-saving process. Since the nitrogen load can be larger than that of the conventional suspended microorganisms, space can be saved. (5) An energy-saving process. Although circulating fluid pump power is required, denitrification tanks do not require aeration and power is saved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す説明図である。FIG. 1 is an explanatory diagram showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 脱窒槽 2 硝化槽 3、4 浮遊濾材 5 分水槽 6 被処理水槽 8 原水槽 9〜16 ライン 20 薬注設備(メタノール) 21 薬注設備(アルカリ) 22 硝酸イオン検出器 23 pHメーター DESCRIPTION OF SYMBOLS 1 Denitrification tank 2 Nitrification tank 3, 4 Floating filter medium 5 Separation tank 6 Water tank to be treated 8 Raw water tank 9-16 lines 20 Chemical injection equipment (methanol) 21 Chemical injection equipment (alkali) 22 Nitrate detector 23 pH meter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 フェノールおよびアンモニア体窒素並び
に硝酸体窒素を含む原水を生物学的循環式硝化脱窒法で
処理する方法において、被処理水をフェノール耐性を有
する脱窒菌を付着順養した浮遊濾材が充填された脱窒
槽、硝化菌を付着順養した浮遊濾材が充填された硝化槽
の順に通して処理し、該硝化槽出口から処理済み水を得
ると共に、該硝化槽出口の処理済み水の一部を脱窒槽に
循環し、上記原水と該循環水とを混合し被処理水として
処理する方法であって、上記被処理水のpHを6.5以
上9.0以下に調整し、かつ、上記被処理水中の化学的
酸素要求量/硝酸体窒素の重量比を2〜10に調整する
ことを特徴とする排水中のフェノールおよびアンモニア
体窒素並びに硝酸体窒素の同時除去方法。
1. A method for treating raw water containing phenol, ammonia nitrogen and nitrate nitrogen by a biological circulation type nitrification and denitrification method, wherein the treated water is provided with a phenol-resistant denitrifying bacterium attached to the floating filter medium. The treatment is carried out by passing through a filled denitrification tank and a nitrification tank filled with a floating filter medium to which nitrifying bacteria have been adhered and acclimated, to obtain treated water from the nitrification tank outlet, and one of the treated water at the nitrification tank outlet. The raw water and the circulating water are mixed and treated as water to be treated, wherein the pH of the water to be treated is adjusted to 6.5 or more and 9.0 or less, and A method for simultaneously removing phenol, ammonia nitrogen and nitrate nitrogen in wastewater, wherein the weight ratio of chemical oxygen demand / nitrate nitrogen in the water to be treated is adjusted to 2 to 10.
【請求項2】 脱窒槽出口における処理水の硝酸濃度が
3mg/l以下になるように上記被処理水に有機物を注
入することを特徴とする請求項1記載の排水中のフェノ
ールおよびアンモニア体窒素並びに硝酸体窒素の同時除
去方法。
2. The phenol and ammonia nitrogen in the wastewater according to claim 1, wherein an organic substance is injected into the water to be treated so that the concentration of nitric acid in the treated water at the outlet of the denitrification tank becomes 3 mg / l or less. And a method for simultaneously removing nitrate nitrogen.
JP5902397A 1997-03-13 1997-03-13 Method for simultaneously removing phenol, ammoniacal nitrogen and nitrate nitrogen in waste water Withdrawn JPH10249393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5902397A JPH10249393A (en) 1997-03-13 1997-03-13 Method for simultaneously removing phenol, ammoniacal nitrogen and nitrate nitrogen in waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5902397A JPH10249393A (en) 1997-03-13 1997-03-13 Method for simultaneously removing phenol, ammoniacal nitrogen and nitrate nitrogen in waste water

Publications (1)

Publication Number Publication Date
JPH10249393A true JPH10249393A (en) 1998-09-22

Family

ID=13101287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5902397A Withdrawn JPH10249393A (en) 1997-03-13 1997-03-13 Method for simultaneously removing phenol, ammoniacal nitrogen and nitrate nitrogen in waste water

Country Status (1)

Country Link
JP (1) JPH10249393A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160236A (en) * 2005-12-14 2007-06-28 Central Res Inst Of Electric Power Ind Bioreactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160236A (en) * 2005-12-14 2007-06-28 Central Res Inst Of Electric Power Ind Bioreactor

Similar Documents

Publication Publication Date Title
JP3937664B2 (en) Biological nitrogen removal method and apparatus
KR101473050B1 (en) Method and device for removing biological nitrogen and support therefor
JP4997460B2 (en) Wastewater treatment system
US8323487B2 (en) Waste water treatment apparatus
JP2006281003A (en) Biological waste water treatment method
JP3925902B2 (en) Biological nitrogen removal method and apparatus
JPS60238197A (en) Method of inhibiting variaton for whole day of phosphorus content in outflow flow from waste water treater
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP2009136725A (en) Ammonia-containing waste water treatment apparatus
JP2014097478A (en) Effluent treatment method and effluent treatment apparatus
JP7133339B2 (en) Nitrogen treatment method
JP5333953B2 (en) Nitrogen removal system and nitrogen removal method of dehydrated filtrate
JPS5881491A (en) Purification of filthy water with activated sludge
JP2003024987A (en) Nitrification method for ammonia nitrogen-containing water
JP2000061494A (en) Biological treatment of ammonia nitrogen
JP2002172399A (en) Denitrification treatment method
WO1997033836A1 (en) Method and apparatus for treating water
IL155193A (en) Apparatus and method for wastewater treatment with enhanced solids reduction (esr)
JPH10249393A (en) Method for simultaneously removing phenol, ammoniacal nitrogen and nitrate nitrogen in waste water
JP2003266096A (en) Wastewater treatment apparatus
JP2002177986A (en) Biological denitrification equipment
JP2000070989A (en) Method and apparatus removing nitrogen in waste water
JP2540150B2 (en) Biological denitrification equipment
JPS6222678B2 (en)
JP2673488B2 (en) Method and apparatus for treating organic wastewater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050325

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113