JPH1023620A - Electric field relief device - Google Patents

Electric field relief device

Info

Publication number
JPH1023620A
JPH1023620A JP8170514A JP17051496A JPH1023620A JP H1023620 A JPH1023620 A JP H1023620A JP 8170514 A JP8170514 A JP 8170514A JP 17051496 A JP17051496 A JP 17051496A JP H1023620 A JPH1023620 A JP H1023620A
Authority
JP
Japan
Prior art keywords
insulating layer
electrode
electric field
insulating
conductor end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8170514A
Other languages
Japanese (ja)
Inventor
Tetsuo Yoshida
哲雄 吉田
Masaru Miyagawa
勝 宮川
Osamu Sakaguchi
修 阪口
Nobuo Masaki
信男 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8170514A priority Critical patent/JPH1023620A/en
Publication of JPH1023620A publication Critical patent/JPH1023620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)

Abstract

PROBLEM TO BE SOLVED: To relieve an electric field in an insulating gas by a composite insulation structure, improve the withstanding voltage characteristics and reduce the dimensions as a whole by a method wherein a protrusion is formed in the circumferential direction of conductor end electrode or along the outer circumference of the conductor end electrode, and the protrusion is cover with an approximately semispherical insulating layer whose tip part has a required curvature. SOLUTION: A semicircular protrusion 12a is formed on the end part of an electrode 12, along the outer circumference. Further, an insulating layer 13, made by molding of epoxy resin is formed, so as to overlap the straight part in the axial direction of the electrode 12 by several millimeters. the tip part of the insulating layer 13 has a proper curvature and faces a grounding metal plate 14. Even if the grounding metal plate 14 is replaced by the conductor of the other phase, etc., the condition is the same. That is, the insulating layer 13 is formed, so as to face a part where a potential difference produced. If the thickness (t) of the insulating layer 13 is about 1/2 of the distance (1) between the electrode, the electric field intensity can be minimized, and the voltage withstanding characteristics can be improved most.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電界緩和装置に関
する。
[0001] The present invention relates to an electric field relaxation device.

【0002】[0002]

【従来の技術】スイッチギヤの構成の一例として図5に
示すガス絶縁スイッチギヤにおいて、外周を軟鋼板で気
密に囲まれた箱体1の内部は、図示左方の前面寄りに縦
に設けられた隔壁2で前方の遮断器室1aと後方の母線
室1bに仕切られ、各室1a,1bには六フッ化硫黄ガ
ス(以下、絶縁ガスと略す)がほぼ大気圧のガス圧力で
封入され密封されている。
2. Description of the Related Art In a gas insulated switchgear shown in FIG. 5 as an example of the structure of a switchgear, the inside of a box 1 whose outer periphery is hermetically surrounded by a mild steel plate is vertically provided near the left front side in the figure. The partition wall 2 separates the circuit breaker chamber 1a in the front and the busbar chamber 1b in the rear, and each of the chambers 1a and 1b is filled with sulfur hexafluoride gas (hereinafter abbreviated as insulating gas) at a gas pressure of substantially atmospheric pressure. Sealed.

【0003】このうち、遮断器室1aの内部には真空イ
ンタラプタ3aを装着した遮断器3が収納され、隔壁2
の図示していない貫通穴に取り付けられた絶縁スペーサ
9に遮断器3が連結されている。この絶縁スペーサ9
は、上下で同様な構造である。
A circuit breaker 3 having a vacuum interrupter 3a is housed in a circuit breaker chamber 1a.
The circuit breaker 3 is connected to an insulating spacer 9 attached to a through hole (not shown). This insulating spacer 9
Has the same structure at the top and bottom.

【0004】また、母線室1bの天井部には断路器4A
が取り付けられ、一方の端子が接続導体8を介して上側
の絶縁スペーサ9に接続され、他方の端子が接続導体8
を介してがいし6に固定された母線5に接続されてい
る。この母線5により、隣接盤との相互接続がされてい
る。
A disconnector 4A is provided at the ceiling of the bus room 1b.
Is attached, one terminal is connected to the upper insulating spacer 9 via the connection conductor 8, and the other terminal is connected to the connection conductor 8
Is connected to the bus 5 fixed to the insulator 6. The bus 5 interconnects the adjacent boards.

【0005】一方、母線室1bの底部には断路器4Aと
同形の断路器4Bが取り付けられ、一方の端子が接続導
体8を介して下側の絶縁スペーサ9に接続され、他方の
端子が接続導体8を介して、底板に取り付けられたケー
ブルヘッド7の上部端子に接続されている。なお、この
ケーブルヘッド7に接続されたケーブル7aにより受電
されている。
On the other hand, a disconnector 4B having the same shape as the disconnector 4A is attached to the bottom of the bus bar 1b. One terminal is connected to a lower insulating spacer 9 via a connecting conductor 8, and the other terminal is connected. The conductor 8 is connected to the upper terminal of the cable head 7 attached to the bottom plate. The power is received by the cable 7a connected to the cable head 7.

【0006】ここで、断路器4A,4Bの操作板4aに
連結された可動接触子4bの端部には、電界緩和のため
の金属シールド4cが設けられている。この部分の拡大
図を図6に示すが、可動接触子4bの端部の電極10に大
きな曲率半径を持った球状の金属製シールド11をシール
ド側に設けたボルト11aを回転させて固定している。こ
れにより、端部の電界緩和が図れ、対地間や相間の絶縁
耐力が良好に保たれている。
[0006] At the end of the movable contact 4b connected to the operation plate 4a of the disconnectors 4A and 4B, a metal shield 4c is provided to alleviate the electric field. FIG. 6 shows an enlarged view of this part. A spherical metal shield 11 having a large radius of curvature is fixed to the electrode 10 at the end of the movable contact 4b by rotating a bolt 11a provided on the shield side. I have. As a result, the electric field at the ends can be relaxed, and the dielectric strength between the ground and the phases can be kept good.

【0007】[0007]

【発明が解決しようとする課題】これらの構成におい
て、絶縁ガス中で用いられる電界緩和装置は、例えば特
開昭128807号に開示されている通り、丸みを持たせる金
属製のシールドで構成されている。これは、丸みを持た
せることにより電界強度が抑制されるためである。つま
り、シールド11の曲率半径が大きい程、電界強度が低下
して耐電圧特性が向上する。特に、絶縁ガスの破壊電圧
は、電界強度に強く依存するので、この電界強度の抑制
が耐電圧特性の向上につながる。
In these arrangements, the electric field mitigation device used in the insulating gas is constituted by a round metal shield as disclosed in, for example, Japanese Patent Application Laid-Open No. 128807/128. I have. This is because the electric field strength is suppressed by providing the roundness. That is, as the radius of curvature of the shield 11 increases, the electric field strength decreases and the withstand voltage characteristics improve. In particular, since the breakdown voltage of the insulating gas strongly depends on the electric field strength, the suppression of the electric field strength leads to an improvement in the withstand voltage characteristics.

【0008】しかし、シールド11の曲率半径を大きくし
ていくと、それに伴って電界強度は低下するが、シール
ド11自体が大形化してしまう。従って、シールド11と対
地間および相間のガスギャップが狭くなり、耐電圧特性
が逆に低下することになる。
However, as the radius of curvature of the shield 11 is increased, the electric field strength is reduced, but the size of the shield 11 itself is increased. Therefore, the gas gap between the shield 11 and the ground and between the phases is narrowed, and the withstand voltage characteristic is reduced.

【0009】更に、シールド11自体が大形化すると、接
続される接続導体などの配置をシールド11と接触させな
いよう迂回させなくてはならない。これにより、各電気
機器の配置が制限され、全体形状が大形化する。これ
は、最近の趨勢である縮小化に逆行するものである。
Further, when the size of the shield 11 itself is increased, the arrangement of connection conductors to be connected must be detoured so as not to contact the shield 11. Thereby, the arrangement of each electric device is restricted, and the overall shape is enlarged. This goes against the recent trend of shrinking.

【0010】本発明の目的は、絶縁ガス中の電界緩和を
比較的絶縁厚さを持った絶縁層との組合せによる複合絶
縁構造として行い、耐電圧特性を向上させて全体形状の
縮小化を図った電界緩和装置を提供することにある。
An object of the present invention is to reduce the electric field in an insulating gas as a composite insulating structure by combining the insulating layer with an insulating layer having a relatively large insulating thickness, thereby improving the withstand voltage characteristics and reducing the overall shape. To provide an electric field relaxation device.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明は、導体端部電極の円周方向又は外周に沿って
軸方向に形成された突出部を、先端が所定の曲率を有す
る略半球状の絶縁層で包含されるようにしたことを要旨
とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a projecting portion formed in the circumferential direction or the axial direction along the outer periphery of a conductor end electrode, the tip having a predetermined curvature. The gist of the invention is that it is included in a substantially hemispherical insulating layer.

【0012】このような構成において、電極端部と絶縁
層表面の電界強度が抑制される。特に、絶縁層が絶縁ガ
スと接する表面は絶縁ガス側での最大電界強度が位置す
る部分であるが、形成させた絶縁層の影響(特に、絶縁
層の比誘電率の影響)により、電界強度の抑制が図れ
る。
In such a configuration, the electric field strength between the electrode end and the insulating layer surface is suppressed. In particular, the surface where the insulating layer is in contact with the insulating gas is where the maximum electric field strength is located on the insulating gas side, but the electric field strength is affected by the effect of the formed insulating layer (particularly, the effect of the relative permittivity of the insulating layer). Can be suppressed.

【0013】また、導体端部電極には、前記絶縁層が最
大電界強度となる部分と対向する位置に窪みを形成させ
てもよい。このような構成において、絶縁層の固有容量
が小さくなり、ガスギャップとの電位分担が改善されて
電界強度の抑制が図れる。つまり、絶縁層とガスギャッ
プで電位分担が行われるが、絶縁層の固有容量が小さく
なることによりガスギャップの電位分担が少なくなり、
これに伴って最大電界強度が抑制される。
The conductor end electrode may be provided with a depression at a position facing a portion where the insulating layer has the maximum electric field strength. In such a configuration, the specific capacitance of the insulating layer is reduced, the potential sharing with the gas gap is improved, and the electric field strength can be suppressed. That is, although the potential sharing is performed between the insulating layer and the gas gap, the potential sharing of the gas gap is reduced due to the decrease in the specific capacity of the insulating layer,
Accordingly, the maximum electric field strength is suppressed.

【0014】[0014]

【発明の実施の形態】以下、本発明の一実施例を示す電
界緩和装置を図面を参照して説明する。図1は本発明の
一実施例を示す電界緩和装置の部分拡大図である。同図
において、電極12の端部には外周に沿った半円状の突出
部12aを設ける。更に、電極12の軸方向の直線部12bと
数mmラップさせ、例えばエポキシ樹脂をモールドした絶
縁層13を設けている。なお、絶縁層13の先端には適切な
曲率半径を持たせており、接地金属板14と対向させてい
る。この接地金属板14は他相の導体などでも同様であ
り、電位差が生じる部分に対向させて絶縁層13を形成さ
せている。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an electric field relaxation apparatus according to an embodiment of the present invention. FIG. 1 is a partially enlarged view of an electric field relaxation device showing one embodiment of the present invention. In the figure, a semicircular protrusion 12a is provided at the end of the electrode 12 along the outer periphery. Further, an insulating layer 13 formed by wrapping the linear portion 12b in the axial direction of the electrode 12 by several mm and molding an epoxy resin, for example, is provided. Note that the tip of the insulating layer 13 has an appropriate radius of curvature, and is opposed to the ground metal plate 14. The ground metal plate 14 is the same for conductors of other phases and the like, and the insulating layer 13 is formed so as to face a portion where a potential difference occurs.

【0015】これらの構成において、絶縁厚さをt、電
極間距離をlとした場合の電界強度特性を図2に示す。
ここで、絶縁層13の比誘電率は5とした。電界強度は、
t/lの比によってU字特性となり、t/l=約50%が
最低値になる。従って、電極間距離lに対して絶縁層の
厚さtを約1/2に設定すれば電界強度が最も低くな
り、耐電圧特性が最も向上することになる。ここで、最
大電界強度は、絶縁層13が接地電極14と対向して曲率を
持つ部分であり、耐電圧特性が決定する所である。な
お、絶縁層13と電極12が接する部分は、電界特異性を持
つトリプルジャンクション部となるが、電極12の軸方向
の直線部12bと絶縁層13が数mmでラップしており、更に
突出部12aが形成されているので、電界強度の上昇を抑
制することができる。
FIG. 2 shows the electric field strength characteristics when the insulation thickness is t and the distance between the electrodes is 1 in these configurations.
Here, the relative permittivity of the insulating layer 13 was set to 5. The electric field strength is
A U-shaped characteristic is obtained depending on the ratio of t / l, and t / l = about 50% becomes the minimum value. Therefore, if the thickness t of the insulating layer is set to about に 対 し て with respect to the distance l between the electrodes, the electric field intensity becomes the lowest and the withstand voltage characteristics are improved most. Here, the maximum electric field strength is a portion where the insulating layer 13 has a curvature facing the ground electrode 14, and is where the withstand voltage characteristic is determined. The portion where the insulating layer 13 and the electrode 12 are in contact is a triple junction having electric field peculiarity, but the linear portion 12b in the axial direction of the electrode 12 and the insulating layer 13 are wrapped by several mm, and Since 12a is formed, an increase in electric field strength can be suppressed.

【0016】また、断路器4などに用いる場合には、金
属間距離lが変化してt/lの比を固定できないが、図
2において許容電界強度を 100%とすると、t/l=45
%から70%の範囲で許容電界強度を下回ることが、本発
明者等の研究により分かった。このうち、断路器4の可
動で電極間距離lが最も短くなる個所でのt/lの比を
50%から70%の範囲に設定しておけば、電極間距離lが
広くなった場合にガスギャップも広くなり、電界強度が
上昇しないことが判明した。つまり、t/lの比は50%
を中心値にしてプラス側に許容されてもよいことが分か
る。
Further, in the case of use in the disconnector 4 or the like, the ratio of t / l cannot be fixed due to the change of the intermetallic distance l. However, if the allowable electric field intensity is 100% in FIG. 2, t / l = 45.
It has been found by the inventors of the present invention that the allowable electric field strength falls below the allowable electric field strength in the range of% to 70%. Of these, the ratio of t / l at the point where the distance l between the electrodes becomes the shortest due to the movable disconnector 4 is
It has been found that, when the distance is set in the range of 50% to 70%, when the distance l between the electrodes is increased, the gas gap is also increased, and the electric field intensity is not increased. That is, the ratio of t / l is 50%
It can be understood that the center value may be allowed on the plus side.

【0017】また、t/lの比を50%にしたときの電圧
特性の一例を図3に示す。ここで、絶縁層13の比誘電率
は5とし、ガス圧力を変化させたときのインパルス電圧
特性を求めた。特性(a)は絶縁層13を設けてガスキャ
ップとの電位分担を図った複合絶縁の電界緩和シールド
であり、特性(b)は絶縁層13の形状と同一形状の金属
シールドを用いた場合である。同図によれば、電圧特性
は絶縁層13を設けた複合絶縁シールドが金属シールドよ
り高い特性にあり、約 1.5倍の向上がみられる。また、
図2の許容電界強度を 100%とした場合の耐電圧を特性
(c)とすると、特性(a)はガス圧力0.10MPa でクリ
ヤーするが、特性(b)はガス圧力0.14MPa までの圧力
を必要とすることになる。
FIG. 3 shows an example of the voltage characteristics when the ratio of t / l is set to 50%. Here, the relative dielectric constant of the insulating layer 13 was set to 5, and the impulse voltage characteristics when the gas pressure was changed were obtained. The characteristic (a) is a composite insulating electric field relaxation shield in which the insulating layer 13 is provided to share the potential with the gas cap, and the characteristic (b) is obtained when a metal shield having the same shape as the shape of the insulating layer 13 is used. is there. According to the figure, the voltage characteristics of the composite insulating shield provided with the insulating layer 13 are higher than those of the metal shield, and an improvement of about 1.5 times is seen. Also,
Assuming that the withstand voltage when the allowable electric field strength in FIG. 2 is 100% is the characteristic (c), the characteristic (a) is cleared at a gas pressure of 0.10 MPa, but the characteristic (b) is a pressure up to a gas pressure of 0.14 MPa. You will need it.

【0018】このため、複合絶縁のシールドは、小さい
電極形状で高い電圧特性が得られるので電界緩和装置自
体を小型にできると共に、機器を小型化させて合理的な
配置ができ、全体形状の縮小化が図れる。また、低いガ
ス圧力で高い電圧特性が得られるので、箱体1の鋼板厚
さを薄くでき軽量化が図れる。
For this reason, the shield of the composite insulation can obtain a high voltage characteristic with a small electrode shape, so that the electric field relaxation device itself can be downsized, and the equipment can be downsized and a rational arrangement can be achieved, and the overall shape can be reduced. Can be achieved. Further, since high voltage characteristics can be obtained at a low gas pressure, the thickness of the steel plate of the box 1 can be reduced, and the weight can be reduced.

【0019】次に、最大電界強度を更に抑制する構成を
図4(a)に示す。最大電界強度は絶縁層15が他電極と
対向して曲率を持つ頂点15a部となるので、電極16の中
心部に窪み16aを持たせ絶縁層15の絶縁厚さを大きくす
る構成である。これにより、絶縁層15の固有容量が小さ
くなり、ガスギャップとの電位分担が改善され、電界強
度の抑制が図れる。
Next, a configuration for further suppressing the maximum electric field intensity is shown in FIG. The maximum electric field strength is such that the insulating layer 15 is a vertex 15a having a curvature facing the other electrode, so that the electrode 16 has a depression 16a at the center thereof to increase the insulating thickness of the insulating layer 15. Thereby, the specific capacitance of the insulating layer 15 is reduced, the potential sharing with the gas gap is improved, and the electric field strength can be suppressed.

【0020】また、トリプルジャンクション部の電界抑
制を同図(b)に示す。絶縁層17と電極18が接する部分
は電極側に円周状の窪み18aを形成させ、窪み18aの底
部付近で絶縁層17と接合させる構成である。これによ
り、トリプルジャンクションによる電界特異性を防ぐこ
とができる。これは、トリプルジャンクション部に対し
て電極の突出部18b,18cにより電界緩和作用が働き、
電界強度を抑制するためである。
The electric field suppression at the triple junction is shown in FIG. In a portion where the insulating layer 17 and the electrode 18 are in contact with each other, a circumferential depression 18a is formed on the electrode side, and the insulating layer 17 is joined near the bottom of the depression 18a. Thereby, the electric field peculiarity due to the triple junction can be prevented. This is because the electric field relaxation effect works by the protruding portions 18b and 18c of the electrodes with respect to the triple junction.
This is for suppressing the electric field intensity.

【0021】また、トリプルジャンクションを考慮しな
くてもよい個所においては、同図(c)に示すように、
電極19の端部に一定の曲率を持たせると共に軸方向の中
心を頂点部とさせ、絶縁層20を形成すればよい。
In places where the triple junction does not need to be considered, as shown in FIG.
The insulating layer 20 may be formed such that the end of the electrode 19 has a constant curvature and the center in the axial direction is a vertex.

【0022】次に、絶縁層がテフロン、ポリエチレン又
はシリコンゴムのような絶縁材料である程度可とう性が
あり、比誘電率が3以下のような低誘電率のものを用い
た構成を同図(d)に示す。絶縁層21を予め製作してお
き、電極22と接する部分に導電性塗料を塗布した導電層
23を形成させている。電極22の端部は同軸方向に突出部
22aを設けており、絶縁層21の端部21aを電極の突出部
22aに嵌合させて固定している。絶縁層端部21aは、絶
縁厚さが薄く可とう性があるので、容易に突出部22aと
嵌合させることができる。また電極22と導電層23はどこ
か一個所が接触していれば同電位となり、絶縁層21との
間でボイドなどの欠陥部を形成することがなく、良好な
絶縁特性を保つことができる。
Next, the structure using an insulating material such as Teflon, polyethylene or silicon rubber which has a certain degree of flexibility and a low dielectric constant such as a relative dielectric constant of 3 or less is shown in FIG. It is shown in d). A conductive layer in which an insulating layer 21 has been manufactured in advance, and a conductive paint has been applied to a portion in contact with the electrode 22.
23 are formed. The end of the electrode 22 protrudes coaxially
22a is provided, and the end 21a of the insulating layer 21 is
It is fitted and fixed to 22a. The insulating layer end 21a can be easily fitted to the protruding portion 22a because the insulating thickness is thin and flexible. In addition, if the electrode 22 and the conductive layer 23 are in contact at any one place, they have the same potential, and a defect such as a void is not formed between the electrode 22 and the conductive layer 23, so that good insulating characteristics can be maintained. .

【0023】これにより、低誘電率の絶縁層21とガスギ
ャップの電位分担が改善され、最大電界強度が位置する
絶縁層21表面の電界強度が低下する。つまり、絶縁ガス
の比誘電率1に対して絶縁層21の比誘電率が低いと、ガ
スギャップの電位分担が低くなるためである。従って、
電圧特性が更に向上して、縮小化を図ることができる。
本発明者らが求めた結果によれば、比誘電率2.7 のテフ
ロンを用いた場合において、比誘電率5のエポキシ樹脂
の結果より約20%の向上がみられた。
As a result, the potential sharing between the low dielectric constant insulating layer 21 and the gas gap is improved, and the electric field intensity on the surface of the insulating layer 21 where the maximum electric field intensity is located is reduced. That is, when the relative dielectric constant of the insulating layer 21 is lower than the relative dielectric constant of the insulating gas, the potential sharing of the gas gap is reduced. Therefore,
Voltage characteristics can be further improved, and downsizing can be achieved.
According to the results obtained by the present inventors, when Teflon having a relative dielectric constant of 2.7 was used, an improvement of about 20% was observed from the result of an epoxy resin having a relative dielectric constant of 5.

【0024】また、同図(e)においては、低誘電率の
絶縁層24を電極25の中心部に設けたネジ部25aで固定す
る方法である。これは、予め製作する絶縁層24に雄ネジ
を設けておき、電極25の雌ネジで固定させている。ま
た、絶縁層24が電極25と接する部分には導電層26を設け
て電極25と同電位にしている。なお、ネジ部25aの導電
層26の有無はどちらでもよく、この部分は電極25が内側
に窪んでいる電界緩和がされている。
FIG. 3E shows a method in which the insulating layer 24 having a low dielectric constant is fixed by a screw portion 25 a provided at the center of the electrode 25. In this case, a male screw is provided on the insulating layer 24 to be manufactured in advance, and is fixed by a female screw of the electrode 25. In addition, a conductive layer 26 is provided at a portion where the insulating layer 24 is in contact with the electrode 25 so as to have the same potential as the electrode 25. The presence or absence of the conductive layer 26 of the screw portion 25a may be either, and the electric field relaxation in which the electrode 25 is depressed inward is performed in this portion.

【0025】これにより、低誘電率の絶縁層24とガスギ
ャップの電位分担が改善され最大電界強度が抑制され
る。また、同図(f)においては、絶縁層27,28を多段
モールドで形成させている。すなわち、電極29側に近い
絶縁層27は、例えばエポキシ樹脂に石英などの充填材を
多量に混合させて比誘電率を高くした高誘電率層とす
る。また、最大電界強度が位置するガスギャップ側で
は、充填材を微細化し且つ少量にして低誘電率層として
いる。これにより、電極29の端部で曲率半径が小さく突
出部29aとなっている部分では、高い比誘電率の絶縁層
27により電界抑制が行われる。このため、絶縁層27と接
する電極29付近の電界強度の抑制ができる。ガスギャッ
プ側では、比誘電率の低い絶縁層28との電位分担の改善
により最大電界強度を抑制することができる。
As a result, the potential sharing between the insulating layer 24 having a low dielectric constant and the gas gap is improved, and the maximum electric field intensity is suppressed. In FIG. 1F, the insulating layers 27 and 28 are formed by a multi-stage mold. That is, the insulating layer 27 close to the electrode 29 is a high dielectric constant layer in which a relative dielectric constant is increased by, for example, mixing a large amount of filler such as quartz with epoxy resin. On the gas gap side where the maximum electric field intensity is located, the filler is made finer and the amount thereof is reduced to form a low dielectric constant layer. As a result, at the end of the electrode 29 where the radius of curvature is small and the protrusion 29a is formed, the insulating layer having a high relative dielectric constant is formed.
27 suppresses the electric field. Therefore, the electric field intensity near the electrode 29 in contact with the insulating layer 27 can be suppressed. On the gas gap side, the maximum electric field strength can be suppressed by improving the potential sharing with the insulating layer having a low relative dielectric constant.

【0026】これにより、電極29端部の電界緩和が図ら
れて耐電圧特性が向上する。他の実施例として、導体端
部に限定しないで、導体接続部の突出部や電気機器の導
体の電界緩和シールド部分に、絶縁層を付加したシール
ドを設けることにより、電界緩和部分の縮小化を図るこ
とができる。
As a result, the electric field at the end of the electrode 29 is relaxed, and the withstand voltage characteristics are improved. As another embodiment, a shield with an insulating layer added is provided on the protruding portion of the conductor connection portion or the electric field relaxation shield portion of the conductor of the electric device without limiting to the conductor end portion, so that the electric field relaxation portion can be reduced. Can be planned.

【0027】[0027]

【発明の効果】以上のように本発明によれば、導体端部
電極に設けられ、該電極の外周に沿って軸方向に形成さ
れた突出部と、先端が所定の曲率を有する略半球状であ
って、突出部を包含するような絶縁厚さを有する絶縁層
とを備えたので、導体端部電極部と絶縁層表面の電界強
度が抑制され、耐電圧特性を向上させて全体形状の縮小
化を図ることができる。
As described above, according to the present invention, a protrusion provided on the conductor end electrode and formed in the axial direction along the outer periphery of the electrode, and a substantially hemispherical end having a predetermined curvature And an insulating layer having an insulating thickness so as to include the protruding portion, so that the electric field strength on the conductor end electrode portion and the insulating layer surface is suppressed, the withstand voltage characteristics are improved, and the overall shape is improved. The size can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す電界緩和装置の要部断
面図。
FIG. 1 is a sectional view of a main part of an electric field relaxation device according to an embodiment of the present invention.

【図2】本発明に係る電界緩和装置における絶縁層の絶
縁厚さtと他の電極との電極間距離lとの比t/l と電
界強度との関係を示す図。
FIG. 2 is a view showing a relationship between a ratio t / l of an insulating thickness t of an insulating layer and a distance l between electrodes to another electrode and an electric field intensity in the electric field relaxation device according to the present invention.

【図3】本発明に係る電界緩和装置と、絶縁層と同一形
状の金属電極とのインパルスフラッシオーバー電圧特性
を比較した図。
FIG. 3 is a diagram comparing impulse flashover voltage characteristics of an electric field relaxation device according to the present invention and a metal electrode having the same shape as an insulating layer.

【図4】本発明の他の実施例を示す電界緩和装置の要部
断面図。
FIG. 4 is a cross-sectional view of a main part of an electric field relaxation device according to another embodiment of the present invention.

【図5】代表的なガス絶縁スイッチギヤの構成図。FIG. 5 is a configuration diagram of a typical gas-insulated switchgear.

【図6】従来の電界緩和装置の要部断面図。FIG. 6 is a sectional view of a main part of a conventional electric field relaxation device.

【符号の説明】[Explanation of symbols]

12,16,18,19,22,25,29…電極、13,15,17,20,
21,24,27,28…絶縁層、23,26…導電層。
12,16,18,19,22,25,29 ... electrodes, 13,15,17,20,
21, 24, 27, 28 ... insulating layer, 23, 26 ... conductive layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 正木 信男 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Nobuo Masaki 1-1-1, Shibaura, Minato-ku, Tokyo Inside Toshiba head office

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 導体端部電極に設けられ、該電極の外周
に沿って軸方向に形成された突出部と、先端が所定の曲
率を有する略半球状であって、前記突出部を包含するよ
うな絶縁厚さを有する絶縁層とを備えたことを特徴とす
る電界緩和装置。
1. A protruding portion provided on a conductor end electrode and formed in an axial direction along an outer periphery of the electrode, and a tip is substantially hemispherical having a predetermined curvature, and includes the protruding portion. And an insulating layer having such an insulating thickness.
【請求項2】 導体端部電極に設けられ、該電極の外周
に沿って軸方向に形成された突出部と、先端が所定の曲
率を有する略半球状であって、前記突出部を包含するよ
うな絶縁厚さを有する絶縁層とを有し、前記導体端部電
極には、前記絶縁層が最大電界強度となる部分と対向す
る位置に窪みを形成されたことを特徴とする電界緩和装
置。
2. A protruding portion provided on the conductor end electrode and formed in the axial direction along the outer periphery of the electrode, and a tip is substantially hemispherical having a predetermined curvature, and includes the protruding portion. An insulating layer having an insulating thickness as described above, wherein a recess is formed in the conductor end electrode at a position facing a portion where the insulating layer has a maximum electric field strength. .
【請求項3】 導体端部電極に設けられ、該電極の円周
方向に形成された窪み部と、先端が所定の曲率を有する
略半球状であって、前記窪み部の底部で電極と接合さ
れ、前記導体端部電極を包含するような絶縁厚さを有す
る絶縁層とを備えたことを特徴とする電界緩和装置。
3. A recess provided in a conductor end electrode and formed in a circumferential direction of the electrode, and a tip is substantially hemispherical having a predetermined curvature, and is joined to the electrode at a bottom of the recess. And an insulating layer having an insulating thickness so as to cover the conductor end electrode.
【請求項4】 導体端部電極に設けられ、該電極の円周
方向又は外周に沿って軸方向に形成された突出部と、先
端が所定の曲率を有する略半球状であって、内面に導電
層を形成させ、前記突出部を包含するような絶縁厚さを
有する絶縁層とを備えたことを特徴とする電界緩和装
置。
4. A protruding portion provided on the conductor end electrode and formed in the axial direction along the circumferential direction or the outer circumference of the electrode, and the end is substantially hemispherical having a predetermined curvature. An electric field relaxation device, comprising: an insulating layer having a conductive layer formed thereon and having an insulating thickness including the protrusion.
【請求項5】 導体端部電極に設けられ、該電極の円周
方向又は外周に沿って軸方向に形成された突出部と、先
端が所定の曲率を有する略半球状であって、複数の絶縁
層を多段にすると共に各々の絶縁厚さの合計が前記突出
部を包含するような大きさとした多段絶縁層とを有し、
前記多段絶縁層の各々の比誘電率を前記導体端部電極に
近いものほど大きくしたことを特徴とする電界緩和装
置。
5. A plurality of projections provided on the conductor end electrode, the projections being formed in the axial direction along the circumferential direction or the outer circumference of the electrode, and a substantially hemispherical tip having a predetermined curvature. A multi-stage insulating layer having a multi-stage insulating layer and a total size of each insulating thickness including the protruding portion;
An electric field relaxation device, wherein the relative dielectric constant of each of the multi-stage insulating layers is increased as the dielectric constant is closer to the conductor end electrode.
【請求項6】 前記絶縁層は、比誘電率が3以下と可と
う性材料から成ることを特徴とする請求項4又は請求項
5記載の電界緩和装置。
6. The electric field relaxation device according to claim 4, wherein the insulating layer is made of a flexible material having a relative dielectric constant of 3 or less.
【請求項7】 前記絶縁層の絶縁厚さは、該絶縁層を設
けた電極と他の電極との電極間距離の50%〜70%の大き
さにしたことを特徴とする請求項1〜請求項6のいずれ
かに記載の電界緩和装置。
7. The insulating layer according to claim 1, wherein an insulating thickness of the insulating layer is 50% to 70% of a distance between an electrode provided with the insulating layer and another electrode. The electric field relaxation device according to claim 6.
JP8170514A 1996-07-01 1996-07-01 Electric field relief device Pending JPH1023620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8170514A JPH1023620A (en) 1996-07-01 1996-07-01 Electric field relief device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8170514A JPH1023620A (en) 1996-07-01 1996-07-01 Electric field relief device

Publications (1)

Publication Number Publication Date
JPH1023620A true JPH1023620A (en) 1998-01-23

Family

ID=15906365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8170514A Pending JPH1023620A (en) 1996-07-01 1996-07-01 Electric field relief device

Country Status (1)

Country Link
JP (1) JPH1023620A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2777126A1 (en) * 1998-04-03 1999-10-08 Siemens Ag CRUCIFORM SHIELDING MODULE FOR A THREE-PHASE SHIELDED SWITCHING INSTALLATION
US6831828B2 (en) 2002-11-19 2004-12-14 Tmt&D Corporation Gas-insulated switchgear
JP2007089356A (en) * 2005-09-26 2007-04-05 Mitsubishi Electric Corp Insulating structure of switchgear
JP2007104840A (en) * 2005-10-06 2007-04-19 Mitsubishi Electric Corp Insulation structure of electric apparatus and switchgear therewith
JP2007202297A (en) * 2006-01-26 2007-08-09 Mitsubishi Electric Corp Switchgear
JP2010531529A (en) * 2007-06-25 2010-09-24 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド High-pressure insulator to prevent instability in ion implanter due to triple junction breakdown
JP2010537386A (en) * 2007-08-20 2010-12-02 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド Insulated conductive device provided with a plurality of insulating parts
JP2011142814A (en) * 2011-04-18 2011-07-21 Mitsubishi Electric Corp Insulation structure for electrical device and switchgear applied with insulation structure
JP4865718B2 (en) * 2004-10-04 2012-02-01 アレバ・ティー・アンド・ディー・アーゲー Insulating support disk for conductor and electric assembly including the disk
WO2013125554A1 (en) * 2012-02-21 2013-08-29 株式会社 東芝 Gas insulated switchgear and gas insulated busbar

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2777126A1 (en) * 1998-04-03 1999-10-08 Siemens Ag CRUCIFORM SHIELDING MODULE FOR A THREE-PHASE SHIELDED SWITCHING INSTALLATION
US6831828B2 (en) 2002-11-19 2004-12-14 Tmt&D Corporation Gas-insulated switchgear
JP4865718B2 (en) * 2004-10-04 2012-02-01 アレバ・ティー・アンド・ディー・アーゲー Insulating support disk for conductor and electric assembly including the disk
JP2007089356A (en) * 2005-09-26 2007-04-05 Mitsubishi Electric Corp Insulating structure of switchgear
JP4498251B2 (en) * 2005-09-26 2010-07-07 三菱電機株式会社 Switchgear insulation structure
JP2007104840A (en) * 2005-10-06 2007-04-19 Mitsubishi Electric Corp Insulation structure of electric apparatus and switchgear therewith
JP4632959B2 (en) * 2006-01-26 2011-02-16 三菱電機株式会社 Switchgear
JP2007202297A (en) * 2006-01-26 2007-08-09 Mitsubishi Electric Corp Switchgear
JP2010531529A (en) * 2007-06-25 2010-09-24 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド High-pressure insulator to prevent instability in ion implanter due to triple junction breakdown
JP2010537386A (en) * 2007-08-20 2010-12-02 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド Insulated conductive device provided with a plurality of insulating parts
JP2011142814A (en) * 2011-04-18 2011-07-21 Mitsubishi Electric Corp Insulation structure for electrical device and switchgear applied with insulation structure
WO2013125554A1 (en) * 2012-02-21 2013-08-29 株式会社 東芝 Gas insulated switchgear and gas insulated busbar
JP2013172561A (en) * 2012-02-21 2013-09-02 Toshiba Corp Gas insulation switchgear and gas insulation bus
CN104106189A (en) * 2012-02-21 2014-10-15 株式会社东芝 Gas insulated switchgear and gas insulated busbar

Similar Documents

Publication Publication Date Title
US7848084B2 (en) Gas-insulated equipment
JP3860553B2 (en) Gas insulated switchgear
JPH1023620A (en) Electric field relief device
JPH11262120A (en) Electric field relaxing apparatus and electric apparatus
JP3623333B2 (en) Substation equipment
JP4931395B2 (en) Insulation structure of electrical equipment and switchgear using the insulation structure
JPH11164429A (en) Disconnector with grounding device
US6140573A (en) Hollow core composite bushings
JP2003319515A (en) Gas-insulated switchgear
JP2726537B2 (en) Gas insulating spacer
JP3585517B2 (en) Gas insulated bushing
JP2772094B2 (en) Barrier in insulating gas
JP7510395B2 (en) Gas insulated switchgear
KR102066227B1 (en) Gas Insulated Switchgear
JPH09200915A (en) Gas insulated disconnector, and earth device of gas insulated disconnector
JP3657890B2 (en) Gas insulated switchgear
JP3373048B2 (en) Insulated conductor
JPH08249963A (en) Insulating bushing
JP5089787B2 (en) Insulation structure of electrical equipment and switchgear using the insulation structure
JPH0246111A (en) Insulation structure in electrical machinery and apparatus
EP1074999A1 (en) Hollow core composite insulator
JP3597685B2 (en) Gas insulated switchgear
JP2001110287A (en) Switch gear
JPH11252721A (en) Gas insulated disconnector
JPH01200523A (en) Main circuit disconnection part for switchgear