JPH10247444A - Gas insulation vacuum circuit breaker - Google Patents
Gas insulation vacuum circuit breakerInfo
- Publication number
- JPH10247444A JPH10247444A JP9048955A JP4895597A JPH10247444A JP H10247444 A JPH10247444 A JP H10247444A JP 9048955 A JP9048955 A JP 9048955A JP 4895597 A JP4895597 A JP 4895597A JP H10247444 A JPH10247444 A JP H10247444A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- electric field
- circuit breaker
- electrode
- insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/60—Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
- H01H33/66—Vacuum switches
- H01H33/662—Housings or protective screens
- H01H33/66207—Specific housing details, e.g. sealing, soldering or brazing
- H01H2033/6623—Details relating to the encasing or the outside layers of the vacuum switch housings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/60—Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
- H01H33/66—Vacuum switches
- H01H33/666—Operating arrangements
- H01H2033/6665—Details concerning the mounting or supporting of the individual vacuum bottles
Landscapes
- Gas-Insulated Switchgears (AREA)
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ガス絶縁スイッチ
ギヤに用いられるガス絶縁真空遮断器に係り、特に、電
界緩和作用並びに耐電圧を向上させ、絶縁縮小化を図る
ガス絶縁真空遮断器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-insulated vacuum circuit breaker used for a gas-insulated switchgear, and more particularly to a gas-insulated vacuum circuit breaker that improves the electric field relaxation function and withstand voltage to reduce insulation.
【0002】[0002]
【従来の技術】近年、ガス絶縁スイッチギア等の受配電
機器では、絶縁ガスにより絶縁耐圧を向上させ、設置ス
ペースの縮小化が図られている。図6はこの種のガス絶
縁スイッチギア及びその周辺構成を示す側面図である。
このガス絶縁スイッチギヤは、外周を軟鋼板で気密に囲
まれた箱体1の内部に、SF6 ガスなどの絶縁ガス2が
密封されている。箱体1の上方の室1aには断路器3A
が収納されている。また、箱体1の下方の室1bには、
ガス絶縁真空遮断器4と、上方の断路器3Aと同形の断
路器3Bが収納されている。また、絶縁ガス中の各収納
機器は、がいし5に固定された主回路導体6により相互
が接続されている。主回路導体6は、箱体1の側部に取
付けられた受電用のケーブルヘッド7を介して外部の電
力用ケーブル8に電気的に接続される。この電力用ケー
ブル8は、貫通形変流器9により、ガス絶縁スイッチギ
ヤへの受電および通電電流が計測される。また、箱体1
の上方の室1aの主回路導体は、箱体1の天井部に設け
られた気中−ガスブッシング10により、図面上下に列
盤されている隣接盤に電気的に接続されている。2. Description of the Related Art In recent years, in power receiving and distribution equipment such as a gas insulated switchgear, an insulating gas has been used to improve the dielectric strength and reduce the installation space. FIG. 6 is a side view showing this type of gas insulated switchgear and its peripheral configuration.
In this gas insulated switchgear, an insulating gas 2 such as SF 6 gas is sealed inside a box 1 whose outer periphery is hermetically surrounded by a mild steel plate. A disconnector 3A is provided in the chamber 1a above the box body 1.
Is stored. In the lower chamber 1b of the box 1,
A gas-insulated vacuum circuit breaker 4 and a disconnector 3B having the same shape as the upper disconnector 3A are housed therein. The storage devices in the insulating gas are connected to each other by a main circuit conductor 6 fixed to the insulator 5. The main circuit conductor 6 is electrically connected to an external power cable 8 via a power receiving cable head 7 attached to the side of the box 1. In the power cable 8, power reception to the gas insulated switchgear and current supplied thereto are measured by the through-type current transformer 9. In addition, box 1
The main circuit conductors in the upper chamber 1a are electrically connected to adjacent boards vertically arranged in the drawing by an air-gas bushing 10 provided on the ceiling of the box 1.
【0003】このようなガス絶縁スイッチギヤでは、各
収納機器は絶縁ガス2の破壊電圧が強い電界依存性を示
すため、適切な電界緩和がなされ耐電圧が保たれてい
る。例えばガス絶縁真空遮断器4の電界緩和構造は、図
7に示すように、真空バルブ11の封じ切り電極12の
電界緩和のため、絶縁筒13とラップする位置まで大き
な曲率をもった電界緩和用電極14がボルト15により
取付けられている。係る電界緩和の方式は、例えば実公
平1−15071号公報に開示され、真空バルブ11の
直径よりも大きい直径の電界緩和用電極14が用いられ
る。電界緩和用電極14では曲率半径をもつ外周面の始
点が絶縁筒13と接する面になる。この外周面は、極間
方向14Aと相間方向14Bとで互いに異なる曲率半径
を有する曲面に分類され、各曲面が互いに連続的に形成
されている。これにより電界緩和用電極14は単体で電
界緩和を図っている。[0003] In such a gas insulated switchgear, the breakdown voltage of the insulating gas 2 exhibits a strong electric field dependence in each of the storage devices, so that appropriate electric field relaxation is performed and the withstand voltage is maintained. For example, as shown in FIG. 7, the electric field relaxation structure of the gas insulated vacuum circuit breaker 4 has an electric field relaxation structure having a large curvature up to a position overlapping with the insulating cylinder 13 in order to reduce the electric field of the sealing electrode 12 of the vacuum valve 11. The electrode 14 is attached by a bolt 15. Such a method of relaxing the electric field is disclosed in, for example, Japanese Utility Model Publication No. 1-15071, in which an electric field relaxing electrode 14 having a diameter larger than the diameter of the vacuum valve 11 is used. In the electric field relaxing electrode 14, the starting point of the outer peripheral surface having a radius of curvature is a surface in contact with the insulating cylinder 13. The outer peripheral surface is classified into curved surfaces having different radii of curvature in the pole direction 14A and the interphase direction 14B, and the curved surfaces are formed continuously. As a result, the electric field relaxing electrode 14 alone is used to reduce the electric field.
【0004】[0004]
【発明が解決しようとする課題】しかしながら以上のよ
うなガス絶縁真空遮断器では、電界緩和用電極14の曲
率半径を大にして電界緩和を図り、耐電圧を向上させる
一方、電界緩和用電極14を大形化させる問題がある。However, in the above-mentioned gas-insulated vacuum circuit breaker, the radius of curvature of the electric field relaxing electrode 14 is increased to reduce the electric field and improve the withstand voltage. There is a problem of increasing the size.
【0005】すなわち、電界緩和の観点から電界緩和用
電極14の曲率半径を大にしてガスギャップを短縮して
も、電界緩和用電極14自体を大形化させることから、
3相分を配置させると結果的に大形化となる問題があ
る。すなわち、このような曲率半径を大とした電界緩和
に基づく縮小化には限界がある。また、最近の趨勢であ
る縮小化に逆行してしまう。That is, from the viewpoint of electric field relaxation, even if the radius of curvature of the electric field relaxation electrode 14 is increased to shorten the gas gap, the size of the electric field relaxation electrode 14 itself is increased.
There is a problem that the arrangement of three phases results in an increase in size. That is, there is a limit to downsizing based on electric field relaxation with such a large radius of curvature. It also goes against the recent trend of shrinking.
【0006】本発明は上記実情を考慮してなされたもの
で、電界緩和用電極の曲率半径を大にせずに耐電圧を向
上させ、もって、縮小化を図り得るガス絶縁真空遮断器
を提供することを目的とする。The present invention has been made in view of the above circumstances, and provides a gas-insulated vacuum circuit breaker which can improve withstand voltage without increasing the radius of curvature of the electric field relaxing electrode and can be reduced in size. The purpose is to:
【0007】[0007]
【課題を解決するための手段】請求項1に対応する発明
は、絶縁ガスを封入し、絶縁容器と前記絶縁容器の両端
にガスギャップGだけ離して端部が配置された電界緩和
用電極とを有する真空バルブを備えたガス絶縁真空遮断
器において、前記電界緩和用電極の外周面の曲率半径R
と前記ガスギャップGとに基づいて下記式で得られる電
界利用率UをU=0.35以上の準平等電界とし、前記
電界緩和用電極には前記絶縁容器に対向する部分を除い
て外周面の半分以上の領域に絶縁材料よりなる被膜を形
成したガス絶縁真空遮断器である。According to a first aspect of the present invention, there is provided an electric field relaxing electrode in which an insulating gas is sealed, and an insulating container and an end provided at both ends of the insulating container with a gas gap G therebetween. A gas-insulated vacuum circuit breaker provided with a vacuum valve having a radius of curvature R of the outer peripheral surface of the electric field relaxing electrode.
The electric field utilization factor U obtained by the following equation based on the gas gap G is defined as a quasi-equivalent electric field of U = 0.35 or more. This is a gas-insulated vacuum circuit breaker in which a coating made of an insulating material is formed in at least half of the region.
【0008】U=R/{0.9(R+G)} また、請求項2に対応する発明は、請求項1に対応する
ガス絶縁真空遮断器において、前記被膜としては、略2
5μmの厚さを有し、テフロン樹脂又はエポキシ樹脂よ
りなる絶縁材料で形成されたガス絶縁真空遮断器であ
る。U = R / {0.9 (R + G)} According to a second aspect of the present invention, in the gas insulated vacuum circuit breaker according to the first aspect, the coating is substantially 2
This is a gas-insulated vacuum circuit breaker having a thickness of 5 μm and made of an insulating material made of Teflon resin or epoxy resin.
【0009】さらに、請求項3に対応する発明は、絶縁
ガスを封入し、絶縁容器と前記絶縁容器の両端にガスギ
ャップGだけ離して端部が配置された電界緩和用電極と
を有する真空バルブを備えたガス絶縁真空遮断器におい
て、前記電界緩和用電極の外周面の曲率半径Rと前記ガ
スギャップGとに基づいて下記式で得られる電界利用率
UをU=0.26以下の不平等電界としたガス絶縁真空
遮断器である。Further, the invention corresponding to claim 3 is a vacuum valve in which an insulating gas is sealed, and which has an insulating container and an electric field relaxing electrode whose ends are arranged at both ends of the insulating container with a gas gap G therebetween. In the gas-insulated vacuum circuit breaker provided with the above, the electric field utilization factor U obtained by the following equation based on the radius of curvature R of the outer peripheral surface of the electric field relaxation electrode and the gas gap G is represented by U = 0.26 or less. It is a gas insulated vacuum circuit breaker with an electric field.
【0010】U=R/{0.9(R+G)} また、請求項4に対応する発明は、絶縁ガスを封入し、
絶縁容器と前記絶縁容器の両端にガスギャップGだけ離
して端部が配置された電界緩和用電極とを有する真空バ
ルブを備えたガス絶縁真空遮断器において、前記真空バ
ルブの可動電極に連結され、前記真空バルブの軸方向と
は略直角方向に沿って進退可能に形成された絶縁操作捧
と、前記絶縁操作棒の軸方向に沿って対向配置され、前
記絶縁操作捧との対向部分に略U字状の凹部を有し、前
記真空バルブを固定する支持がいしとを備えたガス絶縁
真空遮断器である。U = R / {0.9 (R + G)} According to a fourth aspect of the present invention, an insulating gas is filled,
A gas-insulated vacuum circuit breaker comprising a vacuum valve having an insulating container and an electric-field mitigating electrode whose ends are disposed at both ends of the insulating container separated by a gas gap G, wherein the vacuum valve is connected to a movable electrode of the vacuum valve; An insulating operation member formed so as to be able to advance and retreat in a direction substantially perpendicular to the axial direction of the vacuum valve, and an insulating operation member disposed opposite to the insulating operation rod in the axial direction, and a substantially U-shaped portion opposing the insulating operation member. A gas-insulated vacuum circuit breaker having a U-shaped concave portion and a support insulator for fixing the vacuum valve.
【0011】さらに、請求項5に対応する発明は、請求
項4に対応するガス絶縁真空遮断器において、前記支持
がいしとしては、略楕円状の断面形状を有し、前記真空
バルブの軸方向に平行に埋込まれた第1及び第2の埋込
み電極と、略楕円状の断面形状を有し、前記第1及び第
2の埋込み電極を介して前記絶縁操作棒に対向するよう
に埋込まれた第3の埋込み電極とを備えたガス絶縁真空
遮断器である。Further, according to a fifth aspect of the present invention, in the gas insulated vacuum circuit breaker according to the fourth aspect, the support insulator has a substantially elliptical cross-sectional shape and extends in the axial direction of the vacuum valve. First and second embedded electrodes embedded in parallel with each other, the first and second embedded electrodes having a substantially elliptical cross-sectional shape, and embedded so as to face the insulating operating rod via the first and second embedded electrodes. A gas-insulated vacuum circuit breaker provided with a third embedded electrode.
【0012】また、請求項6に対応する発明は、請求項
4又は請求項5に対応するガス絶縁真空遮断器におい
て、前記電界緩和用電極の外径よりも大きい外径をもつ
電極が埋込まれて前記真空バルブを固定する第2の支持
がいしを備えたガス絶縁真空遮断器である。According to a sixth aspect of the present invention, in the gas insulated vacuum circuit breaker according to the fourth or fifth aspect, an electrode having an outer diameter larger than the outer diameter of the electric field relaxing electrode is embedded. A gas-insulated vacuum circuit breaker having a second supporting insulator for fixing the vacuum valve in rare cases.
【0013】さらに、請求項7に対応する発明は、請求
項1に対応するガス絶縁真空遮断器において、前記絶縁
材料の比誘電率よりも高い比誘電率を有して前記真空バ
ルブを固定する支持がいしを備えたガス絶縁真空遮断器
である。 (作用)従って、請求項1に対応する発明は以上のよう
な手段を講じたことにより、電界利用率の大きい準平等
電界においては、電極表面に絶縁材料より成る被膜を形
成することにより耐電圧特性を向上できる。この被膜
は、電極表面の凸凹を滑らかにして電界強度を抑制し、
また電子放出を抑制すると推測される。According to a seventh aspect of the present invention, in the gas insulated vacuum circuit breaker according to the first aspect, the vacuum valve is fixed so as to have a relative dielectric constant higher than a relative dielectric constant of the insulating material. It is a gas insulated vacuum circuit breaker with a supporting insulator. (Operation) Therefore, the invention corresponding to claim 1 takes the above-mentioned means, and in a quasi-equivalent electric field having a large electric field utilization factor, a film made of an insulating material is formed on the electrode surface to withstand voltage. Characteristics can be improved. This coating suppresses the electric field strength by smoothing the unevenness of the electrode surface,
It is also assumed that electron emission is suppressed.
【0014】このため、電界緩和用電極の曲率半径を大
にせずに耐電圧を向上できるので、曲率半径を小にして
電界緩和用電極を小さくできると共に、真空遮断器の相
間や対地間の絶縁距離を短くでき、もって、小型化及び
縮小化を図ることができる。For this reason, the withstand voltage can be improved without increasing the radius of curvature of the electric field relaxing electrode, so that the radius of curvature can be reduced and the electric field relaxing electrode can be reduced, and the insulation between phases of the vacuum circuit breaker and between the ground can be achieved. The distance can be shortened, so that downsizing and downsizing can be achieved.
【0015】また、請求項2に対応する発明は、被膜が
略25μmの厚さを有してテフロン樹脂又はエポキシ樹
脂から形成されるので、請求項1に対応する作用を容易
かつ確実に奏することができる。According to a second aspect of the present invention, since the film has a thickness of about 25 μm and is made of a Teflon resin or an epoxy resin, the action corresponding to the first aspect is easily and reliably achieved. Can be.
【0016】さらに、請求項3に対応する発明は、電界
利用率の小さい不平等電界においては、例えば電界緩和
用電極の端部を真空バルブの絶縁筒から数mm離すこと
により、絶縁筒に設けられた電極との相乗効果による電
界緩和作用を働かせ、耐電圧の向上を図ることができ
る。Further, according to the present invention, in the case of an uneven electric field having a small electric field utilization factor, for example, the end of the electric field relaxing electrode is provided on the insulating cylinder by separating it from the insulating cylinder of the vacuum valve by several mm. The electric field relaxing action by the synergistic effect with the provided electrode works to improve the withstand voltage.
【0017】また、請求項4に対応する発明は、真空バ
ルブを固定する支持がいしをU字状とし、このU字状の
開口部に真空バルブを開閉する絶縁操作捧を設けること
により、U字状の開口部に同一の絶縁材料よりなる絶縁
物を位置させて電界の乱れを減少させ、耐電圧の向上を
図ることができる。更に、支持がいしと絶縁操作捧のス
ペースを縮小でき、全体形状を小型化することができ
る。According to a fourth aspect of the present invention, a support insulator for fixing a vacuum valve is formed in a U-shape, and an insulating operation member for opening and closing the vacuum valve is provided in the U-shaped opening, thereby forming a U-shape. By disposing an insulator made of the same insulating material in the opening, the disturbance of the electric field can be reduced, and the withstand voltage can be improved. Further, the space for the support insulator and the insulating operation can be reduced, and the overall shape can be reduced.
【0018】さらに、請求項5に対応する発明は、埋込
み電極を複数に分割したことにより、埋込む金属の体積
を小さくしてモールド時に金型の温度に早急に上昇で
き、絶縁樹脂との接着性を良くしてボイドや剥離などの
欠陥を生成し難くして良好な絶縁特性を実現できる。ま
た、分割された個々の埋込み電極は、見かけ上、大きな
電極にできるので、支持がいしに固定される真空バルブ
などの被支持物の電界緩和を図ることができる。Further, according to a fifth aspect of the present invention, since the embedded electrode is divided into a plurality of parts, the volume of the metal to be embedded can be reduced so that the temperature of the metal mold can be quickly raised at the time of molding, and the adhesion to the insulating resin can be improved. By improving the properties, it is difficult to generate defects such as voids and peeling, and good insulation characteristics can be realized. Further, since each of the divided embedded electrodes can be apparently made a large electrode, the electric field of a supported object such as a vacuum valve fixed to the supporting insulator can be reduced.
【0019】また、請求項6に対応する発明は、支持が
いしが電界緩和用電極の外径よりも大きい外径をもつ電
極を有するので、電界緩和用電極の近傍の等電位線を広
げて電界緩和できるため、電界緩和用電極の曲率半径を
小さくでき、電界緩和用電極の形状を縮小することがで
きる。According to a sixth aspect of the present invention, since the supporting insulator has an electrode having an outer diameter larger than the outer diameter of the electric field relaxation electrode, the equipotential lines near the electric field relaxation electrode are expanded to increase the electric field. Since the relaxation can be achieved, the radius of curvature of the electric field relaxing electrode can be reduced, and the shape of the electric field relaxing electrode can be reduced.
【0020】さらに、請求項7に対応する発明は、支持
がいしが被膜の絶縁材料の比誘電率よりも高い比誘電率
を有するので、支持がいしに沿った領域の等電位線を広
げて電界緩和できるため、電界緩和用電極の曲率半径を
小さくでき、電界緩和用電極の形状を縮小することがで
きる。Further, in the invention according to claim 7, since the supporting insulator has a higher relative permittivity than the insulating material of the coating, the equipotential lines in the region along the supporting insulator are expanded to reduce the electric field. Therefore, the radius of curvature of the electric field relaxing electrode can be reduced, and the shape of the electric field relaxing electrode can be reduced.
【0021】[0021]
【発明の実施の形態】以下、本発明の一実施形態につい
て図面を参照しながら説明する。図1は本発明の一実施
形態に係るガス絶縁真空遮断器の内部構成を示す側面図
であり、図7と同一部分には同一符号を付してその詳し
い説明は省略し、ここでは異なる部分についてのみ述べ
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a side view showing the internal configuration of a gas-insulated vacuum circuit breaker according to an embodiment of the present invention. The same parts as those in FIG. 7 are denoted by the same reference numerals, and detailed description thereof will be omitted. Is described only.
【0022】すなわち、本実施形態は、電界緩和用電極
の曲率半径を大にせずに電界緩和の実現を図るものであ
り、具体的には以下に述べる構造となっている。図1に
おいて、真空バルブ11の上下には電界緩和と通電を兼
ねた電界緩和用電極16a,16bが設けられる。電界
緩和用電極16a,16bは、互いに真空バルブの軸方
向に平行な絶縁支え板17を介して固定されると共に、
真空バルブの軸方向に垂直な各支持がいし18a,18
bを介してフランジ19に支持固定されている。That is, the present embodiment is intended to realize electric field relaxation without increasing the radius of curvature of the electric field relaxation electrode, and has the following structure. In FIG. 1, electric field relaxation electrodes 16a and 16b are provided above and below the vacuum valve 11 for both electric field relaxation and conduction. The electric field relaxing electrodes 16a and 16b are fixed to each other via an insulating support plate 17 parallel to the axial direction of the vacuum valve.
Each support insulator 18a, 18 perpendicular to the axial direction of the vacuum valve
It is supported and fixed to the flange 19 via b.
【0023】また、下部の電界緩和用電極16b内部に
は、真空バルブ11内の可動電極(図示せず)を開閉す
るラッセル機構部20があり、このラッセル機構部20
に連結された絶縁操作捧21が下部の支持がいし18b
と平行して配置されている。絶縁操作捧21は、気中側
の操作機構部22に連結されている。A Russell mechanism 20 for opening and closing a movable electrode (not shown) in the vacuum valve 11 is provided inside the lower electric field relaxing electrode 16b.
Operation insulator 21 connected to the lower support insulator 18b
And are arranged in parallel. The insulation operation member 21 is connected to the operation mechanism 22 on the air side.
【0024】一方、上部の電界緩和用電極16aは、真
空バルブ11との対向面側を除いた上部側の表面に例え
ばテフロン樹脂またはエポキシ樹脂などの絶縁材料から
成る被膜23aが形成されている。被膜の絶縁厚さは数
10μmであり、ここでは略25μmとしている。同様
に、下部の電界緩和用電極16bは、真空バルブ11と
の対向面側を除いた下部側に被膜23bが形成されてい
る。すなわち、被膜23a、23bの形成された電界緩
和用電極は、図2に拡大して示すように、ガスギャップ
Gを介して絶縁筒に対向しており、曲率半径が大であ
り、電界利用率の大きい準平等電界を実現可能となって
いる。被膜の絶縁材料の比誘電率は、支持がいしの比誘
電率よりも小さい値となっている。On the other hand, a coating 23a made of an insulating material such as Teflon resin or epoxy resin is formed on the upper surface of the upper electric field relaxing electrode 16a except for the surface facing the vacuum valve 11. The insulation thickness of the coating is several tens of μm, and is approximately 25 μm here. Similarly, a coating 23b is formed on a lower side of the lower electric field relaxation electrode 16b except for a surface facing the vacuum valve 11. That is, as shown in the enlarged view of FIG. 2, the electric field relaxing electrode on which the coatings 23a and 23b are formed is opposed to the insulating cylinder via the gas gap G, has a large radius of curvature, and has a high electric field utilization rate. And a quasi-equal electric field with a large value can be realized. The relative permittivity of the insulating material of the coating is smaller than the relative permittivity of the support insulator.
【0025】具体的には、電界緩和用電極16aは、ボ
ルト15により固定され、下部表面が被膜などが形成さ
れず素地である。電界緩和用電極16aの端部は、真空
バルブ11の封じ切り電極12と絶縁筒13とを結合す
る電極部24付近までとし、絶縁筒13端部からギャッ
プ長Gが数mmを保たれる上方に位置している。よっ
て、電界緩和用電極16a下部単体(又は絶縁筒との対
向側)においては、端部が鋭角となる不平等電界とな
る。More specifically, the electric field relaxing electrode 16a is fixed by bolts 15, and its lower surface is a base without a coating or the like. The end of the electric field relaxing electrode 16a extends to the vicinity of the electrode part 24 connecting the sealing electrode 12 of the vacuum valve 11 and the insulating tube 13, and the upper end where the gap length G is maintained at several mm from the end of the insulating tube 13. It is located in. Therefore, in the lower part of the electric field relaxing electrode 16a (or on the side facing the insulating cylinder), an uneven electric field having an acute angle at the end is obtained.
【0026】また、支持がいし18bは、図3に示すよ
うに、絶縁操作捧21に対向して同軸状にU字状の開口
部18cが設けられている。すなわち、この開口部18
cに沿って絶縁操作捧21が平行に配置される。この絶
縁操作捧21と開口部18cとのギャップは10数mm
とし、部分放電が発生しない適切な値としている。また
支持がいし中には、各埋込み金具25a,25b,25
cが開口部18cを除いた各辺に夫々設けられている。As shown in FIG. 3, the support insulator 18b has a coaxial U-shaped opening 18c opposed to the insulating operation member 21. As shown in FIG. That is, the opening 18
Insulating operation members 21 are arranged in parallel along c. The gap between the insulating member 21 and the opening 18c is about 10 mm or more.
And an appropriate value that does not cause partial discharge. In addition, each of the embedded metal fittings 25a, 25b, 25
c is provided on each side except the opening 18c.
【0027】上部の支持がいし18aは、図4に示すよ
うに、電界緩和用電極16aの端部に接続された電極2
7が埋込まれ、この電極27により電界緩和用電極を1
6aを固定的に支持している。ここで、支持がいし18
a中の電極27の径φ1と、電界緩和用電極16aの径
φ2とは、φ1>φ2の関係にあることが等電位線28
の拡張による電界緩和の観点から好ましい。As shown in FIG. 4, the upper supporting insulator 18a is connected to the electrode 2 connected to the end of the electric field relaxing electrode 16a.
7 are embedded, and the electrode 27 reduces
6a is fixedly supported. Here, the support insulator 18
a that the diameter φ1 of the electrode 27 in FIG. 2a and the diameter φ2 of the electrode 16a for relaxing the electric field satisfy the relationship of φ1> φ2,
This is preferable from the viewpoint of electric field relaxation due to expansion of.
【0028】次に、以上のように構成されたガス絶縁真
空遮断器の作用について述べる。なお、各構造は夫々独
立して電界緩和を実現するため、構造毎に分けて作用を
説明する。 (被膜による電界緩和)図5は破壊(インパルスフラッ
シオーバ)電圧と被膜の有無との関係を曲率半径を変え
て調査した結果を示す電圧特性図である。黒印の特性
は、曲率半径R=40mmを有してガスギャップ10m
mに配置された電界緩和用電極16a,14における破
壊電圧を被膜23aの有無について比較している。白印
の特性は、黒印の特性における電界緩和用電極16a,
14を曲率半径R=3mmとしている。ここで、前者の
R=40mmの場合は電界利用率U=0.88で準平等
電界であり、後者のR=3mmの場合は電界利用率U=
0.26で不平等電界である。なお電界利用率Uは、次
式で近似値が得られる。Next, the operation of the gas insulated vacuum circuit breaker configured as described above will be described. In addition, since each structure independently realizes electric field relaxation, the operation will be described separately for each structure. (Electrical Relaxation by Coating) FIG. 5 is a voltage characteristic diagram showing the result of investigation of the relationship between the breakdown (impulse flashover) voltage and the presence or absence of the coating while changing the radius of curvature. The characteristics of the black marks are as follows: a radius of curvature R = 40 mm;
The breakdown voltage of the electric field relaxing electrodes 16a and 14 arranged at m is compared for the presence or absence of the coating 23a. The characteristics indicated by white marks are the electric field relaxing electrodes 16a,
14 has a radius of curvature R = 3 mm. Here, in the case of the former R = 40 mm, the quasi-uniform electric field is obtained with the electric field utilization ratio U = 0.88, and in the case of the latter R = 3 mm, the electric field utilization ratio U =
An uneven electric field is 0.26. Note that an approximate value of the electric field utilization factor U can be obtained by the following equation.
【0029】 電界利用率U=R/{0.9(R+G)} 但し、R;電極の曲率半径、G;ガスギャップ長。 図より、準平等電界では、被膜23a有の電極のとき、
破壊電圧が裸電極に比べて約25%上昇している。一
方、不平等電界では、被膜23a有の電極の破壊電圧が
ほとんど上昇していない。なお、図2に示す電界緩和用
電極16aにおいては、曲率半径R=30mmでガスギ
ャップG=65mmとして電界利用率U=0.35とな
るとき、破壊電圧を約10%上昇できた。すなわち、電
界利用率Uに比例して(又は平等電界になるに従い)、
被膜23aの効果が現れるため、被膜23aを用いて破
壊電圧を上昇できるといえる。具体的には、被膜23a
は、電極表面の凸凹を滑らかにして電界強度を抑制する
と共に電極からの電子放出を抑制する作用があると推測
される。このため、電界緩和用電極16の曲率半径Rを
小さくでき、相間や対地間のガスギャップGを短縮でき
るので、電界緩和用電極16aの単体形状の縮小化およ
びガス絶縁真空遮断器の全体形状の縮小化を図ることが
できる。なお、被膜23の形成工程上、電界緩和用電極
16の約半分に形成することが困難な場合、電界緩和用
電極16の全面に被膜23を設けてもよい。Electric field utilization factor U = R / {0.9 (R + G)} where R: radius of curvature of the electrode, G: gas gap length. From the figure, in the quasi-equivalent electric field, when the electrode has the coating 23a,
The breakdown voltage is increased by about 25% as compared with the bare electrode. On the other hand, in the uneven electric field, the breakdown voltage of the electrode having the coating 23a hardly increases. In the electric field relaxing electrode 16a shown in FIG. 2, when the radius of curvature R was 30 mm, the gas gap G was 65 mm, and the electric field utilization factor U was 0.35, the breakdown voltage could be increased by about 10%. That is, in proportion to the electric field utilization rate U (or as the electric field becomes equal),
Since the effect of the coating 23a appears, it can be said that the breakdown voltage can be increased by using the coating 23a. Specifically, the coating 23a
Is presumed to have the effect of smoothing the unevenness of the electrode surface, suppressing the electric field strength and suppressing the electron emission from the electrode. For this reason, the radius of curvature R of the electric field relaxation electrode 16 can be reduced, and the gas gap G between the phases and the ground can be reduced, so that the single shape of the electric field relaxation electrode 16a can be reduced and the overall shape of the gas insulated vacuum circuit breaker can be reduced. The size can be reduced. If it is difficult to form the film 23 in about half of the electric field relaxation electrode 16 in the formation process, the film 23 may be provided on the entire surface of the electric field relaxation electrode 16.
【0030】ここで、電界緩和用電極16aの端部は、
単体では不平等電界を形成するが、真空バルブ11との
組合せにより、絶縁筒13に結合させる電極24との相
乗効果により、全体形状として電界緩和を図ることがで
きる。この電界緩和は、絶縁筒13と電界緩和用電極1
6a端部とのガスギャップ長Gに大きく影響され、実験
によると2mm程度のガスギャップGのとき、ガスギャ
ップ部分からの破壊はなかった。ガスギャップGを形成
できずに絶縁筒13とラップさせる場合が最も破壊電圧
の低下をもたらす。なお、上部の電界緩和用電極16a
の構成を例に挙げて説明したが、下部の電界緩和用電極
16bにおいても同様の構成でよい。 (埋込み金具等による電界緩和)支持がいし中の各埋込
み金具25a〜25cは開口部18cを除いた各辺に設
けられるので、絶縁操作捧21と支持がいしの開口部1
8cは、適切なギャップ長により電界を乱すことなく耐
電圧の向上を図ることができる。特に、絶縁操作捧21
においては支持がいし18bより電極間距離が短いので
電界集中を起こし易いが、絶縁ガスに比べて比誘電率の
低い支持がいし18bの絶縁層が近接しているので、電
界強度を抑制することができる。Here, the end of the electric field relaxing electrode 16a is
Although a non-uniform electric field is formed by itself, the electric field can be reduced as a whole by the combination with the vacuum valve 11 and the synergistic effect with the electrode 24 coupled to the insulating cylinder 13. This electric field relaxation is performed by the insulating cylinder 13 and the electric field relaxation electrode 1.
It was greatly affected by the gas gap length G with the end of 6a. According to the experiment, when the gas gap G was about 2 mm, there was no breakage from the gas gap portion. The case where the gas gap G cannot be formed and wrapped with the insulating cylinder 13 results in the lowest breakdown voltage. The upper electrode 16a for relaxing the electric field
Although the configuration has been described as an example, the same configuration may be applied to the lower electric field relaxing electrode 16b. (Electrification alleviation by embedded metal fittings and the like) Since the embedded metal fittings 25a to 25c in the support insulator are provided on each side excluding the opening 18c, the insulating operation member 21 and the opening 1 of the support insulator are provided.
8c can improve the withstand voltage without disturbing the electric field by an appropriate gap length. In particular, insulation operation dedicated 21
However, since the distance between the electrodes is shorter than that of the supporting insulator 18b, electric field concentration is likely to occur. However, since the insulating layer of the supporting insulator 18b having a lower relative dielectric constant than the insulating gas is close, the electric field intensity can be suppressed. .
【0031】また、U字状の開口部18cに沿って絶縁
操作捧21を配置するため、一般の回転対称形の支持が
いしと絶縁操作捧21とを夫々単独で配置する構造に比
べ、スペースを小さくできる。Further, since the insulating operation member 21 is arranged along the U-shaped opening 18c, a space is reduced as compared with a structure in which a general rotationally symmetrical support insulator and the insulating operation member 21 are individually arranged. Can be smaller.
【0032】また、個々の埋込み金具25a、25b,
25cは分割されているので、支持がいし18bの絶縁
層に埋込む金属の体積を縮小できる。このため、モール
ド時に金型の温度に早急に上昇でき、絶縁樹脂との接着
性を向上させ、ボイドや剥離などの欠陥ができ難く、良
好な絶縁特性を得ることができる。Each of the embedding fittings 25a, 25b,
Since the portion 25c is divided, the volume of the metal embedded in the insulating layer of the support insulator 18b can be reduced. For this reason, the temperature of the mold can be quickly raised at the time of molding, the adhesion to the insulating resin is improved, defects such as voids and peeling are hardly generated, and good insulating properties can be obtained.
【0033】更に、各埋込み金具25は同電位であるの
で、個々には小さい埋込み金具(電極)であっても、見
かけ上、大きな埋込み金具(電極)となる。よって、支
持がいし18bに固定される下部の電界緩和用電極16
b及び真空バルブ11等の被支持物の電界緩和を図るこ
とができる。すなわち、被支持物としての電界緩和用電
極16や真空バルブに対し、埋込み金具25を見かけ
上、大きくすることにより、絶縁ガス側の電極に影響を
与え、電界強度の抑制を図ることができる。 (大径の埋込み電極による電界緩和)図4は支持がいし
による固定構造と電界緩和との関係を説明するための模
式図である。図示するように、上部の支持がいし18a
において、絶縁層26に埋込まれた電極27の径をφ1
とし、電界緩和用電極16aの径をφ2としたとき、両
者をφ1>φ2の関係とすることにより電界緩和を図る
ことができる。すなわち、電界緩和用電極16a近傍の
等電位線28が支持がいし18aにより広げられ、電界
緩和がされている。よって、電界緩和用電極16aの曲
率半径を小さくできるので、電界緩和用電極16a自体
の形状の縮小化を図ることができる。 (低い比誘電率の被膜による電界緩和)電界緩和用電極
16a,16bの被膜23a,23bの比誘電率に比
べ、電界緩和用電極16a,16bを支持固定する支持
がいし18a,18bの比誘電率の方を高くすれば、被
膜23a,23bによる電界緩和の効果を大きく現すこ
とができる。これは、高い比誘電率の絶縁材料で支持が
いし18a,18bを構成することにより、沿面の等電
位線が広がるためである。また、被膜した電界緩和用電
極16a,16bでは、ガスギャップGとの間で電位分
担が決まるため、低い比誘電率をもつ被膜23a,23
bの方がガスギャップGの電位分担を低減できる。これ
らのことより、被膜した電界緩和用電極とそれを固定す
る支持がいしとの縮小化を図ることができる。Furthermore, since each of the embedding metal fittings 25 has the same potential, even if each embedding metal fitting (electrode) is small, it becomes an apparently large embedding metal fitting (electrode). Therefore, the lower electric field relaxing electrode 16 fixed to the support insulator 18b
The electric field of the supported object such as the b and the vacuum valve 11 can be reduced. In other words, by making the embedded metal fittings 25 apparently larger with respect to the electrode 16 for alleviating the electric field and the vacuum valve as the object to be supported, the electrodes on the insulating gas side are affected, and the electric field strength can be suppressed. FIG. 4 is a schematic diagram for explaining the relationship between the fixed structure using the supporting insulator and the electric field relaxation. As shown, the upper support insulator 18a
The diameter of the electrode 27 embedded in the insulating layer 26 is φ1
Assuming that the diameter of the electric field relaxing electrode 16a is φ2, the electric field can be mitigated by making the relationship of φ1> φ2. That is, the equipotential lines 28 near the electric field relaxing electrode 16a are expanded by the support insulator 18a, and the electric field is relaxed. Therefore, since the radius of curvature of the electric field relaxing electrode 16a can be reduced, the shape of the electric field relaxing electrode 16a itself can be reduced. (Electric field relaxation by coating having low relative permittivity) Compared with the relative permittivity of the coatings 23a and 23b of the electrodes 16a and 16b, the relative permittivity of the supporting insulators 18a and 18b for supporting and fixing the electrodes 16a and 16b is small. Is higher, the effect of the electric field relaxation by the coatings 23a and 23b can be significantly exhibited. This is because, by forming the supporting insulators 18a and 18b with an insulating material having a high relative permittivity, equipotential lines on the creeping surface are widened. Further, in the coated electric field relaxing electrodes 16a and 16b, the electric potential sharing is determined between the electric field relaxation electrodes 16a and 16b, so that the films 23a and 23
b can reduce the potential sharing of the gas gap G. From these facts, it is possible to reduce the size of the coated electric field relaxing electrode and the supporting insulator for fixing it.
【0034】上述したように本実施形態によれば、電界
利用率の大きい準平等電界においては、電極表面に絶縁
材料よりなる被膜23aの形成により、電界緩和用電極
16a,16bの曲率半径を大にせずに耐電圧特性を向
上できるので、曲率半径を小にして電界緩和用電極16
a,16bを小さくできると共に、真空遮断器の相間や
対地間の絶縁距離を短くでき、もって、小型化及び縮小
化を図ることができる。As described above, according to the present embodiment, in a quasi-equivalent electric field having a large electric field utilization factor, the radius of curvature of the electric field relaxing electrodes 16a and 16b is increased by forming the coating 23a made of an insulating material on the electrode surface. Since the withstand voltage characteristics can be improved without reducing the radius of curvature, the radius of curvature can be reduced to reduce the electric field relaxing electrode 16.
a and 16b can be reduced, and the insulation distance between the phases and the ground of the vacuum circuit breaker can be shortened, so that downsizing and downsizing can be achieved.
【0035】また、被膜23a,23bが略25μmの
厚さを有してテフロン樹脂又はエポキシ樹脂から形成さ
れるので、被膜23a,23bによる電界緩和を容易か
つ確実に奏することができる。Further, since the coatings 23a and 23b have a thickness of about 25 μm and are made of Teflon resin or epoxy resin, the electric field can be easily and reliably relaxed by the coatings 23a and 23b.
【0036】さらに、電界利用率の小さい不平等電界に
おいては、電界緩和用電極の端部を真空バルブ11の絶
縁筒13から数mm離すことにより、絶縁筒13に設け
られた電極24との相乗効果による電界緩和作用を働か
せ、耐電圧の向上を図ることができる。Further, in an uneven electric field having a small electric field utilization rate, the end of the electric field relaxing electrode is separated from the insulating tube 13 of the vacuum valve 11 by several mm so that the end of the electrode for synergizing with the electrode 24 provided on the insulating tube 13 is formed. By using the effect of relaxing the electric field by the effect, the withstand voltage can be improved.
【0037】また、真空バルブ11を固定する支持がい
し18bをU字状とし、このU字状の開口部18cに真
空バルブ11を開閉する絶縁操作捧21を設けることに
より、U字状の開口部18cに同一の絶縁材料よりなる
絶縁物を位置させて電界の乱れを減少させ、耐電圧の向
上を図ることができる。更に、支持がいし18bと絶縁
操作捧21のスペースを縮小でき、全体形状を小型化す
ることができる。The supporting insulator 18b for fixing the vacuum valve 11 is U-shaped, and the insulating opening 21 for opening and closing the vacuum valve 11 is provided in the U-shaped opening 18c. By disposing an insulator made of the same insulating material at 18c, the disturbance of the electric field can be reduced and the withstand voltage can be improved. Further, the space between the support insulator 18b and the insulating operation member 21 can be reduced, and the overall shape can be reduced.
【0038】さらに、埋込み電極25a〜25cを複数
に分割したことにより、埋込む金属の体積を小さくして
モールド時に金型の温度に早急に上昇でき、絶縁樹脂と
の接着性を良くしてボイドや剥離などの欠陥を生成し難
くして良好な絶縁特性を実現できる。また、分割された
個々の埋込み電極は、見かけ上、大きな電極にできるの
で、支持がいし18a,18bに固定される真空バルブ
11などの被支持物の電界緩和を図ることができる。Further, by dividing the buried electrodes 25a to 25c into a plurality of parts, the volume of the buried metal can be reduced and the temperature of the mold can be quickly raised at the time of molding. Good insulation characteristics can be realized by making it difficult to generate defects such as peeling and peeling. In addition, since each of the divided embedded electrodes can be apparently made a large electrode, the electric field of a supported object such as the vacuum valve 11 fixed to the supporting insulators 18a and 18b can be reduced.
【0039】また、支持がいし18aが電界緩和用電極
16aの外径よりも大きい外径をもつ電極27を有する
ので、電界緩和用電極16aの近傍の等電位線28を広
げて電界緩和できるため、電界緩和用電極16aの曲率
半径を小さくでき、電界緩和用電極16aの形状を縮小
することができる。Further, since the supporting insulator 18a has the electrode 27 having an outer diameter larger than the outer diameter of the electric field relaxing electrode 16a, the equipotential line 28 near the electric field relaxing electrode 16a can be widened to relax the electric field. The radius of curvature of the electric field relaxing electrode 16a can be reduced, and the shape of the electric field relaxing electrode 16a can be reduced.
【0040】さらに、支持がいし18a,18bが被膜
23a,23bの絶縁材料の比誘電率よりも高い比誘電
率を有するので、支持がいし18a,18bに沿った領
域の等電位線28を広げて電界緩和できるため、電界緩
和用電極16a,16bの曲率半径を小さくでき、電界
緩和用電極16a,16bの形状を縮小することができ
る。 (他の実施形態)なお、他の実施形態として、主回路導
体を固定する支持がいしや計器用変成器などの口出し部
において、絶縁ガスと対向する部分の電極を準平等電界
として絶縁材料を被膜し、また支持がいし等との固定側
を単独では不平等電界とし、この固定側と支持がいしと
の組合せの相乗効果による電界緩和を実現し、全体形状
の縮小化を図ってもよい。その他、本発明はその要旨を
逸脱しない範囲で種々変形して実施できる。Further, since the supporting insulators 18a and 18b have a higher relative dielectric constant than the insulating material of the coatings 23a and 23b, the equipotential lines 28 in the region along the supporting insulators 18a and 18b are expanded to increase the electric field. Since the relaxation can be achieved, the radius of curvature of the electric field relaxing electrodes 16a and 16b can be reduced, and the shape of the electric field relaxing electrodes 16a and 16b can be reduced. (Other Embodiments) In another embodiment, in an outlet portion of a support insulator for fixing a main circuit conductor or an instrument transformer, a portion of an electrode facing an insulating gas is coated with an insulating material using a quasi-equal electric field. Alternatively, the fixed side with the supporting insulator or the like may be used alone as an unequal electric field, and the electric field may be alleviated by the synergistic effect of the combination of the fixed side and the supporting insulator, thereby reducing the overall shape. In addition, the present invention can be implemented with various modifications without departing from the scope of the invention.
【0041】[0041]
【発明の効果】以上説明したように本発明によれば、電
界緩和用電極の曲率半径を大にせずに耐電圧を向上さ
せ、もって、縮小化を図ることができるガス絶縁真空遮
断器を提供できる。As described above, according to the present invention, there is provided a gas-insulated vacuum circuit breaker capable of improving the withstand voltage without increasing the radius of curvature of the electric field relaxing electrode and thereby achieving downsizing. it can.
【図1】図1は本発明の一実施形態に係るガス絶縁真空
遮断器の内部構成を示す側面図FIG. 1 is a side view showing the internal configuration of a gas-insulated vacuum circuit breaker according to one embodiment of the present invention.
【図2】同実施の形態における電界緩和用電極の一部を
拡大して示す模式図FIG. 2 is an enlarged schematic view showing a part of an electric field relaxing electrode in the embodiment.
【図3】同実施の形態における下部の支持がいしの構成
を示す斜視図FIG. 3 is a perspective view showing a configuration of a lower support insulator in the embodiment.
【図4】同実施の形態における支持がいしによる固定構
造と電界緩和との関係を説明するための模式図FIG. 4 is a schematic diagram for explaining a relationship between a fixing structure using a supporting insulator and electric field relaxation in the embodiment.
【図5】同実施の形態における破壊電圧と被膜の有無と
の関係を曲率半径を変えて調査した結果を示す特性図FIG. 5 is a characteristic diagram showing a result of an investigation of a relationship between a breakdown voltage and the presence or absence of a film in the same embodiment while changing a radius of curvature.
【図6】一般的なガス絶縁スイッチギア及びその周辺構
成を示す側面図FIG. 6 is a side view showing a general gas insulated switchgear and its peripheral configuration.
【図7】ガス絶縁真空遮断器の電界緩和構造を示す模式
図FIG. 7 is a schematic view showing an electric field relaxation structure of a gas insulated vacuum circuit breaker.
11…真空バルブ 12…封じきり電極 13…絶縁筒 16a,16b…電界緩和用電極 15…ボルト 17…絶縁支え板 18a,18b…支持がいし 18c…開口部 19…フランジ 20…ラッセル機構部 21…絶縁操作捧 22…操作機構部 23a,23b…被膜 24、27…電極 25a〜25c…埋込み金具 26…絶縁層 28…等電位線 DESCRIPTION OF SYMBOLS 11 ... Vacuum valve 12 ... Sealed electrode 13 ... Insulating cylinder 16a, 16b ... Electric field relaxation electrode 15 ... Bolt 17 ... Insulating support plate 18a, 18b ... Support insulator 18c ... Opening 19 ... Flange 20 ... Russell mechanism part 21 ... Insulation Operation 22: Operation mechanism 23a, 23b: Coating 24, 27: Electrodes 25a to 25c: Embedded metal fittings 26: Insulating layer 28: Equipotential line
Claims (7)
容器の両端にガスギャップGだけ離して端部が配置され
た電界緩和用電極とを有する真空バルブを備えたガス絶
縁真空遮断器において、 前記電界緩和用電極の外周面の曲率半径Rと前記ガスギ
ャップGとに基づいて下記式で得られる電界利用率Uを
U=0.35以上の準平等電界とし、前記電界緩和用電
極には前記絶縁容器に対向する部分を除いて外周面の半
分以上の領域に絶縁材料よりなる被膜を形成したことを
特徴とするガス絶縁真空遮断器。 U=R/{0.9(R+G)}1. A gas-insulated vacuum circuit breaker having a vacuum valve filled with an insulating gas and having an insulating container and an electric-field-mitigating electrode having two ends separated by a gas gap G at both ends of the insulating container. An electric field utilization factor U obtained by the following equation based on the radius of curvature R of the outer peripheral surface of the electric field relaxing electrode and the gas gap G is set to a quasi-equal electric field of U = 0.35 or more. A gas insulated vacuum circuit breaker characterized in that a coating made of an insulating material is formed on at least a half of the outer peripheral surface except for a portion facing the insulating container. U = R / {0.9 (R + G)}
おいて、 前記被膜は、略25μmの厚さを有し、テフロン樹脂又
はエポキシ樹脂よりなる絶縁材料で形成されたことを特
徴とするガス絶縁真空遮断器。2. The gas-insulated vacuum circuit breaker according to claim 1, wherein the coating has a thickness of about 25 μm and is formed of an insulating material made of Teflon resin or epoxy resin. Insulated vacuum circuit breaker.
容器の両端にガスギャップGだけ離して端部が配置され
た電界緩和用電極とを有する真空バルブを備えたガス絶
縁真空遮断器において、 前記電界緩和用電極の外周面の曲率半径Rと前記ガスギ
ャップGとに基づいて下記式で得られる電界利用率Uを
U=0.26以下の不平等電界としたことを特徴とする
ガス絶縁真空遮断器。 U=R/{0.9(R+G)}3. A gas-insulated vacuum circuit breaker having a vacuum valve filled with an insulating gas and having an insulating container and electric-field-mitigating electrodes arranged at both ends of the insulating container and separated by a gas gap G at an end thereof. An electric field utilization factor U obtained by the following equation based on the radius of curvature R of the outer peripheral surface of the electric field relaxing electrode and the gas gap G is defined as an uneven electric field of U = 0.26 or less. Insulated vacuum circuit breaker. U = R / {0.9 (R + G)}
容器の両端にガスギャップGだけ離して端部が配置され
た電界緩和用電極とを有する真空バルブを備えたガス絶
縁真空遮断器において、 前記真空バルブの可動電極に連結され、前記真空バルブ
の軸方向とは略直角方向に沿って進退可能に形成された
絶縁操作捧と、 前記絶縁操作棒の軸方向に沿って対向配置され、前記絶
縁操作捧との対向部分に略U字状の凹部を有し、前記真
空バルブを固定する支持がいしとを備えたことを特徴と
するガス絶縁真空遮断器。4. A gas-insulated vacuum circuit breaker comprising: a vacuum valve filled with an insulating gas and having an insulating container and electric-field-mitigating electrodes disposed at both ends of the insulating container at an end separated by a gas gap G. An insulating operation member connected to a movable electrode of the vacuum valve and configured to be able to advance and retreat in a direction substantially perpendicular to the axial direction of the vacuum valve; and disposed opposite to each other along the axial direction of the insulating operation rod; A gas-insulated vacuum circuit breaker, comprising a substantially U-shaped recess at a portion facing the insulating operation member, and a supporting insulator for fixing the vacuum valve.
おいて、 前記支持がいしは、 略楕円状の断面形状を有し、前記真空バルブの軸方向に
平行に埋込まれた第1及び第2の埋込み電極と、 略楕円状の断面形状を有し、前記第1及び第2の埋込み
電極を介して前記絶縁操作棒に対向するように埋込まれ
た第3の埋込み電極とを備えたことを特徴とするガス絶
縁真空遮断器。5. The gas-insulated vacuum circuit breaker according to claim 4, wherein the support insulator has a substantially elliptical cross-sectional shape, and is embedded in the first and the second parallel to the axial direction of the vacuum valve. 2 embedded electrodes, and a third embedded electrode having a substantially elliptical cross-sectional shape and embedded so as to face the insulating operating rod via the first and second embedded electrodes. A gas insulated vacuum circuit breaker characterized by the above.
真空遮断器において、 前記電界緩和用電極の外径よりも大きい外径をもつ電極
が埋込まれて前記真空バルブを固定する第2の支持がい
しを備えたことを特徴とするガス絶縁真空遮断器。6. The gas-insulated vacuum circuit breaker according to claim 4, wherein an electrode having an outer diameter larger than an outer diameter of the electric field relaxing electrode is embedded to fix the vacuum valve. A gas-insulated vacuum circuit breaker, comprising: a support insulator according to (2).
おいて、 前記被膜の絶縁材料の比誘電率よりも高い比誘電率を有
して前記真空バルブを固定する支持がいしを備えたこと
を特徴とするガス絶縁真空遮断器。7. The gas-insulated vacuum circuit breaker according to claim 1, further comprising a supporting insulator for fixing the vacuum valve with a relative permittivity higher than a relative permittivity of an insulating material of the coating. Features a gas-insulated vacuum circuit breaker.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9048955A JPH10247444A (en) | 1997-03-04 | 1997-03-04 | Gas insulation vacuum circuit breaker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9048955A JPH10247444A (en) | 1997-03-04 | 1997-03-04 | Gas insulation vacuum circuit breaker |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004156084A Division JP4005982B2 (en) | 2004-05-26 | 2004-05-26 | Gas insulated vacuum circuit breaker |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10247444A true JPH10247444A (en) | 1998-09-14 |
Family
ID=12817710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9048955A Pending JPH10247444A (en) | 1997-03-04 | 1997-03-04 | Gas insulation vacuum circuit breaker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10247444A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000341816A (en) * | 1999-05-31 | 2000-12-08 | Toshiba Corp | Switchgear |
WO2004032169A1 (en) * | 2002-09-30 | 2004-04-15 | Mitsubishi Denki Kabushiki Kaisha | Vacuum beaker |
WO2007016882A1 (en) | 2005-08-10 | 2007-02-15 | Siemens Aktiengesellschaft | Holding apparatus with field control properties |
CN102435791A (en) * | 2010-09-08 | 2012-05-02 | 株式会社东芝 | Transformer device for metrical instrument |
WO2014080655A1 (en) * | 2012-11-21 | 2014-05-30 | 三菱電機株式会社 | Switch |
JP2021122755A (en) * | 2020-01-31 | 2021-08-30 | 富士電機株式会社 | Electric dust precipitator |
-
1997
- 1997-03-04 JP JP9048955A patent/JPH10247444A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000341816A (en) * | 1999-05-31 | 2000-12-08 | Toshiba Corp | Switchgear |
WO2004032169A1 (en) * | 2002-09-30 | 2004-04-15 | Mitsubishi Denki Kabushiki Kaisha | Vacuum beaker |
CN100369172C (en) * | 2002-09-30 | 2008-02-13 | 三菱电机株式会社 | Vacuum circuit breaker |
WO2007016882A1 (en) | 2005-08-10 | 2007-02-15 | Siemens Aktiengesellschaft | Holding apparatus with field control properties |
CN102435791A (en) * | 2010-09-08 | 2012-05-02 | 株式会社东芝 | Transformer device for metrical instrument |
WO2014080655A1 (en) * | 2012-11-21 | 2014-05-30 | 三菱電機株式会社 | Switch |
CN104798167A (en) * | 2012-11-21 | 2015-07-22 | 三菱电机株式会社 | Switch |
US9305725B2 (en) | 2012-11-21 | 2016-04-05 | Mitsubishi Electric Corporation | Switching apparatus |
JP2021122755A (en) * | 2020-01-31 | 2021-08-30 | 富士電機株式会社 | Electric dust precipitator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7848084B2 (en) | Gas-insulated equipment | |
US8049108B2 (en) | High voltage bushing and high voltage device comprising such bushing | |
JP3860553B2 (en) | Gas insulated switchgear | |
US20230223189A1 (en) | Hv apparatus and a method of manufacturing such apparatus | |
JPH10247444A (en) | Gas insulation vacuum circuit breaker | |
KR101034878B1 (en) | High voltage bushings with improved insulating performance electric field relaxation | |
JP6071209B2 (en) | Gas insulated switchgear and gas insulated bus | |
JPH1023620A (en) | Electric field relief device | |
JP4005982B2 (en) | Gas insulated vacuum circuit breaker | |
US6140573A (en) | Hollow core composite bushings | |
CN116438612A (en) | Coated conductor in high voltage apparatus and method for improving dielectric strength | |
JP4931395B2 (en) | Insulation structure of electrical equipment and switchgear using the insulation structure | |
JPH03222621A (en) | Gas-insulated spacer | |
JPH0898341A (en) | Switchgear | |
JPH08182127A (en) | Gas-insulated equipment, gas-insulated switchgear, gas-insulated bus and gas-insulated switchgear directly connected to cable | |
JP2001266681A (en) | Bushing for gas insulating switchgear | |
JPH1021768A (en) | Insulating bushing | |
JPH05234441A (en) | Supporting insulator | |
JP2000125451A (en) | Gas-insulated switchgear | |
Feng et al. | Enhancement of External Insulation Performance for Vacuum Interrupters by External Shields | |
EP1074999A1 (en) | Hollow core composite insulator | |
JPH1075519A (en) | Gas insulated apparatus | |
JP3657890B2 (en) | Gas insulated switchgear | |
JPH1094115A (en) | Through insulation support | |
JPH0537611Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040330 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040526 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20041019 |