JPH10247494A - Nickel hydroxide active material and its manufacture - Google Patents

Nickel hydroxide active material and its manufacture

Info

Publication number
JPH10247494A
JPH10247494A JP9063905A JP6390597A JPH10247494A JP H10247494 A JPH10247494 A JP H10247494A JP 9063905 A JP9063905 A JP 9063905A JP 6390597 A JP6390597 A JP 6390597A JP H10247494 A JPH10247494 A JP H10247494A
Authority
JP
Japan
Prior art keywords
nickel hydroxide
active material
cobalt
nickel
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9063905A
Other languages
Japanese (ja)
Inventor
Kazuo Hosoya
一雄 細谷
Keiji Sato
恵二 佐藤
Koichi Kanbe
功一 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP9063905A priority Critical patent/JPH10247494A/en
Publication of JPH10247494A publication Critical patent/JPH10247494A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Glanulating (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To develop the manufacturing method of a nickel hydroxide active material so that cobalt can be simply added and contained without forming a Ni-Co compound, and provide the nickel hydroxide active material further improved in its utilization factor. SOLUTION: Under agitation conditions, a nickel salt aqueous solution, an ammonia ion supplier, and an alkali hydroxide aqueous solution are added to an aqueous solution previously suspending granular metal cobalt. A particle of metal cobalt is used as a nucleus, nickel hydroxide is crystallized and developed on the surface of the particle. Thereby, a nickel hydroxide active material is provided containing the granular metal cobalt being localized close to the medial portion in the inside of a developed particle of nickel hydroxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明に属する技術分野】本発明は、水酸化ニッケル活
物質およびその製造方法に関し、特に、アルカリ電池用
ニッケル正極に好適に用いられる水酸化ニッケル活物質
とこれを有利に製造するための方法について提案する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel hydroxide active material and a method for producing the same, and more particularly to a nickel hydroxide active material suitably used for a nickel positive electrode for an alkaline battery and a method for advantageously producing the same. suggest.

【0002】[0002]

【従来の技術】水酸化ニッケルは、種々の用途に使用さ
れる工業製品であるが、特にアルカリ電池用の非焼結式
ニッケル正極に使用されるものとしては、粒子形状が球
状でかつその粒度分布が狭いものが求められている。こ
れは、かかる水酸化ニッケル粒子を用いることにより、
上記ニッケル正極の活物質として担持体等に充填する場
合は該担持体の微孔から粒子が脱落せずしかも密に充填
することが可能になり、また活物質として導電剤と混合
してペースト状で用いる場合はその流動性等のペースト
性状が安定するので充填性、充填率が良好になる。した
がって、いずれの場合にも活物質の利用率が向上し、性
能の優れた電極とすることができるからである。
2. Description of the Related Art Nickel hydroxide is an industrial product used for various applications. Particularly, for a non-sintered nickel positive electrode for an alkaline battery, the particle shape is spherical and its particle size is large. What has a narrow distribution is required. This is achieved by using such nickel hydroxide particles.
When the nickel positive electrode is filled into a carrier or the like as an active material, the particles do not fall off from the fine pores of the carrier and can be densely packed. In the case of using, the paste property such as fluidity is stabilized, so that the filling property and the filling rate are improved. Therefore, in each case, the utilization rate of the active material is improved, and an electrode having excellent performance can be obtained.

【0003】これに対し従来、.特開平5−21064 号
公報では、利用率などの正極特性を改善した水酸化ニッ
ケル活物質として、カドニウム、カルシウム、亜鉛、マ
グネシウム、鉄、コバルトおよびマンガンのうちの少な
くとも1種を1〜7wt%含有し、球状または球状に類似
した粒子と非球状粒子の混合物となるようにしたものが
提案されている。また、.特開平7−45282 号公報で
は、単位体積当りの容量低下を防止した水酸化ニッケル
活物質として、水酸化ニッケル粒子の細孔内に、アルカ
リ性水溶液にて腐食領域にある亜鉛、カドミウム、コバ
ルト、鉛、銅、銀、ルテニウム、インジウムまたはタン
グステンの金属元素を含有させた(拡散して固定させ
た)水酸化ニッケル活物質が提案されている。
On the other hand, conventionally,. JP-A-5-21064 discloses that a nickel hydroxide active material containing 1 to 7 wt% of at least one of cadmium, calcium, zinc, magnesium, iron, cobalt and manganese as a nickel hydroxide active material having improved utilization characteristics and the like. In addition, there has been proposed a mixture of spherical or spherical-like particles and non-spherical particles. Also,. Japanese Patent Application Laid-Open No. 7-45282 discloses a nickel hydroxide active material that prevents a decrease in capacity per unit volume, such as zinc, cadmium, cobalt, and lead, which are in a corrosive area with an alkaline aqueous solution in pores of nickel hydroxide particles. There has been proposed a nickel hydroxide active material containing (diffused and fixed) a metal element of copper, silver, ruthenium, indium or tungsten.

【0004】[0004]

【発明が解決しようとする課題】このような従来技術に
かかる提案において、水酸化ニッケル中に含有される金
属元素のうちのコバルトは、確かに水酸化ニッケル活物
質の充電反応の電位を下げる効果をもつ。
In the proposal according to the prior art, cobalt among the metal elements contained in nickel hydroxide certainly lowers the potential of the charging reaction of the nickel hydroxide active material. With.

【0005】しかしながら、.上記特開平5−21064
号公報にかかる提案では、コバルト等の金属元素を、水
酸化ニッケル粒子を析出させると同時にその粒子中に固
溶させる方法,いわゆる共沈添加により、水酸化ニッケ
ル粒子中に含有させる方法を採用している。このため、
コバルトが水酸化ニッケル結晶内部にまで固溶し、Ni−
Co化合物を形成して、水酸化ニッケルの結晶構造を大き
く変化させると共に、コバルトが不純物として作用する
ことになる。このことは、水酸化ニッケル活物質の利用
率(実際の放電容量/理論放電容量)および放電電位を
低下させることになる。
However,. JP-A-5-21064
In the proposal according to the publication, a method in which a metal element such as cobalt is precipitated in nickel hydroxide particles and solid-dissolved in the particles at the same time, that is, a method in which the metal element is contained in the nickel hydroxide particles by so-called coprecipitation addition is adopted. ing. For this reason,
Cobalt forms a solid solution inside the nickel hydroxide crystal, and Ni-
By forming a Co compound, the crystal structure of nickel hydroxide is significantly changed, and cobalt acts as an impurity. This lowers the utilization ratio (actual discharge capacity / theoretical discharge capacity) and discharge potential of the nickel hydroxide active material.

【0006】また、.特開平7−45282 号公報にかか
る提案では、コバルト等の金属元素を含有した KOH電解
液中にて、ニッケル電極を浸漬あるいは電気化学的に酸
化還元することにより、あるいは、水酸化ニッケル粒子
と該金属元素の化合物を共存させて電気化学的に酸化還
元することにより、水酸化ニッケル粒子の細孔内部にそ
れら金属元素を拡散して固定する方法が採用されてい
る。このため、水酸化ニッケル活物質は、Ni−Co化合物
を形成することなくコバルトが添加されるので、それの
利用率が改善される。しかしながら、コバルトが水酸化
ニッケル粒子の中心部にまで拡散されないので、依然と
して充分な利用率を得ることはできない。しかも、この
提案にかかる上記方法では、ニッケル電極を製造した後
に金属元素を拡散して固定化させる必要があり、工程が
複雑であるという欠点がある。
In addition,. In the proposal according to JP-A-7-45282, a nickel electrode is immersed or electrochemically oxidized and reduced in a KOH electrolytic solution containing a metal element such as cobalt, A method has been adopted in which a compound of a metal element is coexistent and electrochemically redox-oxidized to diffuse and fix the metal element inside the pores of the nickel hydroxide particles. Therefore, the cobalt hydroxide is added to the nickel hydroxide active material without forming a Ni—Co compound, so that the utilization factor is improved. However, since the cobalt is not diffused to the center of the nickel hydroxide particles, a sufficient utilization rate cannot be obtained yet. In addition, the above-described method according to this proposal requires a metal element to be diffused and fixed after the nickel electrode is manufactured, and has a drawback that the process is complicated.

【0007】そこで本発明は、Ni−Co化合物を形成させ
ることなく簡易にコバルトを添加含有させることができ
る水酸化ニッケル活物質の製造方法を開発し、これによ
って従来技術に比べて利用率をさらに一層向上させた水
酸化ニッケル活物質を提供することを目的とする。
Accordingly, the present invention has developed a method for producing a nickel hydroxide active material which can easily add and contain cobalt without forming a Ni-Co compound, thereby further increasing the utilization factor as compared with the prior art. An object of the present invention is to provide a further improved nickel hydroxide active material.

【0008】[0008]

【課題を解決するための手段】発明者らは、上記目的の
実現に向け鋭意研究した結果、以下に示す内容を要旨構
成とする本発明を完成するに至った。即ち、本発明の水
酸化ニッケル活物質は、粒状の金属コバルトが水酸化ニ
ッケル粒子内部の中央部よりに局在化した状態で含有し
ていることを特徴とする。また別の態様として、本発明
の水酸化ニッケル活物質は、水酸化ニッケルで包囲した
粒状の金属コバルトの集合体からなり、該金属コバルト
が水酸化ニッケル粒子内部の中央部よりに局在化した状
態で含有していることを特徴とする。ここで、前記金属
コバルトは、その粒子径が 0.1〜5μmであることが望
ましい。
Means for Solving the Problems The inventors of the present invention have made intensive studies for realizing the above-mentioned object, and as a result, have completed the present invention having the following constitution as a summary. That is, the nickel hydroxide active material of the present invention is characterized in that granular metal cobalt is contained in a localized state from the central portion inside the nickel hydroxide particles. In another embodiment, the nickel hydroxide active material of the present invention is composed of an aggregate of granular metal cobalt surrounded by nickel hydroxide, and the metal cobalt is localized from the central portion inside the nickel hydroxide particles. It is characterized in that it is contained in a state. Here, the metal cobalt preferably has a particle size of 0.1 to 5 μm.

【0009】そして、このような水酸化ニッケル活物質
を有利に製造する方法として、本発明は、粒状の金属コ
バルトを予め懸濁させた水溶液に、ニッケル塩水溶液、
アンモニアイオン供給体および水酸化アルカリ水溶液を
攪拌条件の下で添加し、金属コバルトの粒子を核とし
て、その粒子表面に水酸化ニッケルを晶析し成長させる
ことにより、粒状の金属コバルトを、成長した水酸化ニ
ッケル粒子内部の中央部よりに局在化した状態で含有さ
せることを特徴とする水酸化ニッケル活物質の製造方法
を提案する。ここで、前記金属コバルトは、その粒子径
が 0.1〜5μmであることが望ましい。
As a method for advantageously producing such a nickel hydroxide active material, the present invention provides a method in which an aqueous solution in which granular metallic cobalt is previously suspended, a nickel salt aqueous solution,
An ammonia ion supplier and an aqueous alkali hydroxide solution were added under stirring conditions, and the metal cobalt particles were used as nuclei to crystallize and grow nickel hydroxide on the surface of the particles, thereby growing granular metal cobalt. The present invention proposes a method for producing a nickel hydroxide active material, characterized in that the nickel hydroxide active material is contained in a localized state from the central portion inside the nickel hydroxide particles. Here, the metal cobalt preferably has a particle size of 0.1 to 5 μm.

【0010】[0010]

【発明の実施の形態】本発明にかかる水酸化ニッケル活
物質の製造方法は、金属コバルトの粒子を核とし、その
核粒子の表面に水酸化ニッケルを晶析し成長させる点に
特徴がある。このような本発明の方法によれば、Ni−Co
化合物を形成させることなく簡易に、粒状の金属コバル
トを水酸化ニッケルで包含してなる粒子構造とすること
ができ、その結果、コバルトを水酸化ニッケル粒子内部
の中央部よりに局在化した状態で含有する水酸化ニッケ
ル活物質を得ることができる。したがって、本発明によ
れば、従来技術に比べて利用率をさらに一層向上させた
水酸化ニッケル活物質を提供することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a nickel hydroxide active material according to the present invention is characterized in that particles of metallic cobalt are used as nuclei, and nickel hydroxide is crystallized and grown on the surfaces of the core particles. According to such a method of the present invention, Ni-Co
It is possible to easily form a particle structure in which granular metal cobalt is included in nickel hydroxide without forming a compound, and as a result, cobalt is localized from the central portion inside the nickel hydroxide particles. To obtain a nickel hydroxide active material. Therefore, according to the present invention, it is possible to provide a nickel hydroxide active material whose utilization factor is further improved as compared with the related art.

【0011】このような本発明において、水酸化ニッケ
ルを晶析させる核粒子として金属コバルトを用いる。こ
の理由は、金属コバルトは、ニッケル塩水溶液と反応し
てNi−Co化合物を形成させることがないからである。特
に、金属コバルトを用いると、導電物質が水酸化ニッケ
ル粒子の内部に集中して存在することになるので、抵抗
成分が少なく電気を通しやすい(導電性に優れる)とい
う他の効果がある。このような金属コバルトは、その粒
子径を 0.1〜5μmとすることが望ましい。この理由
は、 0.1μm未満では、懸濁液中で金属コバルトが凝集
し、水酸化ニッケル内部の中心部よりに均一に包含させ
ることが困難になったり、生成する水酸化ニッケル活物
質の粒径が小さくなり、所定粒径の水酸化ニッケル活物
質を得るために多大な時間を要するからである。一方、
5μmを超えると、水酸化ニッケル粒子内部に包含させ
るのが困難になり、水酸化ニッケルが緻密化しにくくな
るからである。
In the present invention, metallic cobalt is used as core particles for crystallizing nickel hydroxide. The reason is that metallic cobalt does not react with the aqueous nickel salt solution to form a Ni—Co compound. In particular, when metal cobalt is used, the conductive substance is concentrated inside the nickel hydroxide particles, so that there is another effect that a resistance component is small and electricity is easily conducted (excellent in conductivity). It is desirable that such metal cobalt has a particle size of 0.1 to 5 μm. The reason for this is that if it is less than 0.1 μm, the metallic cobalt will agglomerate in the suspension, making it difficult to uniformly incorporate it in the central part of the nickel hydroxide, or the particle size of the nickel hydroxide active material generated. This is because a large amount of time is required to obtain a nickel hydroxide active material having a predetermined particle size. on the other hand,
If the thickness exceeds 5 μm, it is difficult to include the particles in the nickel hydroxide particles, and it is difficult to densify the nickel hydroxide.

【0012】本発明において、水酸化ニッケル活物質
は、その形状を球状とすることが望ましい。その理由
は、球状の水酸化ニッケル活物質を用いると、充填性や
充填率が良好となり、その結果、活物質としての利用率
が向上するからである。
In the present invention, the nickel hydroxide active material preferably has a spherical shape. The reason is that when a spherical nickel hydroxide active material is used, the filling property and the filling rate are improved, and as a result, the utilization rate as the active material is improved.

【0013】本発明の方法において、ニッケル塩水溶液
としては、硝酸ニッケルや硫酸ニッケル、塩化ニッケル
等の各種水溶性ニッケル塩の水溶液を用いることができ
る。このニッケル塩水溶液の濃度としては、通常 0.5〜
3 mol/l程度とするのが適当である。
In the method of the present invention, an aqueous solution of various water-soluble nickel salts such as nickel nitrate, nickel sulfate and nickel chloride can be used as the nickel salt aqueous solution. The concentration of this nickel salt aqueous solution is usually 0.5 to
It is appropriate to use about 3 mol / l.

【0014】水酸化アルカリ水溶液としては、水酸化ナ
トリウムや水酸化カリウム等を用いることができる。こ
の水酸化アルカリ水溶液は、通常4〜8 mol/l程度の
水溶液として使用するのがよい。
As the aqueous alkali hydroxide solution, sodium hydroxide, potassium hydroxide or the like can be used. This aqueous alkali hydroxide solution is usually preferably used as an aqueous solution of about 4 to 8 mol / l.

【0015】アンモニアイオン供給体としては、アンモ
ニア水やアンモニアガス、硝酸アンモニウム等のアンモ
ニウム塩の水溶液等を用いることができる。アンモニア
水の場合は、28重量%程度の濃度のものを使用するのが
適当である。また、アンモニウム塩の水溶液の場合は、
通常16 mol/l程度の濃度のものを使用するのが適当で
ある。
Ammonia water, ammonia gas, an aqueous solution of an ammonium salt such as ammonium nitrate, or the like can be used as the ammonia ion supplier. In the case of aqueous ammonia, it is appropriate to use one having a concentration of about 28% by weight. In the case of an aqueous solution of an ammonium salt,
Usually, it is appropriate to use one having a concentration of about 16 mol / l.

【0016】なお、これらの反応系への供給方法は、充
分な攪拌下に行われ、その添加速度は、反応槽の容量、
形状等により変動するが、反応系での滞留時間が通常8
〜20時間となるように適宜調節するのが良い。
The method of supplying the reaction system is carried out with sufficient stirring, and the rate of addition depends on the capacity of the reaction vessel,
The residence time in the reaction system is usually 8
It is advisable to adjust appropriately so that the time is up to 20 hours.

【0017】また、この際の反応系の温度は、40〜50℃
の範囲の一定値に保持される。通常、所定値±2℃程度
に維持するのが良い。同じく、反応系のpHは、11〜1
1.5の範囲の一定値に保持される。通常、所定値±0.1
程度に維持するのが良い。
The temperature of the reaction system at this time is 40 to 50 ° C.
Is kept constant. Usually, it is preferable to maintain the temperature at a predetermined value of about ± 2 ° C. Similarly, the pH of the reaction system is 11-1
It is kept at a constant value in the range of 1.5. Normally, the specified value ± 0.1
It is better to maintain to about.

【0018】[0018]

【実施例】【Example】

(実施例1)20lの反応層に、平均粒径 1.2μm の金属Co
粉末40gを水に分散させた状態で入れて攪拌し、次い
で、2 mol/lの硫酸ニッケル水溶液、6.3 重量%のア
ンモニア水および6 mol/lの水酸化ナトリウム水溶液
を一定速度で供給し、pHを一定にして反応を行い、金
属Coを種結晶として水酸化ニッケルを晶析し成長させ
た。反応開始後20時間後に反応を停止し、得られた水酸
化ニッケル活物質を洗浄し、乾燥して試料Aを得た。
(Example 1) Metal Co having an average particle size of 1.2 μm was added to a 20 l reaction layer.
40 g of the powder was dispersed in water and stirred, and then a 2 mol / l aqueous solution of nickel sulfate, 6.3% by weight of aqueous ammonia and a 6 mol / l aqueous solution of sodium hydroxide were supplied at a constant rate. The reaction was carried out at a constant value, and nickel hydroxide was crystallized and grown using metal Co as a seed crystal. The reaction was stopped 20 hours after the start of the reaction, and the obtained nickel hydroxide active material was washed and dried to obtain a sample A.

【0019】得られた水酸化ニッケル活物質(試料A)
の平均粒径は7μmであり、タップ密度は 2.0g/mlで
あった。この水酸化ニッケル活物質は、活物質中の水酸
化ニッケルに対して3wt%の割合で金属Coを含有し、そ
の粒子の断面をSEM観察したところ、図1に示すよう
に、水酸化ニッケル粒子の内部に複数個の金属Coの粒子
が取り込まれていた。
The obtained nickel hydroxide active material (sample A)
Had an average particle size of 7 μm and a tap density of 2.0 g / ml. The nickel hydroxide active material contained metal Co at a ratio of 3 wt% with respect to nickel hydroxide in the active material, and the cross section of the particles was observed by SEM. As shown in FIG. Had a plurality of metal Co particles incorporated therein.

【0020】この水酸化ニッケル活物質 (試料A)に水
とCoOを5wt%加えてペースト状にし、多孔度95%の発
泡Ni基板に充填し、100 ℃で1時間乾燥したのちに加圧
し、ニッケル正極を得た。得られたニッケル正極をMH
合金の負極を対極として電池を組み立て、この電池の
0.2C放電における正極利用率(活物質利用率)および
放電電位を測定した。その結果を表1に示す。また、充
放電試験後の電池を分解し、正極を取り出し、その活物
質断面をSEM観察したところ、図2に示すように、粒
子内部の金属Coが減少していた。
To this nickel hydroxide active material (sample A), 5 wt% of water and CoO were added to form a paste, filled into a foamed Ni substrate having a porosity of 95%, dried at 100 ° C. for 1 hour, and then pressurized. A nickel positive electrode was obtained. The obtained nickel positive electrode was MH
Assemble the battery with the negative electrode of the alloy as the counter electrode, and
The positive electrode utilization rate (active material utilization rate) and the discharge potential in 0.2 C discharge were measured. Table 1 shows the results. Further, the battery after the charge / discharge test was disassembled, the positive electrode was taken out, and the cross section of the active material was observed by SEM. As shown in FIG. 2, metal Co inside the particles was reduced.

【0021】(比較例)比較例として、金属Coの種結晶
を添加しないで製造したCo無添加の水酸化ニッケル活物
質(試料B)、Co無添加の水酸化ニッケル活物質に平均
粒径 1.2μmの金属Coを3wt%の割合で混合した水酸化
ニッケル活物質(試料C)および3wt%のCoを固溶状態
で添加した水酸化ニッケル活物質(試料D)を作製し、
それぞれの水酸化ニッケル活物質にCoOと水を加えて上
記実施例と同様に正極を作成して電池を組み立て、各電
池の 0.2C放電における正極利用率(活物質利用率)お
よび放電電位を測定した。これらの結果を表1に併せて
示す。
Comparative Example As a comparative example, an average particle diameter of a Co-free nickel hydroxide active material (Sample B) and a Co-free nickel hydroxide active material manufactured without adding a seed crystal of metal Co was 1.2. A nickel hydroxide active material (sample C) in which 3 μm of metallic Co was mixed at a ratio of 3 wt% and a nickel hydroxide active material (sample D) in which 3 wt% of Co was added in a solid solution state were prepared.
A positive electrode was prepared by adding CoO and water to each nickel hydroxide active material in the same manner as in the above example, and batteries were assembled. The positive electrode utilization rate (active material utilization rate) and discharge potential at 0.2 C discharge of each battery were measured. did. The results are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】表1に示す結果から明らかなように、Coを
固溶状態で添加した試料Dは、他の試料に比較して正極
利用率が低い。また、この試料Dは、粒子内部にCo化合
物を含まないCo無添加の試料Bよりも放電電位が15mV
以上低下した。これに対し、金属Coが添加または混合さ
れている試料(AおよびC)は、正極利用率が 100%以
上になると共に、放電電位の低下が非常に少ない。
As is clear from the results shown in Table 1, Sample D to which Co was added in a solid solution state had a lower positive electrode utilization rate than the other samples. Sample D had a discharge potential of 15 mV compared to Sample B containing no Co compound containing no Co compound inside the particles.
It fell above. On the other hand, the samples (A and C) to which metal Co is added or mixed have a positive electrode utilization of 100% or more and a very small decrease in discharge potential.

【0024】特に、表1に示す結果から明らかなよう
に、水酸化ニッケル粒子内部に金属Coを添加含有させた
試料Aを、単に水酸化ニッケルに金属Coを添加混合した
試料Cと比較すると、本発明にかかる前者の方が高い正
極利用率が得られた。このことは、添加された金属Coが
水酸化ニッケル粒子の内部に存在することで、利用率向
上に有効に作用することができると共に、図2に示すよ
うに、充放電反応に伴い水酸化ニッケル粒子内部の金属
Coが溶出し、水酸化ニッケル全体に均一な導電網が形成
されるため、粒子の内部まで利用され易くなっているも
のと考えられる。
In particular, as apparent from the results shown in Table 1, when the sample A in which the metal Co was added and contained in the nickel hydroxide particles was compared with the sample C in which the metal Co was simply added to nickel hydroxide and mixed, In the former according to the present invention, a higher positive electrode utilization rate was obtained. This means that the presence of the added metal Co inside the nickel hydroxide particles can effectively work to improve the utilization factor, and as shown in FIG. Metal inside particles
It is considered that Co is eluted and a uniform conductive network is formed over the entire nickel hydroxide, so that the particles are easily used even inside the particles.

【0025】次に、実施例において、水酸化ニッケルの
内部に存在させる金属Coの最適量を調べるために、水酸
化ニッケルに対する割合で0、1、2、3、4、5wt%
の金属Coを含有した試料を作成し、それの正極利用率を
調査した。その結果を表2に示す。
Next, in the examples, in order to examine the optimum amount of metal Co to be present inside nickel hydroxide, 0, 1, 2, 3, 4, 5 wt.
A sample containing metal Co was prepared, and its positive electrode utilization was investigated. Table 2 shows the results.

【0026】[0026]

【表2】 [Table 2]

【0027】この表2に示す結果から明らかなように、
水酸化ニッケル活物質の正極利用率は金属Co含有量と共
に向上し、4wt%以上でほぼ一定になる。一方で、水酸
化ニッケルの種結晶として添加する金属Co量が多くなる
と、正極活物質に占める水酸化ニッケルの割合が減少す
ることになり、正極の容量密度は減少する。したがっ
て、金属Coの添加量は4wt%以下とするのが好ましい。
As is clear from the results shown in Table 2,
The positive electrode utilization rate of the nickel hydroxide active material increases with the metal Co content, and becomes substantially constant at 4 wt% or more. On the other hand, when the amount of metal Co added as a seed crystal of nickel hydroxide increases, the proportion of nickel hydroxide in the positive electrode active material decreases, and the capacity density of the positive electrode decreases. Therefore, the addition amount of metal Co is preferably set to 4 wt% or less.

【0028】[0028]

【発明の効果】以上説明したように本発明の方法によれ
ば、Ni−Co化合物を形成させることなく簡易にコバルト
を添加含有させることができるので、従来技術に比べて
利用率をさらに一層向上させた水酸化ニッケル活物質を
提供することができる。
As described above, according to the method of the present invention, cobalt can be easily added and contained without forming a Ni-Co compound, so that the utilization factor is further improved as compared with the prior art. The present invention can provide a nickel hydroxide active material that has been made to react.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる水酸化ニッケル活物質の粒子構
造を示す断面写真である。
FIG. 1 is a cross-sectional photograph showing a particle structure of a nickel hydroxide active material according to the present invention.

【図2】本発明にかかる水酸化ニッケル活物質の充放電
後の粒子構造を示す断面写真である。
FIG. 2 is a cross-sectional photograph showing the particle structure of the nickel hydroxide active material according to the present invention after charge and discharge.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 粒状の金属コバルトが水酸化ニッケル粒
子内部の中央部よりに局在化した状態で含有しているこ
とを特徴とする水酸化ニッケル活物質。
1. A nickel hydroxide active material characterized in that granular metal cobalt is contained in a state localized at a central portion inside nickel hydroxide particles.
【請求項2】 水酸化ニッケルで包囲した粒状の金属コ
バルトの集合体からなり、該金属コバルトが水酸化ニッ
ケル粒子内部の中央部よりに局在化した状態で含有して
いることを特徴とする水酸化ニッケル活物質。
2. It is composed of an aggregate of granular metal cobalt surrounded by nickel hydroxide, and the metal cobalt is contained in a state localized at a central portion inside the nickel hydroxide particles. Nickel hydroxide active material.
【請求項3】 前記金属コバルトは、その粒子径が 0.1
〜5μmである請求項1または2に記載の水酸化ニッケ
ル活物質。
3. The metal cobalt has a particle size of 0.1.
The nickel hydroxide active material according to claim 1, wherein the thickness is from 5 μm to 5 μm.
【請求項4】 粒状の金属コバルトを予め懸濁させた水
溶液に、ニッケル塩水溶液、アンモニアイオン供給体お
よび水酸化アルカリ水溶液を攪拌条件の下で添加し、金
属コバルトの粒子を核として、その粒子表面に水酸化ニ
ッケルを晶析し成長させることにより、粒状の金属コバ
ルトを、成長した水酸化ニッケル粒子内部の中央部より
に局在化した状態で含有させることを特徴とする水酸化
ニッケル活物質の製造方法。
4. A nickel salt aqueous solution, an ammonia ion donor and an alkali hydroxide aqueous solution are added to an aqueous solution in which granular metallic cobalt is previously suspended under stirring conditions, and the metallic cobalt particles are used as nuclei to form the particles. A nickel hydroxide active material, characterized in that the metal hydroxide is crystallized and grown on the surface, so that the granular metal cobalt is contained in a localized state from the central portion inside the grown nickel hydroxide particles. Manufacturing method.
【請求項5】 前記金属コバルトは、その粒子径が 0.1
〜5μmである請求項5に記載の水酸化ニッケル活物
質。
5. The metal cobalt has a particle diameter of 0.1.
The nickel hydroxide active material according to claim 5, wherein the thickness is from 5 to 5 m.
JP9063905A 1997-03-04 1997-03-04 Nickel hydroxide active material and its manufacture Pending JPH10247494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9063905A JPH10247494A (en) 1997-03-04 1997-03-04 Nickel hydroxide active material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9063905A JPH10247494A (en) 1997-03-04 1997-03-04 Nickel hydroxide active material and its manufacture

Publications (1)

Publication Number Publication Date
JPH10247494A true JPH10247494A (en) 1998-09-14

Family

ID=13242815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9063905A Pending JPH10247494A (en) 1997-03-04 1997-03-04 Nickel hydroxide active material and its manufacture

Country Status (1)

Country Link
JP (1) JPH10247494A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214210A (en) * 1998-08-17 2004-07-29 Ovonic Battery Co Inc Composite positive electrode material and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214210A (en) * 1998-08-17 2004-07-29 Ovonic Battery Co Inc Composite positive electrode material and its manufacturing method

Similar Documents

Publication Publication Date Title
JP5629676B2 (en) Nickel hydroxide cathode material
US5674643A (en) Non-sintered nickel electrode for alkaline storage cell
JP3356628B2 (en) Nickel hydroxide covered with β-cobalt hydroxide layer for alkaline storage battery and method for producing the same
JP3656353B2 (en) Method for producing positive electrode active material for alkaline storage battery
CN102471091A (en) Cobalt cerium compound, alkaline storage battery, and method for producing cobalt cerium compound
JP2000077070A (en) Nickel hydroxide powder and its manufacture
JPH10247494A (en) Nickel hydroxide active material and its manufacture
JPH11307092A (en) Nickel hydroxide powder for alkaline storage battery positive electrode active material and its manufacture
JP5312958B2 (en) Method for producing crystal agglomerated particles useful as active material for nickel positive electrode
JP2002056844A (en) Method of manufacturing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JP3367152B2 (en) Method for producing nickel hydroxide powder coated with cobalt hydroxide
JP2000082463A (en) Nickel positive electrode active material for alkaline battery and its manufacture
JP3415364B2 (en) Nickel hydroxide coated with α-cobalt hydroxide layer for alkaline storage battery and method for producing the same
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH08329943A (en) Nickel positive electrode for battery and manufacture thereof
JP3877179B2 (en) Nickel positive electrode for alkaline storage battery
US6015538A (en) Methods for doping and coating nickel hydroxide
JP2002029755A (en) Method for manufacturing nickel hydroxide powder for alkali secondary cell
JPH1074513A (en) Nickel hydroxide active material and manufacture thereof
JPH10125319A (en) Nickel hydroxide for positive electrode material and manufacture thereof
JPH05254847A (en) Production of nickel hyroxide powder for nickel electrode
JP2529330B2 (en) Manufacturing method of nickel electrode for alkaline battery
JPH11130441A (en) Production of nickel-containing hydroxide
JPS6316556A (en) Manufacture of non-sintered type electrode
JP2001019435A (en) High density nickel hydroxide powder for active positive electrode material of alkali storage battery