JP4931395B2 - Insulation structure of electrical equipment and switchgear using the insulation structure - Google Patents

Insulation structure of electrical equipment and switchgear using the insulation structure Download PDF

Info

Publication number
JP4931395B2
JP4931395B2 JP2005293551A JP2005293551A JP4931395B2 JP 4931395 B2 JP4931395 B2 JP 4931395B2 JP 2005293551 A JP2005293551 A JP 2005293551A JP 2005293551 A JP2005293551 A JP 2005293551A JP 4931395 B2 JP4931395 B2 JP 4931395B2
Authority
JP
Japan
Prior art keywords
conductor
electric field
switchgear
insulating
insulating barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005293551A
Other languages
Japanese (ja)
Other versions
JP2007104840A (en
Inventor
忠広 吉田
正博 有岡
伸治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005293551A priority Critical patent/JP4931395B2/en
Publication of JP2007104840A publication Critical patent/JP2007104840A/en
Application granted granted Critical
Publication of JP4931395B2 publication Critical patent/JP4931395B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Patch Boards (AREA)

Description

この発明は、例えば、電力の送配電および受電設備などに用いられ、開閉機器等の主回路機器が接地金属ケースに収納されて構成されるような電気機器の絶縁構造、及びその絶縁構造を適用したスイッチギヤに関するものである。   This invention is applied to, for example, electric power transmission / distribution and power receiving facilities, and is applied to an insulating structure of an electric device in which a main circuit device such as a switchgear is housed in a ground metal case, and the insulating structure is applied. It relates to the switchgear.

例えば、絶縁性のガス中で使用される電気機器で、不平等電界を生じる電極系の電界を緩和して絶縁性能を向上させる従来の技術として、図11(a)に示すように、電極41の最大電界を持つ部分に所定の耐電圧を満足する厚さの絶縁層を、この絶縁層表面の最大電界強度の90%以下の値を持つ電極部分まで、その空間における等電位線とほぼ同じ形状で絶縁層表面を形成した絶縁シールド42を設けた電界緩和装置が開示されている(特許文献1参照)。
また、図11(b)に示すように、低圧力の絶縁ガス中で、不平等電界を形成する電極構成の、電界強度が大きい側の電極43近傍に、その電極43より十分大きい曲率を持つ椀状の絶縁性バリヤ44を、凹部を電極43に対向させて挿入した電界緩和装置が開示されている(特許文献2参照)。
For example, as shown in FIG. 11A, an electrode 41 is a conventional technique for improving the insulation performance by relaxing the electric field of an electrode system that generates an unequal electric field in an electric device used in an insulating gas. An insulating layer having a thickness satisfying a predetermined withstand voltage in a portion having a maximum electric field of approximately equal to an equipotential line in the space up to an electrode portion having a value of 90% or less of the maximum electric field strength of the surface of the insulating layer An electric field relaxation device provided with an insulating shield 42 having an insulating layer surface formed in a shape is disclosed (see Patent Document 1).
Further, as shown in FIG. 11B, the electrode structure that forms an unequal electric field in an insulating gas at a low pressure has a curvature sufficiently larger than the electrode 43 in the vicinity of the electrode 43 on the side where the electric field strength is large. An electric field relaxation device is disclosed in which a bowl-shaped insulating barrier 44 is inserted with a recess facing the electrode 43 (see Patent Document 2).

特開平2−151215号公報(第1頁、第1図)JP-A-2-151215 (first page, FIG. 1) 特開平2−164209号公報(第1頁、第2図)JP-A-2-164209 (first page, FIG. 2)

ガス絶縁開閉装置等の電気機器では、設置場所の地価の高騰や激しい価格競争等に対処するため、コンパクト化や軽量化、低コスト化のニーズは、近年さらに強くなっている。そのため、電気機器の絶縁技術にも更なる高度化が求められてきた。特にガス絶縁開閉装置の分野では、従来の絶縁媒体であるSF6ガスに代わって、地球温暖化を引き起こさない乾燥空気や窒素ガスが用いられるようになってきたが、これらのガスの絶縁耐力はSF6ガスの約3分の1と低い。このため絶縁被覆や絶縁バリヤを用いたガス・固体複合絶縁の高性能化が求められており、例えば上記の特許文献のような絶縁被覆や絶縁バリヤを用いた電界緩和技術が提案されている。   In electrical equipment such as gas-insulated switchgears, the need for compactness, weight reduction, and cost reduction has become stronger in recent years in order to cope with rising land prices and intense price competition at installation locations. Therefore, further advancement has been demanded in the insulation technology of electric equipment. In particular, in the field of gas insulated switchgear, dry air or nitrogen gas that does not cause global warming has been used in place of the conventional insulating medium SF6 gas. However, the dielectric strength of these gases is SF6. As low as about one third of the gas. For this reason, high performance of gas / solid composite insulation using an insulation coating or an insulation barrier is required. For example, an electric field relaxation technique using an insulation coating or an insulation barrier as described in the above-mentioned patent document has been proposed.

しかしながら、特許文献1及び特許文献2に示す従来の絶縁構造では、絶縁物表面の有効面積(詳細は後述する)が必ずしも最小化されないことがある。また、絶縁物表面に発生する最大電界が最小化されない場合がある。すなわち、後述する面積効果特性を勘案すると、従来技術では、耐電圧上昇が期待するほどではない場合があるという問題があった。このため、特に、SF6ガスに替わって耐電圧性能の低い空気・窒素を用いる近年のガス絶縁電気機器に適用する場合は、電気機器のコンパクト化や経済性の改善に十分につながらないという問題があった。   However, in the conventional insulating structures shown in Patent Document 1 and Patent Document 2, the effective area of the insulator surface (details will be described later) may not always be minimized. In addition, the maximum electric field generated on the insulator surface may not be minimized. That is, considering the area effect characteristics described later, the conventional technique has a problem that the withstand voltage may not be expected to increase. For this reason, in particular, when applied to recent gas-insulated electrical equipment using air / nitrogen with low withstand voltage performance instead of SF6 gas, there is a problem that the electrical equipment is not sufficiently compacted and economically improved. It was.

この発明は、上記のような問題点を解消するためになされたもので、電気機器の導体間に挿入される絶縁層又は絶縁バリヤの形状を工夫することにより、耐電圧性能を高めることができる電気機器の絶縁構造及びその絶縁構造を用いたスイッチギヤを得ることを目的とする。   The present invention has been made to solve the above-described problems, and the withstand voltage performance can be improved by devising the shape of an insulating layer or an insulating barrier inserted between conductors of an electric device. It is an object of the present invention to obtain an insulating structure of an electric device and a switchgear using the insulating structure.

この発明に係わる電気機器の絶縁構造は、接地金属ケースに開閉機器及びその主回路導体が収納され、対向する導体間を絶縁する電気機器の絶縁構造において、導体のうち局所的高電界を形成する導体とその対向導体との2導体間の局所的高電界を形成する導体側の近傍に絶縁バリヤが配置され、対向導体に面する側の絶縁バリヤの表面形状が概略平面に形成され、且つ、絶縁バリヤの厚さは、2導体間の最短部に位置する部位から絶縁バリヤの概略平面部と平行方向外側に離れるに従い連続して厚くなるように形成されているものである。 The electrical equipment insulation structure according to the present invention is an electrical equipment insulation structure in which a switchgear and its main circuit conductor are housed in a ground metal case and insulates between opposing conductors, and forms a local high electric field among the conductors. An insulating barrier is disposed in the vicinity of the conductor side forming a local high electric field between the two conductors of the conductor and the opposing conductor, the surface shape of the insulating barrier facing the opposing conductor is formed in a substantially plane, and The thickness of the insulating barrier is formed so as to continuously increase from the portion located at the shortest portion between the two conductors as it moves outward in the direction parallel to the substantially flat portion of the insulating barrier .

また、この発明に係わるスイッチギヤは、接地金属ケースに開閉機器及びその主回路導体等が収納されたスイッチギヤにおいて、開閉機器の電極間、主回路導体の相間、又は主回路導体と接地金属ケース間の対向する導体間で、局所的高電界を形成する導体とその対向導体との2導体間の局所的高電界を形成する導体側の近傍に絶縁バリヤが配置され、対向導体に面する側の絶縁バリヤの表面形状が概略平面に形成され、且つ、絶縁バリヤの厚さは、対向導体との距離が最短部に位置する部位から絶縁バリヤの概略平面部と平行方向外側に離れるに従い連続して厚くなるように形成されているものである。 The switchgear according to the present invention is a switchgear in which a switchgear and its main circuit conductor are housed in a grounded metal case, between the electrodes of the switchgear, between phases of the main circuit conductor, or between the main circuit conductor and the grounded metal case. An insulating barrier is disposed in the vicinity of the conductor side forming the local high electric field between the two conductors of the conductor forming the local high electric field between the conductors facing each other, and the side facing the counter conductor The surface shape of the insulation barrier is formed in a substantially flat surface, and the thickness of the insulation barrier is continuous as the distance from the opposing conductor is away from the portion located in the shortest part to the outside in the direction parallel to the substantially planar portion of the insulation barrier. It is formed to be thick.

この発明の電気機器の絶縁構造によれば、電気機器の内部で対向する導体間において、局所的高電界を形成する導体とその対向導体との2導体間の局所的高電界を形成する導体側の近傍に絶縁バリヤが配置され、対向導体に面する側の絶縁バリヤの表面形状が概略平面に形成され、且つ、絶縁バリヤの厚さは、2導体間の最短部に位置する部位から絶縁バリヤの概略平面部と平行方向外側に離れるに従い連続して厚く形成したので、絶縁バリヤ表面の有効面積が小さくなり、絶縁バリヤ表面の破壊電界値が上昇するため、絶縁耐力を向上させることができる。従って、電気機器の小型化を図ることができる。
更に、この構造を適用したスイッチギヤでは、絶縁バリヤ表面の破壊電界値が上昇し、絶縁バリヤを用いた導体部の絶縁耐力が向上するので、耐電圧性能が向上したスイッチギヤを提供することができる。
According to the insulating structure of the electric device of the present invention, the conductor side that forms a local high electric field between the two conductors, that is, the conductor that forms a local high electric field between the conductors facing each other inside the electric device. near the isolation barrier is disposed of, the surface shape of the side of the isolation barrier facing the opposing conductor is formed in the schematic plan and the thickness of the insulating barrier, the insulating barrier from site located shortest portion between the two conductors Since the thickness increases continuously with increasing distance from the substantially flat portion to the outer side in the parallel direction, the effective area of the insulating barrier surface is reduced and the breakdown electric field value of the insulating barrier surface is increased, so that the dielectric strength can be improved. Accordingly, the electric device can be reduced in size.
Furthermore, in the switchgear to which this structure is applied, the breakdown electric field value on the surface of the insulating barrier is increased, and the dielectric strength of the conductor portion using the insulating barrier is improved, so that it is possible to provide a switchgear with improved withstand voltage performance. it can.

実施の形態1.
以下、この発明の実施の形態1による電気機器の絶縁構造を図に基づいて説明する。先ず、本発明の絶縁構造が用いられる電気機器の例として、電力の送配電および受電設備などに用いられるスイッチギヤを例にあげ、その全体構成から説明する。
Embodiment 1 FIG.
Hereinafter, an insulating structure of an electric device according to Embodiment 1 of the present invention will be described with reference to the drawings. First, as an example of an electrical apparatus in which the insulating structure of the present invention is used, a switchgear used for power transmission / distribution and power receiving equipment will be described as an example, and the overall configuration will be described.

図1は、スイッチギヤの構成例を示す要部の側面断面図である。図に示すように、全体を覆う金属外被1の中に、モジュール化した開閉機器の主回路部を収納するために密閉された接地金属ケース2a〜2cが配置されており、それらの接地金属ケース2a〜2c内は、SF6ガス,ドライエア,窒素ガス又は空気などの絶縁性ガスが充填されて絶縁ガス雰囲気となっている。金属外被1の下段に配置した接地金属ケース2aには、側壁にケーブルヘッド3が取付けられ、内部には真空遮断器4と接地開閉器5が収納されている。その上段に配置した接地金属ケース2bには、接地開閉器部6aと断路器部6bからなる3位置断路器6とそれに繋がる三相の母線7が収納され、また、接地金属ケース2c内にも3相の母線8が収納されている。そして、金属ケース2a,2b間は絶縁スペーサ9によってガス区画されて接続されている。また、前面側には接地金属ケース2a,2b内に収納した開閉機器の操作機構部10a〜10cが配置されている。   FIG. 1 is a side cross-sectional view of a main part showing a configuration example of a switchgear. As shown in the figure, in a metal jacket 1 covering the whole, ground metal cases 2a to 2c hermetically sealed for housing a main circuit portion of a modular switchgear are arranged. The cases 2a to 2c are filled with an insulating gas such as SF6 gas, dry air, nitrogen gas or air to form an insulating gas atmosphere. A cable head 3 is attached to a side wall of a ground metal case 2a disposed in the lower stage of the metal jacket 1, and a vacuum circuit breaker 4 and a ground switch 5 are housed inside. The ground metal case 2b arranged on the upper stage houses a three-position disconnector 6 comprising a ground switch part 6a and a disconnector part 6b and a three-phase bus 7 connected thereto, and also in the ground metal case 2c. A three-phase bus 8 is housed. The metal cases 2a and 2b are connected by being partitioned by an insulating spacer 9. In addition, on the front side, operating mechanism portions 10a to 10c of opening / closing devices housed in the ground metal cases 2a and 2b are arranged.

なお、上記では主回路機器が絶縁性ガス雰囲気中に収納されている密閉型のスイッチギヤを示したが、主回路部を大気中に配置した気中スイッチギヤでも良く、また、主回路機器の構成は図1に限定するものではない。   In the above, the sealed switchgear in which the main circuit device is housed in an insulating gas atmosphere is shown. However, an air switchgear in which the main circuit unit is disposed in the atmosphere may be used. The configuration is not limited to FIG.

この発明の電気機器の絶縁構造が、上記のようなスイッチギヤに適用される場合、対象となるのは、三相の主回路導体間(相間)、又は、主回路導体と接地金属ケース間(対地間)、あるいは、接地開閉器等の開閉機器の接点間(極間)の部分であり、それらの具体的な構造については後述する。   When the insulation structure of the electrical equipment of the present invention is applied to the switchgear as described above, the target is between the three-phase main circuit conductors (between phases) or between the main circuit conductors and the ground metal case ( (Between ground) or between contacts (between poles) of a switching device such as a grounding switch, the specific structure of which will be described later.

図2は実施の形態1における電気機器の絶縁構造を示す図であり、例えば、電気機器の主回路導体と接地金属ケースのように、高圧導体と、これに対向する接地導体とをモデル化したもので、その間の絶縁構造を示す部分断面図である。棒状をした導体11は、先端部11aが半球状に形成されており、この先端部11a側が対向導体である接地導体12と対向している。従って、電気的にはこの導体先端部に局所的高電界が形成されるので、この部分を覆うように、絶縁層13が設けられている。そして、接地導体12に面する絶縁層13の対向面13aの表面形状は、概略平面となるように形成されている。図中の点線は等電位面の断面を示すものである。   FIG. 2 is a diagram showing the insulation structure of the electric device according to the first embodiment. For example, a high-voltage conductor and a grounding conductor facing the high-voltage conductor are modeled like a main circuit conductor and a ground metal case of the electric device. FIG. 2 is a partial cross-sectional view showing an insulating structure therebetween. The rod-shaped conductor 11 has a tip portion 11a formed in a hemispherical shape, and the tip portion 11a side faces the ground conductor 12 which is a counter conductor. Therefore, since a local high electric field is electrically formed at the tip of this conductor, the insulating layer 13 is provided so as to cover this portion. And the surface shape of the opposing surface 13a of the insulating layer 13 which faces the grounding conductor 12 is formed so that it may become a substantially plane. The dotted line in the figure shows a cross section of the equipotential surface.

上記のような絶縁構造の作用を説明する前に、高圧導体に被覆された絶縁層が絶縁破壊に至るメカニズムについて説明する。
高圧導体に絶縁層が被覆されている場合、絶縁層表面の最大電界発生部の電界がある値に達すると、その表面からストリーマと呼ばれる先行放電が発生し、絶縁層のない高圧導体露出部に向かって進展を始める。その露出部までストリーマが伸びると、ストリーマは非常に細い導電路であるため、見かけ上、絶縁物表面の最大電界発生部に先端を持つ非常に細い高圧導体が現れたことになる。この結果、絶縁物表面の最大電界発生部で非常に強い電界が形成され、この電界によりガス空間部分を進展する放電が始まる。ガス空間部分の放電が完成すると、ギャップ全体が短絡された状態になる。このようなメカニズムで高圧導体に絶縁層が被覆されているギャップの絶縁破壊は生じる。
Before explaining the operation of the insulating structure as described above, the mechanism by which the insulating layer covered with the high-voltage conductor leads to dielectric breakdown will be described.
When the high-voltage conductor is covered with an insulating layer, when the electric field of the maximum electric field generating portion on the surface of the insulating layer reaches a certain value, a preceding discharge called streamer occurs from the surface, and the high-voltage conductor exposed portion without the insulating layer is exposed. Start to make progress. When the streamer extends to the exposed portion, the streamer is a very thin conductive path, so that it appears that a very thin high-voltage conductor having a tip at the maximum electric field generating portion on the surface of the insulator appears. As a result, a very strong electric field is formed at the maximum electric field generating portion on the surface of the insulator, and discharge that propagates through the gas space is started by this electric field. When the discharge of the gas space portion is completed, the entire gap is short-circuited. With this mechanism, dielectric breakdown occurs in the gap in which the high-voltage conductor is covered with the insulating layer.

したがって、これらのギャップでの絶縁破壊防止には、その端緒となるストリーマの発生を防止することが重要になる。このためには、(1)絶縁物表面の最大電界の低減、(2)絶縁物表面で高電界が形成されている部分の表面積の縮小、が効果的であることがわかった。(1)はストリーマ発生に必要な電界を発生させないという対策である。(2)は、ストリーマ発生に必要な絶縁物表面の最大電界が、絶縁物表面の面積に依存するという、いわゆる面積効果に関係している。これは、例えば最大電界の値を100%とした場合に90%以上の電界が発生している面積(90%有効面積、以下、有効面積S90と略す)と絶縁層表面における破壊電界値の関係として具体的に表すことができる。ストリーマ発生に必要な電界は有効面積S90が小さいほど高く、逆に有効面積S90が大きいと徐々に低下する(最終的には飽和してある電界に収束する)。
なお、以下の説明で、有効面積を一般的に述べるときは、単に有効面積と表記する。
Therefore, in order to prevent dielectric breakdown in these gaps, it is important to prevent the generation of streamers as the beginning. For this purpose, it has been found that (1) reduction of the maximum electric field on the surface of the insulator and (2) reduction of the surface area of the portion where the high electric field is formed on the surface of the insulator are effective. (1) is a measure for preventing the generation of an electric field necessary for streamer generation. (2) relates to a so-called area effect in which the maximum electric field on the insulator surface necessary for streamer generation depends on the area of the insulator surface. For example, when the maximum electric field value is 100%, the relationship between the area where an electric field of 90% or more is generated (90% effective area, hereinafter abbreviated as effective area S90) and the breakdown electric field value on the surface of the insulating layer. Can be specifically expressed as: The electric field necessary for streamer generation is higher as the effective area S90 is smaller. Conversely, when the effective area S90 is larger, the electric field gradually decreases (finally converges to a saturated electric field).
In the following description, when an effective area is generally described, it is simply expressed as an effective area.

図3は、乾燥空気中での上記の有効面積S90と、絶縁層表面が絶縁破壊に至る破壊電界値の関係を示す図であり、実験により求めたものである。図において、高圧導体と接地導体間にある電圧を印加したとき、絶縁層表面に現れる最大電界値とその有効面積S90をこのグラフ上にプロットし、それがグラフの実線より上側にプロットされる場合は絶縁破壊が発生し、下側にプロットされる場合は絶縁が維持される。図中に白丸と黒丸で示したように、最大電界値が小さくても有効面積が大きくて実線より上にある場合は絶縁破壊が発生するが、最大電界値が大きくても有効面積が小さくて実線より下となる場合は絶縁破壊には至らない。すなわち、有効面積S90が小さくなるほど破壊電界値が上昇し、絶縁破壊が起りにくいことがわかる。従って、絶縁性能を向上させるには、有効面積が小さくなるような絶縁構造にすることが非常に有効である。   FIG. 3 is a diagram showing the relationship between the above-described effective area S90 in dry air and the breakdown electric field value at which the insulating layer surface causes dielectric breakdown, and is obtained by experiments. In the figure, when a voltage between a high-voltage conductor and a ground conductor is applied, the maximum electric field value appearing on the surface of the insulating layer and its effective area S90 are plotted on this graph and plotted above the solid line of the graph. Insulation breakdown occurs and insulation is maintained when plotted below. As indicated by the white and black circles in the figure, even if the maximum electric field value is small, the effective area is large and above the solid line, dielectric breakdown occurs, but the effective area is small even if the maximum electric field value is large. If it falls below the solid line, dielectric breakdown does not occur. That is, it can be seen that the breakdown electric field value increases as the effective area S90 decreases, and dielectric breakdown is less likely to occur. Therefore, in order to improve the insulation performance, it is very effective to use an insulation structure that reduces the effective area.

次に、図2に示す絶縁構造の作用について説明する。
図中に破線で示した等電位面のように、図のような形状の導体では、導体の中心軸の先端部の絶縁層表面が最大電界部となる。上述の有効面積S90は、その点を中心に円形状に存在する。
絶縁層の外形形状を、例えば従来技術で説明した特許文献1の図11(a)ような、等電位線に沿う形状とした場合と、本実施の形態のように、絶縁層の対向面側の表面形状を略平面とした場合とを比較すると、本実施の形態では、図2のように、表面部では等電位の部分が少なくなり、有効面積は小さくなっている。
Next, the operation of the insulating structure shown in FIG. 2 will be described.
As in the equipotential surface indicated by a broken line in the figure, in the conductor having the shape as shown in the figure, the surface of the insulating layer at the tip of the central axis of the conductor is the maximum electric field part. The effective area S90 described above exists in a circular shape centering on the point.
The outer shape of the insulating layer is, for example, a shape along the equipotential line as shown in FIG. 11A of Patent Document 1 described in the related art, and the opposite surface side of the insulating layer as in this embodiment. Compared with the case where the surface shape is substantially flat, in the present embodiment, as shown in FIG. 2, the equipotential portion is reduced and the effective area is reduced in the surface portion.

絶縁層の被覆形状を、導体表面にほぼ同じ厚さに形成したものと図2のような形状のものとで電解解析を行い、有効面積特性を比較した実験結果からも、図2のような形状の方が耐電圧性能の向上に効果があることを検証した。
図4は、従来のような等電位線に沿う形状の絶縁構造と、この発明の絶縁構造の形状とで有効面積特性を比較した図である。有効面積S90に対する絶縁物表面電界(相対値)の関係を表している。図の曲線が示すように、本発明の構造の方がより低い位置にあり、このことはより高い電圧印加に対しても絶縁を維持できるように改善されたことを示している。
From the experimental results of comparing the effective area characteristics by conducting an electrolytic analysis of the insulation layer covering shape formed on the conductor surface with approximately the same thickness and the shape as shown in FIG. It was verified that the shape is more effective in improving the withstand voltage performance.
FIG. 4 is a diagram comparing the effective area characteristics between the conventional insulating structure along the equipotential line and the shape of the insulating structure of the present invention. The relationship of the insulator surface electric field (relative value) with respect to the effective area S90 is represented. As the curve in the figure shows, the structure of the present invention is in a lower position, which indicates that it has been improved to maintain insulation for higher voltage applications.

なお、図2では高圧導体と接地導体が対向する場合について説明したが、例えば、開閉器の接点間のように同一形状の導体が対向する場合の絶縁構造においても同様の効果が確認できた。   In addition, although FIG. 2 demonstrated the case where a high voltage | pressure conductor and a ground conductor oppose, the same effect was confirmed also in the insulation structure in case the same-shaped conductors oppose, for example between the contacts of a switch.

次に、上記の絶縁構造を具体的に製品に適用した例について説明する。
図5は先に説明した図1のスイッチギヤの中に一点鎖線で示したV部の部分断面図であり、接地開閉器5の局所的高電界となる電極部分である。高圧側の電極14は、先端部に所定の曲率を有する棒状導体の中心に貫通孔が設けられ、その内周面に通電接触子15が設けられている。対向する低圧側(接地側)の電極16もほぼ同形状で、中心の貫通孔には、可動棒電極17が軸方向に往復動できるようになっている。そして、両電極14,16の対向部の表面部にはそれぞれ絶縁層18,19が被覆されており、対向電極に面する側の絶縁層18,19の表面形状は略平面に形成されている。
なお、接地側の電極16にも絶縁層19が設けられているのは、電極16にも高電圧が印加され局所的高電界となる場合があるからである。
Next, an example in which the above insulating structure is applied to a product will be described.
FIG. 5 is a partial cross-sectional view of a V portion indicated by a one-dot chain line in the switch gear of FIG. 1 described above, and is an electrode portion of the ground switch 5 that is a local high electric field. The electrode 14 on the high voltage side is provided with a through hole at the center of a rod-shaped conductor having a predetermined curvature at the tip, and an energizing contact 15 is provided on the inner peripheral surface thereof. The opposing low voltage side (grounding side) electrode 16 has substantially the same shape, and the movable rod electrode 17 can reciprocate in the axial direction through the central through hole. The surface portions of the opposing portions of the electrodes 14 and 16 are respectively covered with insulating layers 18 and 19, and the surface shapes of the insulating layers 18 and 19 on the side facing the counter electrodes are formed to be substantially flat. .
The ground layer electrode 16 is also provided with the insulating layer 19 because a high voltage may be applied to the electrode 16 to generate a local high electric field.

この電極の絶縁構造の作用について説明する。等電位面は図中に点線で示すようになり、このような電極と絶縁層の形状の組み合わせの場合、最大電界が発生するのは絶縁層18表面の対向面の外周端近傍となり、有効面積S90は図中に太線で示した部分となる。比較のために、同様の電極14,16に先行文献1に記載されている形状と類似の絶縁層20,21を被覆した絶縁構造を参考例として図6に示す。図6の場合は、絶縁層20,21の表面に等電位面が沿うような絶縁形状であるが、実験検証した結果では、有効面積S90の領域は図中に太線で示したようになり、図5に比べて広くなっているのを確認した。
すなわち、本実施の形態のように、絶縁層18,19の対向電極に面する側の表面形状を概略平面にすれば、有効面積S90は従来のような形状の絶縁層に比べて小さくなり、その分、破壊電界値が上昇することになる。
The operation of this electrode insulation structure will be described. The equipotential surface is indicated by a dotted line in the figure, and in the case of such a combination of the electrode and the shape of the insulating layer, the maximum electric field is generated in the vicinity of the outer peripheral edge of the facing surface of the insulating layer 18 and the effective area. S90 is a portion indicated by a thick line in the drawing. For comparison, an insulating structure in which similar electrodes 14 and 16 are covered with insulating layers 20 and 21 similar to the shape described in Prior Art Document 1 is shown in FIG. 6 as a reference example. In the case of FIG. 6, the insulating shape is such that the equipotential surface is along the surfaces of the insulating layers 20, 21, but as a result of experimental verification, the region of the effective area S90 is as shown by a bold line in the figure, It was confirmed that it was wider than in FIG.
That is, as in the present embodiment, if the surface shape of the insulating layers 18 and 19 facing the counter electrode is made to be a substantially flat surface, the effective area S90 becomes smaller than that of a conventional insulating layer, The breakdown electric field value increases accordingly.

なお、図5は往復動形の接地開閉器5の電極部分として説明したが、スイッチギヤの中では断路器や3位置断路器等の電極も類似の形状であり、同様に適用できる。また、相間や対地間の絶縁構造にも適用できる。   In addition, although FIG. 5 demonstrated as an electrode part of the reciprocating type earthing switch 5, electrodes, such as a disconnecting switch and a 3 position disconnecting switch, are the same shape in a switchgear, and can be applied similarly. Moreover, it is applicable also to the insulation structure between phases or between ground.

以上のように、本実施の形態の発明によれば、接地金属ケースに開閉機器及びその主回路導体が収納され、対向する導体間を絶縁する電気機器の絶縁構造において、局所的高電界を形成する導体の表面に絶縁層を設け、対向導体に面する側の絶縁層の表面形状を概略平面に形成し、且つ、絶縁層の厚さを、対向導体との距離が最短部に位置する部位から離れるに従い厚くなるように形成したので、絶縁層表面の有効面積S90が小さくなり、従って、絶縁層表面の破壊電界値が上昇するため、電気機器の絶縁耐力を向上させることができる。従って、電気機器の小型化を図ることができる。 As described above, according to the embodiment of the present invention, the switching device and its main circuit conductor are housed in the ground metal case, and a local high electric field is formed in the insulating structure of the electrical device that insulates between the opposing conductors. An insulating layer is provided on the surface of the conductor to be formed, the surface shape of the insulating layer on the side facing the opposing conductor is formed in a substantially flat surface , and the thickness of the insulating layer is located at the shortest distance from the opposing conductor Since it is formed so as to become thicker as it is farther from , the effective area S90 on the surface of the insulating layer is reduced, and accordingly, the breakdown electric field value on the surface of the insulating layer is increased, so that the dielectric strength of the electric device can be improved. Accordingly, the electric device can be reduced in size.

また、スイッチギヤを構成する開閉機器の電極間、主回路導体の相間、又は主回路導体と接地金属ケース間の、対向する導体間で、局所的高電界となる導体の表面に絶縁層を形成し、対向導体に面する側の絶縁層の表面形状を概略平面に形成し、且つ、絶縁層の厚さを、対向導体との距離が最短部に位置する部位から離れるに従い厚くなるように形成したので、絶縁層表面の有効面積S90が小さくなり、絶縁層表面の破壊電界値が上昇するため、絶縁耐力を向上させることができ、従って、絶縁性能の優れたスイッチギヤを提供できる。 In addition, an insulating layer is formed on the surface of the conductor that creates a local high electric field between the electrodes of the switchgear constituting the switchgear, between the phases of the main circuit conductor, or between the opposing conductors between the main circuit conductor and the ground metal case. The surface shape of the insulating layer facing the opposing conductor is formed in a substantially flat surface , and the thickness of the insulating layer is formed so that the distance from the opposing conductor increases away from the portion located at the shortest part. since the, smaller effective area S90 of the insulating layer surface, since the breakdown electric field value of the insulating layer surface is increased, it is possible to improve the dielectric strength, thus providing an excellent switchgear insulation performance.

実施の形態2.
図7は実施の形態2による電気機器の絶縁構造を示す部分断面図であり、例えば、電気機器の主回路導体と接地金属ケースのように、高圧導体と、これに対向する接地導体とをモデル化したもので、その間の絶縁構造を示す部分断面図である。実施の形態1との相違点は導体に絶縁層を被覆したのではなく、導体から隙間を空けて絶縁バリヤを設けた点である。
Embodiment 2. FIG.
FIG. 7 is a partial cross-sectional view showing an insulating structure of an electric device according to the second embodiment. For example, a high-voltage conductor and a grounding conductor facing the high-voltage conductor are modeled like a main circuit conductor and a grounding metal case of the electric device. FIG. 3 is a partial cross-sectional view showing an insulating structure therebetween. The difference from the first embodiment is that the conductor is not covered with an insulating layer, but an insulating barrier is provided with a gap from the conductor.

図のように、先端部を半球状に形成した棒状の導体22に接地導体23が対向して配置されており、導体22の先端部22aが局所的高電界を形成する部分となっている。そこで、導体22とその対向導体である接地導体23間で、導体22に近い側に絶縁バリヤ24を設けたものである。そして、絶縁バリヤ24の厚さは、導体22と接地導体23の2導体間の最短部に位置する部位から離れるに従い厚くなるように形成されている。すなわち、導体中心軸上に位置する絶縁バリヤ24の部位を最も薄くし、中心軸から遠ざかるほど厚さを厚くしている。更に、対向導体である接地導体23側に面する絶縁バリヤ24の表面を概略平面に形成している。   As shown in the figure, a ground conductor 23 is arranged opposite to a rod-shaped conductor 22 having a hemispherical tip, and the tip 22a of the conductor 22 is a portion that forms a local high electric field. Therefore, an insulating barrier 24 is provided on the side close to the conductor 22 between the conductor 22 and the ground conductor 23 which is the opposite conductor. The thickness of the insulating barrier 24 is formed so as to increase as the distance from the portion located at the shortest portion between the two conductors of the conductor 22 and the ground conductor 23 increases. That is, the portion of the insulation barrier 24 located on the conductor central axis is made the thinnest, and the thickness is increased as the distance from the central axis is increased. Furthermore, the surface of the insulating barrier 24 facing the ground conductor 23 side which is the opposing conductor is formed in a substantially flat surface.

上記のような、高圧導体と低圧導体の間に絶縁バリヤが挿入され、その絶縁バリヤが高圧導体表面を覆うように配置されている場合の、絶縁破壊に至る過程について説明する。絶縁バリヤを挿入したギャップ間での全路破壊の端緒として、まず高圧導体表面の高電界部で部分放電が始まる。この部分放電で発生した高圧導体と同極性の空間電荷は絶縁バリヤと高圧導体との隙間に広がり、この結果、高圧導体が見かけ上大きくなって絶縁バリヤ内面に接触している状況とほとんど同じになる。こうなるとその後の全路破壊過程は、実施の形態1の絶縁層の場合と同様の挙動となる。従って、実施の形態1で説明したように、絶縁性能を向上させるには、有効面積が小さくなるような絶縁構造にすることが好ましい。   A process leading to dielectric breakdown in the case where an insulation barrier is inserted between the high-voltage conductor and the low-voltage conductor as described above and the insulation barrier is disposed so as to cover the surface of the high-voltage conductor will be described. First of all, partial discharge starts at a high electric field portion on the surface of the high-voltage conductor as the beginning of all-path breakdown between the gaps into which the insulation barrier is inserted. The space charge of the same polarity as the high-voltage conductor generated by this partial discharge spreads in the gap between the insulation barrier and the high-voltage conductor, and as a result, the high-voltage conductor appears to be large and is almost in contact with the inner surface of the insulation barrier. Become. In this case, the subsequent all-path destruction process behaves in the same manner as in the case of the insulating layer of the first embodiment. Therefore, as described in the first embodiment, in order to improve the insulation performance, it is preferable to use an insulation structure with a small effective area.

図7において、等電位面は図中に点線で示したようになる。図のように、接地導体23と対向する側の絶縁バリヤ24の外側角部が最大電界の発生する部位となるが、太線で示す部分は、その周囲において最大電界の90%以上の電界が発生する面積、すなわち有効面積S90の領域である。これを、従来技術の特許文献2で説明した図11(b)と類似形状の絶縁バリヤ構造(従来構造と略す)と比較すると、従来構造では、絶縁バリヤの外側先端部のかなり広い領域が有効面積S90となるが、それに比較すると図7の有効面積S90は小さくなっていることを検証した。
なお、最大電界が発生する部位は、図のように必ず外側角部に発生するとは限らず、導体22先端の形状や絶縁バリヤ24の大きさ、又は、近傍に存在する導体等によって、発生部は変る。
In FIG. 7, the equipotential surface is as indicated by a dotted line in the figure. As shown in the figure, the outer corner portion of the insulating barrier 24 on the side facing the ground conductor 23 is a portion where the maximum electric field is generated, but the portion indicated by the bold line generates an electric field of 90% or more of the maximum electric field around it. This is a region having an effective area S90. Compared with the insulating barrier structure having a similar shape to that of FIG. 11B described in Patent Document 2 of the prior art (abbreviated as the conventional structure), in the conventional structure, a considerably wide area of the outer tip of the insulating barrier is effective. Although the area is S90, it was verified that the effective area S90 in FIG. 7 is smaller than that.
It should be noted that the portion where the maximum electric field is generated does not necessarily occur at the outer corner as shown in the figure, but depends on the shape of the tip of the conductor 22, the size of the insulating barrier 24, or a conductor existing nearby. Will change.

上記までの説明では、絶縁バリヤ24の接地導体23に対向する面は平面としたが、対向面は必ずしも平面でなくても良い。中心部より周辺部を厚く形成するだけでも効果があることを確認した。
但し、通常は、導体22の先端部の形状は、ある曲率を持って丸め処理をされているので、絶縁バリヤ24を周辺部ほど厚くし、かつ、対向面を平面にすることは、空間スペースを有効利用することになり、絶縁バリヤと接地導体との距離を大きく取ることが可能となる利点がある。
In the above description, the surface of the insulating barrier 24 that faces the ground conductor 23 is a flat surface, but the facing surface is not necessarily a flat surface. It was confirmed that even if the peripheral part was formed thicker than the central part, there was an effect.
However, since the shape of the tip end portion of the conductor 22 is usually rounded with a certain curvature, it is necessary to make the insulating barrier 24 thicker at the periphery and to make the opposing surface flat. As a result, the distance between the insulation barrier and the ground conductor can be increased.

次に、上記の絶縁構造を具体的製品に適用した場合について説明する。
図8は、実施の形態1で説明した図1のスイッチギヤの中に一点鎖線示したV部の部分断面図であり、接地開閉器5の局所的高電界となる電極部分である。高圧側の電極25は、先端部に所定の曲率を有する棒状導体の中心に貫通孔が設けられ、内周面には通電接触子(図示せず)が設けられている。対向する低圧側(接地側)の電極26もほぼ同形状で、中心の貫通孔には可動棒電極(図示せず)が軸方向に往復動できるようになっている。そして、両電極25,26の対向部側で両電極25,26の近傍に、それぞれ絶縁バリヤ27,28が設けられ、絶縁バリヤ27,28の厚さは、両電極25,26の最短部に位置する部分よりもその周辺の方が厚くなるように形成されている。また、各絶縁バリヤ27,28の対向電極に面する側は、表面が概略平面となるように形成されている。
Next, a case where the above insulating structure is applied to a specific product will be described.
FIG. 8 is a partial cross-sectional view of a V portion indicated by a one-dot chain line in the switch gear of FIG. 1 described in the first embodiment, and is an electrode portion of the ground switch 5 serving as a local high electric field. The high voltage side electrode 25 is provided with a through hole at the center of a rod-shaped conductor having a predetermined curvature at the tip, and an energizing contact (not shown) on the inner peripheral surface. The opposing low voltage side (grounding side) electrode 26 has substantially the same shape, and a movable rod electrode (not shown) can reciprocate in the axial direction in the central through hole. Insulation barriers 27 and 28 are provided in the vicinity of the electrodes 25 and 26 on the opposite side of the electrodes 25 and 26, respectively, and the thickness of the insulation barriers 27 and 28 is set to the shortest part of the electrodes 25 and 26. The periphery is thicker than the position. Moreover, the side facing each counter electrode of each insulation barrier 27 and 28 is formed so that the surface may become a substantially plane.

このスイッチギヤの絶縁構造の作用について説明する。図中に等電位面で示すように、最大電界が発生するのは絶縁バリヤ27,28の対向面の外周端近傍となり、有効面積S90は図中に太線で示した部分となる。この有効面積S90の領域は、例えば、従来構造に類似の絶縁構造と比較すると、面積が小さくなることを実験により検証した。   The operation of the insulating structure of the switchgear will be described. As shown by the equipotential surface in the figure, the maximum electric field is generated in the vicinity of the outer peripheral edge of the opposing surface of the insulating barriers 27 and 28, and the effective area S90 is the part indicated by the thick line in the figure. It has been experimentally verified that the area of the effective area S90 has a smaller area than, for example, an insulating structure similar to the conventional structure.

次に、別の適用例を説明する。図9はスイッチギヤの別の部位に適用した例であり、図1の矢印IX−IXから見た図である。すなわち、往復動型の3位置断路器6の接地開閉器部6aの電極部の断面図であり、3相のうちのA相,B相の2相分を示している。この絶縁バリヤ29a,29bは、コの字状の断面を有して電極部30a,30bの周囲を囲むように配置されており、各電極部の相間及び電極部と接地金属ケース2b間を絶縁するものである。絶縁バリヤ29a,29bの厚さは、電極部30a,30bの相間、及び電極30aと接地金属ケース2b間の最短部に位置する部位が最も薄く、そこから離れるに従い厚くなるように形成している。更に、対向導体側に面する絶縁バリヤ表面を概略平面に形成している。つまり、A相の絶縁バリヤ29aであればB相に対向する側の面と接地金属ケース2bに対向する面である。   Next, another application example will be described. FIG. 9 is an example applied to another part of the switchgear and is a view seen from arrows IX-IX in FIG. That is, it is sectional drawing of the electrode part of the earthing switch part 6a of the reciprocating type 3 position disconnector 6, and shows two phases of A phase and B phase among three phases. The insulating barriers 29a and 29b have a U-shaped cross section and are disposed so as to surround the periphery of the electrode portions 30a and 30b, and insulate the phases of the electrode portions and the electrode portion and the ground metal case 2b. To do. The insulating barriers 29a and 29b are formed such that the portions located between the phases of the electrode portions 30a and 30b and the shortest portion between the electrode 30a and the ground metal case 2b are the thinnest and become thicker as they are separated from each other. . Furthermore, the insulating barrier surface facing the opposing conductor is formed in a substantially flat surface. That is, in the case of the A-phase insulation barrier 29a, the surface facing the B phase and the surface facing the ground metal case 2b.

このような絶縁バリヤとすれば、上記図7又は図8の場合と同様に、有効面積S90の領域を小さくすることができ、絶縁耐力を向上させることができる。   With such an insulating barrier, the area of the effective area S90 can be reduced and the dielectric strength can be improved, as in the case of FIG. 7 or FIG.

対向導体側に面す絶縁バリヤの表面は必ずしも平面でなくても良い。図10は図9と同部位に設けた絶縁バリヤの別の例を示す図である。図の絶縁バリヤ31a,31bように、対向する2導体間の最短部に位置する部分よりもその周辺の方が厚くなるように形成していれば、有効面積の領域を狭くする効果は期待できる。   The surface of the insulating barrier facing the opposing conductor does not necessarily have to be a flat surface. FIG. 10 is a view showing another example of the insulation barrier provided in the same portion as FIG. As shown in the insulating barriers 31a and 31b in the figure, the effect of narrowing the area of the effective area can be expected if the periphery is thicker than the portion located at the shortest portion between the two opposing conductors. .

なお、上記の絶縁構造は、図1のV部やIXの限定するものではなく、他の部分の断路器,接地開閉器,又は3位置断路器等にも同様に適用できる。   The insulating structure described above is not limited to V part or IX in FIG. 1, but can be similarly applied to other parts of disconnector, grounding switch, or three-position disconnector.

以上のように、本実施の形態の発明によれば、接地金属ケースに開閉機器及びその主回路導体が収納された電気機器の、対向する導体間を絶縁する絶縁構造において、導体のうち局所的高電界を形成する導体とその対向導体との2導体間の局所的高電界を形成する導体側の近傍に絶縁バリヤを配置し、対向導体に面する側の絶縁バリヤの表面形状を概略平面に形成し、且つ、絶縁バリヤの厚さを、2導体間の最短部に位置する部位から離れるに従い厚くなるように形成したので、絶縁バリヤ表面の有効面積S90が小さくなり、絶縁バリヤ表面の破壊電界値が上昇するため、絶縁耐力を向上させることができる。従って、電気機器の小型化を図ることができる As described above, according to the embodiment of the present invention, in the insulating structure that insulates between the opposing conductors of the electrical device in which the switchgear and its main circuit conductor are housed in the ground metal case, the conductor is locally localized. An insulating barrier is disposed in the vicinity of the conductor side that forms a local high electric field between the two conductors of the conductor that forms a high electric field and the opposing conductor, and the surface shape of the insulating barrier on the side facing the opposing conductor is made substantially planar. Since the insulating barrier is formed so that the thickness of the insulating barrier increases as the distance from the portion located at the shortest portion between the two conductors increases, the effective area S90 of the insulating barrier surface decreases, and the breakdown electric field of the insulating barrier surface Since the value increases, the dielectric strength can be improved. Accordingly, the electric device can be reduced in size .

また、スイッチギヤを構成する開閉機器の電極間、主回路導体の相間、又は主回路導体と接地金属ケース間の対向する導体間で、局所的高電界となる導体とその対向導体との2導体間の局所的高電界を形成する導体側の近傍に絶縁バリヤを配置し、対向導体に面する側の絶縁バリヤの表面形状を概略平面に形成し、且つ、絶縁バリヤの厚さを、2導体間の最短部に位置する部位から離れるに従い厚くなるように形成したので、絶縁バリヤ表面の有効面積S90が小さくなり、従って、絶縁バリヤ表面の破壊電界値が上昇するため、電極部の相間、又は電極部と接地金属ケース間の絶縁耐力を向上させることができ、耐電圧性能が向上したスイッチギヤを提供することができる In addition, two conductors, ie, a conductor having a local high electric field between the electrodes of the switchgear constituting the switchgear, between the phases of the main circuit conductor, or between the opposing conductors between the main circuit conductor and the ground metal case, and the opposing conductor An insulating barrier is disposed in the vicinity of the conductor side that forms a local high electric field between them, the surface shape of the insulating barrier facing the opposing conductor is formed in a substantially flat surface, and the thickness of the insulating barrier is set to two conductors The effective area S90 of the insulating barrier surface is reduced and the breakdown electric field value of the insulating barrier surface is increased, so that the effective area S90 of the insulating barrier surface is increased. It is possible to improve the dielectric strength between the electrode portion and the ground metal case, and to provide a switchgear with improved withstand voltage performance .

この発明の実施の形態1による電気機器の絶縁構造を適用するスイッチギヤの構成図である。It is a block diagram of the switchgear which applies the insulation structure of the electric equipment by Embodiment 1 of this invention. この発明の実施の形態1による電気機器の絶縁構造を示す断面図である。It is sectional drawing which shows the insulation structure of the electric equipment by Embodiment 1 of this invention. 絶縁表面における破壊電界と有効面積の関係を表す図である。It is a figure showing the relationship between the breakdown electric field in an insulating surface, and an effective area. この発明の絶縁構造と従来構造との有効面積特性を比較した図である。It is the figure which compared the effective area characteristic of the insulation structure of this invention, and the conventional structure. この発明の実施の形態1によるスイッチギヤの接地開閉器の電極部を示す部分断面図である。It is a fragmentary sectional view which shows the electrode part of the earthing switch of the switchgear by Embodiment 1 of this invention. 図5との比較のための参考例を示す図である。It is a figure which shows the reference example for a comparison with FIG. この発明の実施の形態2による電気機器の絶縁構造を示す断面図である。It is sectional drawing which shows the insulation structure of the electric equipment by Embodiment 2 of this invention. この発明の実施の形態2によるスイッチギヤの接地開閉器の電極部を示す部分断面図である。It is a fragmentary sectional view which shows the electrode part of the earthing switch of the switchgear by Embodiment 2 of this invention. この発明の実施の形態2によるスイッチギヤの接地開閉器部の絶縁バリヤを示す部分断面図である。It is a fragmentary sectional view which shows the insulation barrier of the earthing switch part of the switchgear by Embodiment 2 of this invention. この発明の実施の形態2によるスイッチギヤの絶縁バリヤの他の例を示す部分断面図である。It is a fragmentary sectional view which shows the other example of the insulation barrier of the switchgear by Embodiment 2 of this invention. 従来の電気機器の絶縁構造を示す電極部の部分断面図である。It is a fragmentary sectional view of the electrode part which shows the insulation structure of the conventional electric equipment.

符号の説明Explanation of symbols

1 金属外被 2a〜2c 接地金属ケース
3 ケーブルヘッド 4 真空遮断器
5 接地開閉器 6 3位置断路器
6a 接地開閉器部 6b 断路器部
7,8 母線 9 絶縁スペーサ
10a〜10c 操作機構部 11,22 導体
11a,22a 先端部 12,23 接地導体
13 絶縁層 13a 対向面
14,16,25,26 電極 15 通電接触子
17 可動棒電極 18,19,20,21 絶縁層
24、27,28,29a,29b,31a,31b 絶縁バリヤ
30a,30b 電極部。
DESCRIPTION OF SYMBOLS 1 Metal sheath 2a-2c Ground metal case 3 Cable head 4 Vacuum circuit breaker 5 Ground switch 6 Three position disconnector 6a Ground switch part 6b Disconnector part 7, 8 Bus 9 Insulating spacer 10a-10c Operation mechanism part 11, 22 Conductor 11a, 22a Tip portion 12, 23 Ground conductor 13 Insulating layer 13a Opposing surface 14, 16, 25, 26 Electrode 15 Current contact 17 Movable rod electrode 18, 19, 20, 21 Insulating layer 24, 27, 28, 29a , 29b, 31a, 31b Insulation barrier 30a, 30b Electrode portion.

Claims (2)

接地金属ケースに開閉機器及びその主回路導体が収納され、対向する導体間を絶縁する電気機器の絶縁構造において、
上記導体のうち局所的高電界を形成する導体とその対向導体との2導体間の上記局所的高電界を形成する導体側の近傍に絶縁バリヤが配置され、上記対向導体に面する側の上記絶縁バリヤの表面形状が概略平面に形成され、且つ、上記絶縁バリヤの厚さは、上記2導体間の最短部に位置する部位から、上記絶縁バリヤの概略平面部と平行方向外側に離れるに従い連続して厚くなるように形成されていることを特徴とする電気機器の絶縁構造。
In the insulation structure of electrical equipment in which the switchgear and its main circuit conductor are housed in a grounded metal case and insulate between opposing conductors,
An insulating barrier is disposed in the vicinity of the conductor forming the local high electric field between the two conductors of the conductor that forms a local high electric field and the opposing conductor, and the conductor facing the opposing conductor The surface shape of the insulating barrier is formed in a substantially flat surface, and the thickness of the insulating barrier is continuous from the portion located at the shortest portion between the two conductors as it moves outward in the direction parallel to the substantially flat portion of the insulating barrier. insulation structure of an electric device, characterized in that it is formed to be thicker and.
接地金属ケースに開閉機器及びその主回路導体が収納されたスイッチギヤにおいて、
上記開閉機器の電極間、上記主回路導体の相間、又は上記主回路導体と上記接地金属ケース間の対向する導体間で、局所的高電界を形成する導体とその対向導体との2導体間の上記局所的高電界を形成する導体側の近傍に絶縁バリヤが配置され、上記対向導体に面する側の上記絶縁バリヤの表面形状が概略平面に形成され、且つ、上記絶縁バリヤの厚さは、上記2導体間の最短部に位置する部位から、上記絶縁バリヤの概略平面部と平行方向外側に離れるに従い連続して厚くなるように形成されていることを特徴とするスイッチギヤ。
In the switchgear in which the switchgear and its main circuit conductor are housed in a grounded metal case,
Between the electrodes of the switchgear, between the phases of the main circuit conductor, or between the opposing conductors between the main circuit conductor and the ground metal case, between the two conductors of the conductor and the opposing conductor that form a local high electric field An insulating barrier is disposed in the vicinity of the conductor side forming the local high electric field, the surface shape of the insulating barrier on the side facing the opposing conductor is formed in a substantially plane, and the thickness of the insulating barrier is: A switchgear, wherein the switchgear is formed so as to continuously increase from the portion located at the shortest portion between the two conductors toward the outer side in the direction parallel to the substantially flat portion of the insulating barrier .
JP2005293551A 2005-10-06 2005-10-06 Insulation structure of electrical equipment and switchgear using the insulation structure Active JP4931395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005293551A JP4931395B2 (en) 2005-10-06 2005-10-06 Insulation structure of electrical equipment and switchgear using the insulation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005293551A JP4931395B2 (en) 2005-10-06 2005-10-06 Insulation structure of electrical equipment and switchgear using the insulation structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011091892A Division JP5089787B2 (en) 2011-04-18 2011-04-18 Insulation structure of electrical equipment and switchgear using the insulation structure

Publications (2)

Publication Number Publication Date
JP2007104840A JP2007104840A (en) 2007-04-19
JP4931395B2 true JP4931395B2 (en) 2012-05-16

Family

ID=38031211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005293551A Active JP4931395B2 (en) 2005-10-06 2005-10-06 Insulation structure of electrical equipment and switchgear using the insulation structure

Country Status (1)

Country Link
JP (1) JP4931395B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908132B2 (en) * 2006-09-28 2012-04-04 三菱電機株式会社 Insulation structure of electrical equipment and switchgear using the insulation structure
JP5011045B2 (en) * 2007-09-25 2012-08-29 株式会社東芝 Switchgear
GB2622045A (en) * 2022-08-31 2024-03-06 Eaton Intelligent Power Ltd Branch busbar device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023620A (en) * 1996-07-01 1998-01-23 Toshiba Corp Electric field relief device
JPH11262120A (en) * 1998-03-12 1999-09-24 Toshiba Corp Electric field relaxing apparatus and electric apparatus
JP3860553B2 (en) * 2002-11-19 2006-12-20 三菱電機株式会社 Gas insulated switchgear

Also Published As

Publication number Publication date
JP2007104840A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
EP2214191A2 (en) Gas-insulated equipment
JP3860553B2 (en) Gas insulated switchgear
EP0475268B1 (en) Gas circuit breaker
JP4931395B2 (en) Insulation structure of electrical equipment and switchgear using the insulation structure
JP5324530B2 (en) High voltage switchgear
JPH1023620A (en) Electric field relief device
JP4234125B2 (en) Multi-circuit selection switchgear
JP5089787B2 (en) Insulation structure of electrical equipment and switchgear using the insulation structure
CN109314010B (en) Switching device with double conductive shells
JPH11164429A (en) Disconnector with grounding device
JP5408551B2 (en) Gas insulated switchgear
CN117716460A (en) Gas-insulated switchgear
JP3712456B2 (en) Gas insulated disconnect switch
JP4498251B2 (en) Switchgear insulation structure
JP4632959B2 (en) Switchgear
JP7510395B2 (en) Gas insulated switchgear
JPH08242513A (en) Switch gear and electric apparatus
JP4908132B2 (en) Insulation structure of electrical equipment and switchgear using the insulation structure
JP7492376B2 (en) Switchgear
JP4434529B2 (en) Switchgear
AU6361201A (en) Disconnector
CN102903548B (en) For the push-rod assembly of circuit breaker
KR102066227B1 (en) Gas Insulated Switchgear
WO2024142419A1 (en) Insulation support component and gas insulation switching device
JP2772094B2 (en) Barrier in insulating gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110425

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120214

R151 Written notification of patent or utility model registration

Ref document number: 4931395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250