JP3597685B2 - Gas insulated switchgear - Google Patents

Gas insulated switchgear Download PDF

Info

Publication number
JP3597685B2
JP3597685B2 JP32982097A JP32982097A JP3597685B2 JP 3597685 B2 JP3597685 B2 JP 3597685B2 JP 32982097 A JP32982097 A JP 32982097A JP 32982097 A JP32982097 A JP 32982097A JP 3597685 B2 JP3597685 B2 JP 3597685B2
Authority
JP
Japan
Prior art keywords
electrode
insulated switchgear
circuit breaker
electric field
vacuum circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32982097A
Other languages
Japanese (ja)
Other versions
JPH11164428A (en
Inventor
哲雄 吉田
冨夫 郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32982097A priority Critical patent/JP3597685B2/en
Publication of JPH11164428A publication Critical patent/JPH11164428A/en
Application granted granted Critical
Publication of JP3597685B2 publication Critical patent/JP3597685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H2033/6667Details concerning lever type driving rod arrangements

Description

【0001】
【発明の属する技術分野】
本発明は、電界緩和により小型化し得る真空遮断器を用いたガス絶縁スイッチギヤに関する。
【0002】
【従来の技術】
代表的なガス絶縁スイッチギヤの構成例を示す図6において、外周を軟鋼鈑で気密に囲まれ、且つ幾つかに仕切られた箱体1の内部は、SFガスなどの絶縁ガス2が密封されている。図示上方の室1aには断路器3A、図示下方の室1bには真空遮断器4および断路器3Aと同形の断路器3B設けられている。また、これらの絶縁ガス中の収納機器は、主回路導体6により相互が接続されており、主回路導体6は、支持がいし5により支持固定されている。そして、箱体1の側壁には受電用のケーブルヘッド7が気密に固定され、また、このケーブルヘッド7には貫通形変流器9を貫通した電力用ケーブル8が接続されて受電される。
【0003】
なお、箱体1の天井部に設けたT形の気中−ガスブッシング10により、図面上下に列盤されている隣接盤の接続がされている。
ここで、真空遮断器4を図7に示すが、真空バルブ11の図示上下にはそれぞれ上部電極12、下部電極13が取り付けられ、電極12、13を支持がいし14、15により固定している。また、電極12、13間には絶縁板16が真空バルブ11と略平行して設けられている。これにより、真空バルブ11は固定されると共に、図示していない真空バルブ11内の一対の電極間は例えば特開平5−120967号公報に開示された上下運動を水平運動に変換する外形形状が大型のスコットラッセル機構17に連結された絶縁操作棒18を介して操作機構19により開閉される。なお、電極12、13に設けられた接触子20a、20bにより他の電気機器への接続が行われる。
【0004】
また、スコットラッセル機構17を収納している下部電極13を支持固定している支持がいし15を図8に示す。図8に示すように、外形形状が大型のスコットラッセル機構17を支持固定するため、断面楕円形状の複数の埋め込み電極21a、21b、21cがエポキシ樹脂22内に埋め込まれ、外形形状が下部電極13に合わせて略四角体にモールドされている。そして、エポキシ樹脂22の樹脂量を軽減するため、略中央部に開口部23が設けられている。なお、エポキシ樹脂22の一側面には、スコットラッセル機構17に連結される操作棒24が設けられる。
【0005】
【発明が解決しようとする課題】
このような真空遮断器4を収納したガス絶縁スイッチギヤにおいては、以下のような問題がある。
スコットラッセル機構17を収納した下部電極13は、略四角体の支持がいし15に固 定され、その外形形状が略四角体となる。このため、電界緩和のためには対地間方向や相間方向の各コーナ部の曲率を大きく取らなければならない。下部電極13の曲率を大きくすることは、略四角体が球状に近づくものとなり、下部電極13自体が大型化して加工工数が増えるばかりでなく、重量物となる。
【0006】
このため、真空遮断器4自体が大型化し、しいてはそれを収納しているガス絶縁スイッチギヤが大型化する。これは、最近の趨勢である小型化や軽量化に逆行するものである。
従って、本発明の目的は、真空遮断器の電極の電界緩和を図り、この真空遮断器が収納されるガス絶縁スイッチギヤの全体形状を小型化し得ることにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明のガス絶縁スイッチギヤは、電気装置が収納される箱体の仕切板に支持がいしが取付けられ、真空遮断器の上部電極及び下部電極が前記支持がいしにより支持固定されるガス絶縁スイッチギヤにおいて、前記真空遮断器は、略四角体の支持がいしに支持固定された前記下部電極に開閉動作させるための操作機構部が収納され、且つ当該電極を操作機構部が収納される内側電極及び電界緩和シールド用の外側電極で構成し、両電極の電界強度が最小となるように前記内側電極の外形形状を前記外側電極よりも大きくすると共に、前記外側電極の端部の曲率を、前記内側電極に接する内側よりも外側を大きくしたことを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態に係るガス絶縁スイッチギヤを図1乃至図5を参照して説明する。図1は、本発明の実施の形態に係るガス絶縁スイッチギヤに使用される真空遮断器の構成を示す側面図、図2は、本発明の実施の形態に係るガス絶縁スイッチギヤに使用される真空遮断器の支持がいしを示す平面図、図3は、本発明の実施の形態に係るガス絶縁スイッチギヤに使用される真空遮断器の支持がいしを示す要部拡大断面図、図4は、本発明の実施の形態に係るガス絶縁スイッチギヤに使用される真空遮断器の操作機構部を示す断面図、図5は、本発明の実施の形態に係るガス絶縁スイッチギヤに使用される真空遮断器の操作機構部の電界緩和を説明するための図である。
なお、ガス絶縁スイッチギヤの構成は、従来と同様であるため説明を省略する。また、従来と同様の構成部分においては、同一符号を付した。
【0009】
図1に示すように、真空遮断器4の真空バルブ11の図示上下には、それぞれ上部電極12、下部電極13が取り付けられ、これらの電極12、13は支持がいし14、15に固定されている。これにより、真空バルブ11は固定されると共に、図示していない真空バルブ11内の一対の電極間が、上下運動を水平運動に変換する外形形状が大型のスコットラッセル機構17に連結された絶縁操作棒18を介して操作機構19により開閉される。また、下部電極13には、電界緩和のためのシールド25を設けている。
【0010】
そして、下部電極13を支持固定する支持がいし15は、図2に示すように、加工し易い円柱状の複数の埋め込み電極26、27を略四角体の支持がいし15のコーナ部に設けている。また、それぞれの埋め込み電極26、27は、導電性塗料を塗布した導電層28で同電位となっている。図3はその断面を示したものであり、絶縁層29にU字状の溝30を設け、この溝30の内面に導電層28を形成している。なお、支持がいし15の略中央部には、エポキシ樹脂の樹脂量を軽減させるため開口部23が設けられている。
【0011】
ここで、下部電極13に固定されているシールド25を図4を参照して説明する。図4に示すように、スコットラッセル機構31は、機械的強度のある鋼鈑からなるU字状の機構収納部32に取り付けられ、操作軸33により図示しない真空バルブの開閉が行われる。この機構収納部32の外周には、軽量で加工し易いアルミ合金からなる電界緩和のシー ルド34がボルト35で固定されている。そして、機構収納部32およびシールド34の端部は、一定の曲率を持って段差aが設けられ、機構収納部32の外形形状がシールドよりも大きくなっている。
【0012】
この段差aによる電界緩和を図5を参照して説明する。機構収納部32の電界強度をE 、シールド34の電界強度をE とすると、段差aにより電界強度特性E 、E は交差する。そして、図から明らかなように段差a=5mmを僅かに超えた点でそれぞれの電界強度E およびE が最低値となる。つまり、このような電界強度が最も低くなるところで耐電圧特性が向上し、シールド25を小型化することができる。
【0013】
ここで、機構収納部32が、収納したスコットラッセル機構31の電界緩和を行う内側電極となり、また、シールド34が外側電極となる。
【0014】
なお、機構収納部32においては、操作機構の応力や動作範囲に合わせて機械的強度と大きさが決められている。これに対して、シールド34は、電界緩和のため小さい形状となっている。このため、全体形状としては、機械的強度を有しながら電界緩和を小さいボリュームで行うことができる。
【0015】
更に、シールド34の曲率は、内側が機構収納部32の側面に接するので、小さい曲率でよい。従って、シールド34の板厚を変えることなく、外側の曲率を大きくすることができ、更なる電界緩和ができる。
【0016】
なお、上記の実施の形態では、内側電極と外側電極との2段重ねの電極での電界緩和を説明したが、2段以上の複数段の電極を重ね合わせることもできる。
【0017】
【発明の効果】
以上述べたように、本発明によれば、真空遮断器の上部電極及び下部電極が支持がいしにより支持固定されるガス絶縁スイッチギヤにおいて、真空遮断器は、下部電極に開閉動作させるための操作機構部が収納され、且つ当該電極を操作機構部が収納される内側電極及び電界緩和する外側電極で構成し、この内側電極及び外側電極の電界強度が抑制できるように内側電極の外形形状を外側電極よりも大きくすると共に、外側電極の端部の曲率を内側電極に接する内側よりも外側を大きくしたので、全体形状の縮小化を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るガス絶縁スイッチギヤに使用される真空遮断器の構成を示す側面図。
【図2】本発明の実施の形態に係るガス絶縁スイッチギヤに使用される真空遮断器の支持がいしを示す平面図。
【図3】本発明の実施の形態に係るガス絶縁スイッチギヤに使用される真空遮断器の支持がいしを示す要部拡大断面図。
【図4】本発明の実施の形態に係るガス絶縁スイッチギヤに使用される真空遮断器の操作機構部を示す断面図。
【図5】本発明の実施の形態に係るガス絶縁スイッチギヤに使用される真空遮断器の操作機構部の電界緩和を説明するための図。
【図6】代表的なガス絶縁スイッチギヤの構成図。
【図7】[図6]の真空遮断器の側面図。
【図8】[図6]の支持がいしの平面図。
【符号の説明】
1 箱体
2 絶縁ガス
3A、3B 断路器
4 真空遮断器
5 支持がいし
6 主回路導体
7 ケーブルヘッド
8 電力用ケーブル
9 貫通形変流器
10 気中−ガスブッシング
11 真空バルブ
12 上部電極
13 下部電極
14、15 支持がいし
16 絶縁板
17、31 スコットラッセル機構
18 絶縁操作棒
19 操作機構
20a、20b 接触子
21a、21b、21c、26、27 埋め込み電極
22 エポキシ樹脂
23 開口部
24 操作棒
25、34 シールド
28 導電層
29 絶縁層
30 溝
32 機構収納部
33 操作軸
35 ボルト
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gas insulated switchgear using a vacuum circuit breaker that can be downsized by electric field relaxation .
[0002]
[Prior art]
6 illustrating a configuration example of a typical gas-insulated switchgear, surrounded airtightly periphery of mild steel鈑, and the interior of the box body 1 is partitioned into several, insulating gas 2, such as SF 6 gas Sealed. It illustrated upper chamber 1a disconnector 3A to, disconnector 3B of the vacuum interrupter 4 and disconnecting switch 3A and same shape is provided in the chamber 1b shown below. The storage devices in the insulating gas 2 are mutually connected by a main circuit conductor 6, and the main circuit conductor 6 is supported and fixed by a supporting insulator 5. A power receiving cable head 7 is air-tightly fixed to the side wall of the box 1, and a power cable 8 penetrating the through-type current transformer 9 is connected to the cable head 7 to receive power.
[0003]
The T-shaped aerial-gas bushing 10 provided on the ceiling of the box body 1 connects adjacent boards arranged vertically in the drawing.
Here, the vacuum circuit breaker 4 is shown in FIG. 7, and upper and lower electrodes 12 and 13 are mounted on the upper and lower sides of the vacuum valve 11 in the drawing , respectively, and the electrodes 12 and 13 are fixed by supporting insulators 14 and 15. An insulating plate 16 is provided between the electrodes 12 and 13 substantially in parallel with the vacuum valve 11. As a result, the vacuum valve 11 is fixed, and the outer shape for converting a vertical motion into a horizontal motion disclosed in Japanese Patent Application Laid-Open No. 5-120967 is large between a pair of electrodes in the vacuum valve 11 ( not shown). Is opened and closed by an operation mechanism 19 via an insulating operation rod 18 connected to the Scott Russell mechanism 17 of the first embodiment. In addition, connection to other electric devices is performed by the contacts 20 a and 20 b provided on the electrodes 12 and 13.
[0004]
FIG. 8 shows a support insulator 15 for supporting and fixing the lower electrode 13 containing the Scott Russell mechanism 17. As shown in FIG. 8, in order to support and fix the Scott Russell mechanism 17 having a large external shape, a plurality of embedded electrodes 21a, 21b, 21c having an elliptical cross section are embedded in the epoxy resin 22, and the external shape is the lower electrode 13. It is molded into a substantially rectangular body in accordance with. In order to reduce the amount of the epoxy resin 22, an opening 23 is provided at a substantially central portion. An operation rod 24 connected to the Scott Russell mechanism 17 is provided on one side of the epoxy resin 22.
[0005]
[Problems to be solved by the invention]
The gas insulated switchgear housing such a vacuum circuit breaker 4 has the following problems.
The lower electrode 13 housing the Scott Russell mechanism 17, the support of generally square body is fixed to the stone 15, the outer shape is substantially square body. Therefore, in order to alleviate the electric field, it is necessary to increase the curvature of each corner in the direction between the ground and the direction between the phases. Increasing the curvature of the lower electrode 13 causes the substantially square body to be closer to a sphere, and not only increases the size of the lower electrode 13 itself and increases the number of processing steps, but also increases the weight.
[0006]
Therefore, the size of the vacuum circuit breaker 4 itself increases, and the size of the gas-insulated switchgear housing the vacuum circuit breaker 4 also increases. This goes against the recent trend of miniaturization and weight reduction.
Therefore, an object of the present invention is to reduce the electric field of the electrodes of the vacuum circuit breaker and to reduce the overall shape of the gas insulated switchgear in which the vacuum circuit breaker is housed.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a gas-insulated switchgear of the present invention has a support insulator attached to a partition plate of a box in which an electric device is housed, and an upper electrode and a lower electrode of a vacuum circuit breaker are supported by the support insulator. In the fixed gas insulated switchgear, the vacuum circuit breaker houses an operating mechanism for opening and closing the lower electrode supported and fixed to a substantially rectangular support insulator, and the operating mechanism is configured to operate the electrode. It is composed of a housed inner electrode and an outer electrode for electric field mitigation shield, and the outer shape of the inner electrode is made larger than the outer electrode so that the electric field strength of both electrodes is minimized, and the end of the outer electrode Is characterized in that the outer side is larger than the inner side in contact with the inner electrode.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a gas insulated switchgear according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a side view showing a configuration of a vacuum circuit breaker used for a gas insulated switchgear according to an embodiment of the present invention, and FIG. 2 is used for a gas insulated switchgear according to an embodiment of the present invention. FIG. 3 is a plan view showing a supporting insulator of the vacuum circuit breaker. FIG. 3 is an enlarged sectional view of a main part showing a supporting insulator of the vacuum circuit breaker used in the gas insulated switchgear according to the embodiment of the present invention. FIG. 5 is a sectional view showing an operation mechanism of a vacuum circuit breaker used in the gas insulated switchgear according to the embodiment of the present invention. FIG. 5 is a vacuum circuit breaker used in the gas insulated switchgear according to the embodiment of the present invention. FIG. 4 is a diagram for explaining electric field relaxation of the operation mechanism section.
Note that the configuration of the gas insulated switchgear is the same as that of the related art, and thus the description is omitted. Also, the same reference numerals are given to the same components as those in the related art.
[0009]
As shown in FIG. 1, an upper electrode 12 and a lower electrode 13 are attached above and below a vacuum valve 11 of the vacuum circuit breaker 4, respectively, and these electrodes 12 and 13 are fixed to supporting insulators 14 and 15, respectively. . As a result, the vacuum valve 11 is fixed, and an insulating operation in which a pair of electrodes in the vacuum valve 11 (not shown) is connected to a large Scott-Russell mechanism 17 having an external shape that converts vertical movement into horizontal movement. It is opened and closed by an operation mechanism 19 via a rod 18. The lower electrode 13 is provided with a shield 25 for alleviating an electric field.
[0010]
As shown in FIG. 2, the support insulator 15 for supporting and fixing the lower electrode 13 is provided with a plurality of columnar embedded electrodes 26 and 27 which are easy to process at the corners of the support insulator 15 having a substantially square shape. The embedded electrodes 26 and 27 have the same potential in the conductive layer 28 to which the conductive paint is applied. FIG. 3 shows a cross section of the insulating layer 29. A U-shaped groove 30 is provided in the insulating layer 29, and the conductive layer 28 is formed on the inner surface of the groove 30. An opening 23 is provided at a substantially central portion of the support insulator 15 to reduce the amount of epoxy resin.
[0011]
Here, the shield 25 fixed to the lower electrode 13 will be described with reference to FIG. As shown in FIG. 4, the Scott Russell mechanism 31 is attached to a U-shaped mechanism storage section 32 made of a steel plate having mechanical strength, and a vacuum valve (not shown) is opened and closed by an operation shaft 33. The outer periphery of the mechanism housing portion 32, the electric field relaxation shield 34 made of easy aluminum alloy was processed by weight is bolted 35. The end of the mechanism housing portion 32 and the end of the shield 34 are provided with a step a with a constant curvature, and the outer shape of the mechanism housing portion 32 is larger than the shield.
[0012]
The relaxation of the electric field by the step a will be described with reference to FIG. Assuming that the electric field intensity of the mechanism housing portion 32 is E 1 and the electric field intensity of the shield 34 is E 2 , the electric field intensity characteristics E 1 and E 2 intersect due to the step a . Then, each of the electric field strength E 1 and E 2 at a point slightly beyond the step a = 5 mm As is apparent from the figure the lowest value. That is, the withstand voltage characteristic is improved where the electric field strength is lowest, and the shield 25 can be reduced in size.
[0013]
Here, the mechanism accommodating portion 32 serves as an inner electrode for relieving the electric field of the accommodated Scott Russell mechanism 31, and the shield 34 serves as an outer electrode.
[0014]
The mechanical strength and size of the mechanism housing 32 are determined in accordance with the stress and operating range of the operating mechanism. On the other hand, the shield 34 has a small shape to reduce the electric field. For this reason, in the overall shape, electric field relaxation can be performed with a small volume while having mechanical strength.
[0015]
Further, the curvature of the shield 34 may be a small curvature because the inside is in contact with the side surface of the mechanism housing portion 32. Therefore, the outer curvature can be increased without changing the thickness of the shield 34, and the electric field can be further alleviated.
[0016]
In the above-described embodiment, the electric field relaxation in the two-stage electrode including the inner electrode and the outer electrode has been described, but two or more stages of electrodes may be superposed.
[0017]
【The invention's effect】
As described above, according to the present invention, in a gas insulated switchgear in which an upper electrode and a lower electrode of a vacuum circuit breaker are supported and fixed by a support insulator, the vacuum circuit breaker has an operating mechanism for opening and closing the lower electrode. The electrodes are housed, and the electrodes are composed of an inner electrode in which the operation mechanism is housed and an outer electrode for relaxing the electric field, and the outer shape of the inner electrode is reduced so that the electric field strength of the inner electrode and the outer electrode can be suppressed. And the curvature of the end of the outer electrode is made larger on the outer side than on the inner side in contact with the inner electrode, so that the overall shape can be reduced.
[Brief description of the drawings]
FIG. 1 is a side view showing a configuration of a vacuum circuit breaker used for a gas insulated switchgear according to an embodiment of the present invention.
FIG. 2 is a plan view showing a support insulator of a vacuum circuit breaker used for the gas insulated switchgear according to the embodiment of the present invention.
FIG. 3 is an enlarged sectional view of a main part showing a support insulator of a vacuum circuit breaker used for the gas insulated switchgear according to the embodiment of the present invention.
FIG. 4 is a sectional view showing an operation mechanism of the vacuum circuit breaker used in the gas insulated switchgear according to the embodiment of the present invention.
FIG. 5 is a diagram for explaining electric field relaxation of the operation mechanism of the vacuum circuit breaker used in the gas insulated switchgear according to the embodiment of the present invention.
FIG. 6 is a configuration diagram of a typical gas-insulated switchgear.
FIG. 7 is a side view of the vacuum circuit breaker shown in FIG. 6;
FIG. 8 is a plan view of the support insulator of FIG. 6;
[Explanation of symbols]
1 box
2 Insulating gas
3A, 3B disconnector 4 vacuum circuit breaker
5 support insulators
6 Main circuit conductor
7 Cable head
8 Power cable
9 Through-type current transformer
10 Aerial-gas bushing
11 Vacuum valve
12 upper electrode 13 lower electrode
14 , 15 support insulator
16 Insulating plate
17, 31 Scott Russell mechanism
18 Insulated operating rod
19 Operation mechanism
20a, 20b contact
21a, 21b, 21c, 26 , 27 embedded electrode
22 Epoxy resin
23 opening
24 Operation rod 25, 34 Shield 28 Conductive layer 29 Insulating layer
30 grooves
32 mechanism storage
33 Operation axis
35 volts

Claims (1)

電気装置が収納される箱体の仕切板に支持がいしが取付けられ、真空遮断器の上部電極及び下部電極が前記支持がいしにより支持固定されるガス絶縁スイッチギヤにおいて、前記真空遮断器は、略四角体の支持がいしに支持固定される前記下部電極に開閉動作させるための操作機構部が収納され、且つ当該電極を操作機構部が収納される内側電極及び電界緩和シールド用の外側電極で構成し、両電極の電界強度が最小となるように前記内側電極の外形形状を前記外側電極よりも大きくすると共に、前記外側電極の端部の曲率を、前記内側電極に接する内側よりも外側を大きくしたことを特徴とするガス絶縁スイッチギヤ。In a gas insulated switchgear in which a support insulator is attached to a partition plate of a box in which an electric device is stored, and an upper electrode and a lower electrode of the vacuum circuit breaker are supported and fixed by the support insulator, the vacuum circuit breaker has a substantially square shape. An operating mechanism for opening and closing the lower electrode supported and fixed to the support insulator of the body is housed, and the electrode includes an inner electrode in which the operating mechanism is housed and an outer electrode for an electric field relaxation shield, The outer shape of the inner electrode is made larger than that of the outer electrode so that the electric field strength of both electrodes is minimized, and the curvature of the end of the outer electrode is made larger on the outer side than on the inner side in contact with the inner electrode. A gas insulated switchgear.
JP32982097A 1997-12-01 1997-12-01 Gas insulated switchgear Expired - Fee Related JP3597685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32982097A JP3597685B2 (en) 1997-12-01 1997-12-01 Gas insulated switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32982097A JP3597685B2 (en) 1997-12-01 1997-12-01 Gas insulated switchgear

Publications (2)

Publication Number Publication Date
JPH11164428A JPH11164428A (en) 1999-06-18
JP3597685B2 true JP3597685B2 (en) 2004-12-08

Family

ID=18225601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32982097A Expired - Fee Related JP3597685B2 (en) 1997-12-01 1997-12-01 Gas insulated switchgear

Country Status (1)

Country Link
JP (1) JP3597685B2 (en)

Also Published As

Publication number Publication date
JPH11164428A (en) 1999-06-18

Similar Documents

Publication Publication Date Title
US7122759B2 (en) Compact earthing switch for gas-insulated switchgear assemblies
US6510046B2 (en) Gas-insulated switchgear
EP1724802A2 (en) Gas-insulated equipment
JP2001307603A (en) Vacuum switch and vacuum switch gear using the same
US6831828B2 (en) Gas-insulated switchgear
CN1041152C (en) Fully closed combined electric unit
EP1152444B1 (en) Switch gear
CA2145456A1 (en) Metal-enclosed gas-insulated switching installation
JP3597685B2 (en) Gas insulated switchgear
JPH11262120A (en) Electric field relaxing apparatus and electric apparatus
JPH10210615A (en) Power-receiving and transforming facility device
JP2908554B2 (en) Vacuum circuit breaker
JPH08242513A (en) Switch gear and electric apparatus
JP6953936B2 (en) Ground switchgear / lightning arrester unit and gas insulation switchgear
EP1748455A1 (en) Electrical switchgear
JP2003111225A (en) Switchgear
JP3712456B2 (en) Gas insulated disconnect switch
JP2772094B2 (en) Barrier in insulating gas
JP2941509B2 (en) Vacuum circuit breaker
JP3202302B2 (en) Metal closed switchgear
JP2642469B2 (en) Electrical equipment insulation structure
JP3532252B2 (en) Gas insulated switchgear
JP2004056927A (en) Gas isolation switching device
JPH0622420A (en) Switchgear
JP3270130B2 (en) Vacuum circuit breaker

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040517

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040909

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees