JP3532252B2 - Gas insulated switchgear - Google Patents

Gas insulated switchgear

Info

Publication number
JP3532252B2
JP3532252B2 JP17545194A JP17545194A JP3532252B2 JP 3532252 B2 JP3532252 B2 JP 3532252B2 JP 17545194 A JP17545194 A JP 17545194A JP 17545194 A JP17545194 A JP 17545194A JP 3532252 B2 JP3532252 B2 JP 3532252B2
Authority
JP
Japan
Prior art keywords
gas
insulating
chamber
pressure
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17545194A
Other languages
Japanese (ja)
Other versions
JPH0847123A (en
Inventor
哲雄 吉田
信男 正木
勝 宮川
修 阪口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17545194A priority Critical patent/JP3532252B2/en
Publication of JPH0847123A publication Critical patent/JPH0847123A/en
Application granted granted Critical
Publication of JP3532252B2 publication Critical patent/JP3532252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Installation Of Bus-Bars (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス絶縁スイッチギヤ
に関する。
FIELD OF THE INVENTION This invention relates to gas insulated switchgear .

【0002】[0002]

【従来の技術】ガス絶縁スイッチギヤでは、密封容器内
に絶縁ガスを封入し、この絶縁ガスを所定の圧力に維持
して、絶縁ガスの特性によって良好な絶縁性能を発揮さ
せ、耐電圧特性を維持している。
2. Description of the Related Art In a gas-insulated switchgear, an insulating gas is enclosed in a hermetically sealed container, the insulating gas is maintained at a predetermined pressure, and good insulating performance is exhibited by the characteristics of the insulating gas. I am maintaining.

【0003】ガス絶縁遮断器(以下、GCBと表す)を
収納した従来のガス絶縁スイッチギヤの一例を図6の右
側面図に示す。図6において、外周が金属板で囲まれた
箱体31の後方上部に設けられたL字形の隔壁1aの後面
には、L字形のブッシング2が取り付けられている。こ
のブッシング2の下端には、このガス絶縁スイッチギヤ
が設置された床面に設けられたピットから立ち上げられ
た高圧架橋ポリエチレンケーブル(以下、単にケーブル
という)4が接続され、このケーブル4には、箱体31の
後端下部に固定された貫通形の変流器3が遊嵌してい
る。
An example of a conventional gas-insulated switchgear housing a gas-insulated circuit breaker (hereinafter referred to as GCB) is shown in the right side view of FIG. In FIG. 6, an L-shaped bushing 2 is attached to the rear surface of the L-shaped partition wall 1a provided on the upper rear portion of a box body 31 whose outer periphery is surrounded by a metal plate. At the lower end of the bushing 2, a high-pressure cross-linked polyethylene cable (hereinafter, simply referred to as a cable) 4 that is raised from a pit provided on the floor where the gas-insulated switchgear is installed is connected. The through-type current transformer 3 fixed to the lower rear end of the box body 31 is loosely fitted.

【0004】ブッシング2の前端には、断路器6Aの後
端が接続導体5を介して接続されている。この断路器6
Aの前端は、壁1aで囲まれた受電室11Aの前端とこの
前方のGCBをガス区分する絶縁スペーサ7Aの後部端
子に接続導体5を介して接続され、この絶縁スペーサ7
Aの図示しない前部端子は、この絶縁スペーサ7Aの前
方に収納されたGCB8の下極に接続されている。な
お、符号9は、電圧検出用の検電がいしで、ブッシング
2と断路器6Aを接続する導体5に下端が接続されてい
る。
A rear end of the disconnector 6A is connected to the front end of the bushing 2 via a connecting conductor 5. This disconnector 6
The front end of A is connected to the front end of the power receiving chamber 11A surrounded by the wall 1a and the rear terminal of an insulating spacer 7A for gas-distributing the front GCB via a connecting conductor 5.
The front terminal (not shown) of A is connected to the lower pole of the GCB 8 housed in front of the insulating spacer 7A. Reference numeral 9 is a voltage detecting insulator, the lower end of which is connected to the conductor 5 which connects the bushing 2 and the disconnector 6A.

【0005】また、GCB室11Bの上極には、絶縁スペ
ーサ7Aと同形の絶縁スペーサ7Bを介して、断路器6
Aの上部に収納されたこの断路器6Aと同形の断路器6
Bの前端が接続されている。この断路器6Bの後端に
は、箱体31の天井部に貫設されたガス絶縁ブッシング10
とケーブルの下端に接続されている。このガス絶縁ブッ
シング10の上部端子は、箱体1に隣設された図示しない
箱体の内部の電気機器に、この箱体に貫設されたガス絶
縁ブッシングを介して接続されている。
Further, the disconnector 6 is provided on the upper pole of the GCB chamber 11B via an insulating spacer 7B having the same shape as the insulating spacer 7A.
A disconnector 6 of the same shape as this disconnector 6A housed in the upper part of A
The front end of B is connected. At the rear end of the disconnector 6B, the gas-insulated bushing 10 that is provided through the ceiling of the box 31 is provided.
And is connected to the lower end of the cable. The upper terminal of the gas insulating bushing 10 is connected to an electric device inside a box body (not shown) adjacent to the box body 1 through a gas insulating bushing penetrating the box body.

【0006】なお、箱体31は、受電室11AとGCB室11
B及び母線室11Cにガス区分され、各室内には、六フッ
化硫黄ガス(以下、SF6 ガスという)12が密封されて
いる。一方、これらの受電室11A,GCB室11B及び母
線室11C以外は、大気圧の空気絶縁となっている。
The box 31 includes a power receiving room 11A and a GCB room 11
Gas is divided into B and the bus room 11C, and sulfur hexafluoride gas (hereinafter referred to as SF 6 gas) 12 is sealed in each room. On the other hand, except the power receiving chamber 11A, the GCB chamber 11B, and the busbar chamber 11C, they are air-insulated at atmospheric pressure.

【0007】このSF6 ガスの圧力は、受電室11Aと母
線室11Cの容器が角形となっているので、輸送時に法的
規制のない非圧力容器とするために、2kgf/cm2 以下の
低圧力となっている。また、GCB室11Bは、円筒状と
した圧力容器で遮断性能を向上させるために4〜5kgf/
cm2 の高圧としている。なお、GCB室11Bの下部に
は、GCB室8に収納されたGCBを操作する操作機構
室8aの空気絶縁室となっている。
The pressure of the SF 6 gas is a low pressure of 2 kgf / cm 2 or less in order to make it a non-pressure container which is not legally regulated during transportation because the vessels of the power receiving chamber 11A and the busbar chamber 11C are rectangular. It is under pressure. In addition, the GCB chamber 11B is a cylindrical pressure vessel with 4-5 kgf /
High pressure of cm 2 is used. The lower part of the GCB chamber 11B is an air insulation chamber of an operation mechanism chamber 8a for operating the GCB housed in the GCB chamber 8.

【0008】ここで、絶縁スペーサ7A,7Bは、GC
B室11Bと受電室11A、母線室11Cの圧力差に耐え、且
つ、この圧力差を維持するとともに、接続導体等の充電
部を箱体等の対地電位間および充電部の相互間、すなわ
ち、相間の絶縁特性を維持している。
Here, the insulating spacers 7A and 7B are GC
Withstanding and maintaining the pressure difference between the B chamber 11B, the power receiving chamber 11A, and the bus chamber 11C, the charging parts such as the connecting conductors are connected to the ground potential of the box or the like and between the charging parts, that is, Maintains insulation properties between phases.

【0009】このような用途に使われる絶縁スペーサ7
A,7Bは、実公平2-10724号公報に開示されているよ
うに、隣設したガス室の圧力差に耐えるために、絶縁層
を厚くするとともに、SF6 ガスの圧力が低い側の絶縁
層の沿面距離を延ばすことによって、絶縁特性を所定の
値に維持している。
Insulating spacer 7 used for such an application
As disclosed in Japanese Utility Model Publication No. 2-10724, A and 7B have a thick insulating layer in order to withstand the pressure difference between adjacent gas chambers and insulation on the side where the pressure of SF 6 gas is low. By increasing the creepage distance of the layer, the insulation characteristics are maintained at a predetermined value.

【0010】[0010]

【発明が解決しようとする課題】このような場所に貫設
されるスペーサ7A,7Bでは、GCB11Bが円筒形で
三相の遮断部が図示しない平面図で三角配置となってい
るため、導体の導出部も図示しない背面図において三角
形の配置となり、フランジ部分は、三相一括の円板状と
なる。
In the spacers 7A and 7B penetrating in such a place, since the GCB 11B has a cylindrical shape and the three-phase blocking portions are arranged in a triangle in a plan view not shown, The lead-out portion also has a triangular arrangement in a rear view (not shown), and the flange portion has a three-phase disc shape.

【0011】したがって、各ガス室の圧力差を維持する
ために、スペーサ7A,7Bでは、フランジの取付部を
含めて絶縁層の厚さを増やして、圧力差で生じる機械的
曲げ応力に耐えるように配慮しなければならない。
Therefore, in order to maintain the pressure difference between the gas chambers, in the spacers 7A and 7B, the thickness of the insulating layer including the mounting portion of the flange is increased so as to withstand the mechanical bending stress caused by the pressure difference. Must be considered.

【0012】また、低圧力のガス室側においては、SF
6 ガスの絶縁耐力がSF6 ガスの密度に比例した絶縁特
性を示すので、高圧のガス室側よりも絶縁耐力が低い。
このため、沿面距離を長くせざるを得ない。
On the low pressure side of the gas chamber, SF
Since the dielectric strength of the 6 gas shows an insulating property proportional to the density of the SF 6 gas, the dielectric strength is lower than that of the high pressure gas chamber side.
For this reason, the creepage distance must be increased.

【0013】また、絶縁スペーサ7A,7Bが三相の三
角形配置のため、受電室11Aと母線室10Cの機器の配置
が制約され、接続導体5を折り曲げる等、配置が複雑化
する。したがって、絶縁スペーサ7A,7Bの外径が大
形化するとともに、箱体の内部の機器の配置が制約さ
れ、収納効率が低下してガス絶縁スイッチギアの外
大形化する。
Further, since the insulating spacers 7A and 7B are arranged in a three-phase triangular shape, the arrangement of devices in the power receiving chamber 11A and the busbar chamber 10C is restricted, and the arrangement becomes complicated such as bending the connection conductor 5. Thus, insulating spacers 7A, 7B with outer diameter large in size, the arrangement of the equipment inside the box body is restricted, the storage efficiency is outside shape is large in size of the gas insulated switchgear reduced.

【0014】そこで本発明の目的は、内部に収納された
電気機器と導体の配置の自由度を上げることのできるガ
ス絶縁スイッチギヤを得ることである
Therefore, the object of the present invention is to house the inside.
Gas that can increase the degree of freedom in the arrangement of electrical equipment and conductors
It is to obtain the switch switch gear .

【0015】[0015]

【0016】[0016]

【課題を解決するための手段】請 求項及び請求項
記載の発明のガス絶縁スイッチギヤは、封入された絶縁
ガスの圧力が異なる第1,第2の電気機器室の間に、こ
れらの電気機器室の圧力の中間の圧力の絶縁ガスが封入
され第1,第2の電気機器室の電気機器を導体で接続す
る導体室を隣設したことを特徴とする。
In the gas-insulated switchgear according to the first and second aspects of the invention, between the first and second electric equipment chambers in which the pressure of the enclosed insulating gas is different, It is characterized in that an insulating gas having a pressure intermediate between the pressures of these electric device chambers is filled and a conductor chamber for connecting the electric devices of the first and second electric device chambers by a conductor is provided adjacently.

【0017】また、請求項及び請求項に記載の発明
のガス絶縁スイッチギヤは、遮断器と電気機器室の間に
遮断器のガス圧力と電気機器室のガス圧力の中間のガス
圧力の主回路導体室を隣設し、この主回路導体室に配設
された導体の片側と第1の絶縁スペーサを介して遮断器
と接続し、導体の他側を第2の絶縁スペーサを介して電
気機器室に接続したことを特徴とする。
Further, in the gas insulated switchgear according to the third and fourth aspects of the present invention, the gas pressure between the circuit breaker and the electric equipment room is intermediate between the gas pressure of the circuit breaker and the gas pressure of the electric equipment room. A main circuit conductor chamber is provided adjacently, one side of the conductor arranged in the main circuit conductor chamber is connected to a circuit breaker via a first insulating spacer, and the other side of the conductor is connected via a second insulating spacer. It is characterized by being connected to the electrical equipment room.

【0018】[0018]

【0019】[0019]

【0020】[0020]

【作用】 請求項及び請求項に記載の発明において
は、第1,第2の電気機器室の電気機器に接続される導
体室の導体の接続部は、導体室に封入された中間の圧力
の絶縁ガスによって、機械的特性と耐電圧特性が向上す
る。
According to the first and second aspects of the present invention, the conductor connecting portions of the conductor chambers connected to the electric devices of the first and second electric device chambers are provided with an intermediate portion enclosed in the conductor chamber. The insulating gas at pressure improves mechanical characteristics and withstand voltage characteristics.

【0021】また、請求項及び請求項に記載の発明
においては、第1の絶縁スペーサと第2の絶縁スペーサ
は、主回路導体室に封入された中間の圧力の絶縁ガスに
よって、耐電圧特性が向上し、電気機器室に収納される
電気機器と導体は、主回路導体室に配設される導体と絶
縁スペーサによって、配設される位置の自由度が向上す
る。
Further, in the inventions according to claims 3 and 4 , the first insulating spacer and the second insulating spacer are made to withstand a withstand voltage by the intermediate pressure insulating gas filled in the main circuit conductor chamber. The characteristics are improved, and the degree of freedom in the position of the electric device and the conductor housed in the electric device chamber is improved by the conductor and the insulating spacer arranged in the main circuit conductor chamber.

【0022】[0022]

【0023】[0023]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。なお、従来の技術で示した図6と重複する部分
には、同一符号を付して説明を省く。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. It should be noted that the same parts as those of FIG. 6 shown in the related art are designated by the same reference numerals and the description thereof will be omitted.

【0024】図1は、絶縁スペーサが取り付けられたガ
ス絶縁スイッチギヤを右側面からみた構成を示す。図1
において、箱体1の内部の隔壁1aの後面には、従来の
技術で示した図6と同様にL字形のブッシング2が取り
付けられて、このガス絶縁スイッチギヤは、箱体1の後
部に示す貫通形変流器3を貫通したケーブル4により受
電されている。
[0024] FIG. 1 shows a structure of insulation spacers viewed gas insulated switchgear that is mounted from the right side. Figure 1
6, an L-shaped bushing 2 is attached to the rear surface of the partition wall 1a inside the box body 1 as in FIG. 6 shown in the related art, and this gas insulated switchgear is shown at the rear portion of the box body 1. The power is received by the cable 4 penetrating the through-type current transformer 3.

【0025】隔壁1aで囲まれた受電室11Aにも、断路
器6Aと検電がいし9が図6と同様に収納され、受電室
11Aの前端を貫通した絶縁スペーサ13Aを介して、この
受電室11Aの前方に上下に隣設された円筒状の圧力緩和
室11Dの下部室に接続されている。また、この圧力緩和
室11Dの前端には、図1の右側面図では円形となる絶縁
スペーサ14Aが貫設され、この絶縁スペーサ14Aと絶縁
スペーサ13Aは、絶縁導体15で接続されている。
In the power receiving room 11A surrounded by the partition wall 1a, the disconnecting switch 6A and the voltage detecting insulator 9 are housed as in the case of FIG.
An insulating spacer 13A that penetrates the front end of 11A is connected to the lower chamber of a cylindrical pressure relaxation chamber 11D that is vertically adjacent to the power receiving chamber 11A. Further, an insulating spacer 14A which is circular in the right side view of FIG. 1 is provided at the front end of the pressure relaxation chamber 11D, and the insulating spacer 14A and the insulating spacer 13A are connected by an insulating conductor 15.

【0026】GCB室11Bの上部の背面側にも、下部側
と同様に絶縁スペーサ14Bが圧力緩和室11Dの前端に貫
通されている。この絶縁スペーサ14Bの後端は、母線室
11Cの前端に貫設された絶縁スペーサ13Bとこの絶縁ス
ペーサ13Bに前端が接続された接続導体5を介して、断
路器6Bの前端に接続されている。この断路器6Bの後
端は、この断路器6Bの上方の天井部に貫設された絶縁
ブッシング10の下端に接続導体5を介して接続されてい
る。また、受電室11A,ガス遮断器室11B,母線室11
C,圧力緩和室11Dには、SF6 ガス12が密封されてい
る。
On the back side of the upper part of the GCB chamber 11B, the insulating spacer 14B is also penetrated to the front end of the pressure relaxation chamber 11D, like the lower side. The rear end of this insulating spacer 14B is a bus room.
It is connected to the front end of the disconnector 6B via an insulating spacer 13B penetrating the front end of 11C and a connecting conductor 5 whose front end is connected to this insulating spacer 13B. The rear end of the disconnector 6B is connected to the lower end of an insulating bushing 10 penetrating the ceiling above the disconnector 6B via a connecting conductor 5. In addition, the power receiving room 11A, the gas circuit breaker room 11B, the bus room 11
SF 6 gas 12 is sealed in the pressure relaxation chamber 11D of C.

【0027】これらの各室のSF6 ガスの圧力は、受電
室11Aと母線室11Cが角形の容器のために、約 0.3kgf/
cm2 の低圧力とし、また、GCB室11Bは、5kgf/cm2
の高圧力となっている。
The pressure of SF 6 gas in each of these chambers is about 0.3 kgf / because the power receiving chamber 11A and the busbar chamber 11C are rectangular containers.
Low pressure of cm 2 and 5 kgf / cm 2 for GCB chamber 11B
Has become a high pressure.

【0028】一方、圧力緩和室11Dの圧力は、前方のG
CB室11Bの圧力と後方の受電室11A及び母線室11Cの
中間の4kgf/cm2 としている。したがって、絶縁スペー
サ14Aの前方からこの絶縁スペーサ14Aにかかる圧力
は、約1kgf/cm2 となり、絶縁スペーサ13A,13Bの前
面にかかる圧力は約 3.7kgf/cm2 となる。
On the other hand, the pressure in the pressure relaxation chamber 11D is
The pressure in the CB room 11B is set to 4 kgf / cm 2 which is between the power receiving room 11A and the bus room 11C in the rear. Therefore, the pressure applied to the insulating spacer 14A from the front of the insulating spacer 14A is about 1 kgf / cm 2 , and the pressure applied to the front surfaces of the insulating spacers 13A and 13B is about 3.7 kgf / cm 2 .

【0029】また、GCB室11B側の絶縁スペーサ14
A,14Bは、従来の技術で示した図6と同様に三相の絶
縁スペーサであるが、受電室11A側及び母線室11C側の
絶縁スペーサ13A,13Bは、図2で後述する単相の絶縁
スペーサを逆三角形に配置されている。
In addition, the insulating spacer 14 on the side of the GCB chamber 11B
Although A and 14B are three-phase insulating spacers similar to FIG. 6 shown in the prior art, the insulating spacers 13A and 13B on the power receiving chamber 11A side and the busbar chamber 11C side are single-phase insulating spacers described later in FIG. The insulating spacers are arranged in an inverted triangle.

【0030】このように構成された絶縁スペーサにおい
ては、各絶縁スペーサ13A,13B,14A,14Bは、前後
のガス室の圧力差が少なくなり、この圧力差の減少によ
り、片側から受ける圧力が減少するので、絶縁層の厚み
等を減らすことができ、軽量化を図ることができる。
In the insulating spacer thus constructed, the pressure difference between the front and rear gas chambers of each of the insulating spacers 13A, 13B, 14A, 14B is reduced, and this pressure difference reduces the pressure received from one side. Therefore, the thickness of the insulating layer can be reduced, and the weight can be reduced.

【0031】また、絶縁耐力は、SF6 ガスの圧力に比
例するガスの密度に左右されるが、絶縁スペーサ13A,
13B,14A,14Bの両側のSF6 ガスの密度の差が減少
するので、SF6 ガスの密度の低い側の沿面距離を極端
に増やす必要がない。したがって、各ガス室間の取付フ
ランジ部を挟んで各室の内部に突き出る左右の沿面距離
がほぼ同等となり、絶縁スペーサ全体として小形化を図
ることができる。
The dielectric strength depends on the gas density which is proportional to the pressure of SF 6 gas.
Since the difference in the density of SF 6 gas on both sides of 13B, 14A and 14B is reduced, it is not necessary to extremely increase the creepage distance on the side where the density of SF 6 gas is low. Therefore, the left and right creepage distances that protrude into the interiors of the respective chambers with the mounting flanges between the respective gas chambers being substantially the same, and the insulating spacer as a whole can be made smaller.

【0032】さらに、圧力緩和室11Dの内部で接続導体
15の相の位置を図1に示すように変換することができる
ので、受電室11Aや母線室11Cの機器の配置に合わせ
て、各相の導体の位置を入れ替えることができる。
Further, in the pressure relaxation chamber 11D, a connection conductor is formed.
Since the positions of the 15 phases can be converted as shown in FIG. 1, the positions of the conductors of the respective phases can be switched according to the arrangement of the devices in the power receiving room 11A and the bus room 11C.

【0033】例えば、図1では、GCB室11側の逆三角
配置の導体の相の配置を変え、受電室11A、母線室11C
側で上向きの三角形の配置にしている。ここで、受電室
11Aと母線室11Cの最下部の絶縁スペーサ13Cは、図5
で後述するように、中間部から右側に中心導体が埋設さ
れていない絶縁支持物として用いており、接続導体15の
後端を支持固定している。
For example, in FIG. 1, the arrangement of the phases of the conductors in the inverted triangular arrangement on the side of the GCB chamber 11 is changed so that the power receiving chamber 11A and the busbar chamber 11C are changed.
It is arranged in an upward triangle on the side. Where the power receiving room
11A and the insulating spacer 13C at the bottom of the bus room 11C are shown in FIG.
As will be described later, it is used as an insulating support in which the central conductor is not buried in the right side from the intermediate portion, and the rear end of the connection conductor 15 is supported and fixed.

【0034】このため、円板状のフランジには、3個の
絶縁スペーサ13Aの他に、絶縁支持物としての図5で詳
細後述する絶縁スペーサ13Cが貫設され、このため、図
1の図示しない右側面図では縦横の四角形の配置となっ
ている。なお、この絶縁スペーサ13A,13Bは、受電室
側の機器の端子の配置に従って例えば、直角三角形とし
てもよく、不等辺三角形にしてもよく、任意に選択する
ことができる。
Therefore, in addition to the three insulating spacers 13A, an insulating spacer 13C as an insulating support, which will be described in detail later with reference to FIG. 5, is provided through the disk-shaped flange. In the right side view, it is arranged in a vertical and horizontal rectangular shape. The insulating spacers 13A and 13B may be, for example, a right triangle or an isosceles triangle according to the arrangement of the terminals of the device on the power receiving room side, and can be arbitrarily selected.

【0035】次に、図2は、図1で示した単相の絶縁ス
ペーサ13A,13Bの拡大詳細図である。この絶縁スペー
サは、中心導体16の周囲にエポキシ樹脂による絶縁層17
を注形で同軸に形成し、ほぼ中央部の外周に環状のフラ
ンジ部17aを形成し、ガス室側に設けられたフランジ18
の外面にOリング18aを介して気密を維持した状態で固
定される。
Next, FIG. 2 is an enlarged detailed view of the single-phase insulating spacers 13A and 13B shown in FIG. This insulating spacer is composed of an insulating layer 17 made of epoxy resin around the center conductor 16.
Is formed coaxially by casting, an annular flange portion 17a is formed on the outer periphery of the substantially central portion, and a flange 18 provided on the gas chamber side is formed.
It is fixed to the outer surface of the through the O-ring 18a while maintaining airtightness.

【0036】フランジ17aの両側の外周には、断面略L
字状の溝19 A, 19 が形成され、この溝19 A, 19 の内
面とフランジ部17aの表面には、導電塗料が塗布されて
接地層20を形成し、接地側となるフランジ17aとこの両
側の部分の電界緩和が図られている。ここで、中心導体
16が絶縁層17の中央部と接する両端の小径部16Dの間に
は、この小径部16Dと比べて大径となる直径φ1とした
軸芯部16aを形成している。
The outer periphery of both sides of the flange 17a has a cross section of approximately L.
V-shaped grooves 19 A, 19 B are formed, and conductive paint is applied to the inner surfaces of the grooves 19 A, 19 B and the surface of the flange portion 17 a to form a ground layer 20, and the flange 17 a on the ground side is formed. The electric field is relaxed on both sides. Where the center conductor
A shaft core portion 16a having a diameter φ1 which is larger than the small diameter portion 16D is formed between the small diameter portions 16D at both ends where 16 is in contact with the central portion of the insulating layer 17.

【0037】また、中心導体16の端部には、電界緩和用
として、段付部を曲面とした、直径φ2と直径φ3の突
出部16B,16Cが外周の段付部を面取りされて形成され
ている。なお、図1で前述した絶縁スペーサ13Cは、図
2で示す中心導体16が中央部で二分割され、図5で示す
ように短い中心導体16Aが左側のみに埋設され、注型で
形成されている。
Further, at the end of the center conductor 16, projections 16B and 16C having a diameter of φ2 and a diameter of φ3 are formed by chamfering the stepped portion on the outer periphery, for the purpose of electric field relaxation, with the stepped portion having a curved surface. ing. In the insulating spacer 13C described above with reference to FIG. 1, the central conductor 16 shown in FIG. 2 is divided into two parts at the center, and as shown in FIG. 5, the short central conductor 16A is embedded only on the left side and formed by casting. There is.

【0038】このように構成された絶縁スペーサにおい
ては、電界強度の高い絶縁層端部17bは、軸芯部16aに
より電界が緩和され、絶縁破壊の要因となるストリーマ
の進展を抑えることができる。
In the insulating spacer thus constructed, the insulating layer end portion 17b having a high electric field strength can suppress the progress of the streamer which causes the dielectric breakdown because the electric field is relaxed by the shaft core portion 16a.

【0039】すなわち、図2に示すような絶縁スペーサ
においては、絶縁層17の両端と小径部16Dの外周との交
点が、いわゆるトリプルジャンクションによる電界強度
の最高部位となるが、この部位の電界強度が緩和され
る。また、ガス側の軸芯部16aにより、さらに電界強度
の上昇が抑えられる。
That is, in the insulating spacer as shown in FIG. 2, the intersection of the both ends of the insulating layer 17 and the outer periphery of the small diameter portion 16D is the highest electric field strength due to the so-called triple junction. Is alleviated. Further, the gas-side shaft core portion 16a further suppresses an increase in electric field strength.

【0040】さらに、軸芯部16aの直径φ1と突出部16
Bの直径φ2を同一径にすることにより、絶縁層17bの
表面の最大電界強度となる部位が中心導体16から離れる
とともに、最大電界強度を形成する成分が、法線方向成
分≧接線方向成分となる。これにより、絶縁破壊は、ガ
ス空間となり絶縁層17の沿面のストリーマの進展を防ぐ
ことができる。
Further, the diameter φ1 of the shaft core portion 16a and the protruding portion 16
By making the diameter φ2 of B the same, the portion of the surface of the insulating layer 17b having the maximum electric field strength is separated from the central conductor 16, and the component forming the maximum electric field strength is a normal direction component ≧ a tangential direction component. Become. As a result, the dielectric breakdown becomes a gas space, and the streamer on the surface of the insulating layer 17 can be prevented from developing.

【0041】このため、絶縁層17の沿面は、気中におい
ては、表面の凹凸、表面抵抗率の不均衡、異物の付着な
どにより、不安定な絶縁耐力を示すが、ガス空間では、
ガス密度に左右される絶縁耐力で安定したものになる。
Therefore, the creeping surface of the insulating layer 17 exhibits unstable dielectric strength in the air due to surface irregularities, imbalance of surface resistivity, adhesion of foreign matter, etc.
It has a stable dielectric strength that depends on the gas density.

【0042】なお、突出部16Bの直径φ2を大きくし、
φ2>φ1とすると、法線方向成分<接線方向成分とな
り、絶縁耐力が変動するので、絶縁層17の沿面距離を増
やさなければならなくなって、結果的に絶縁スペーサの
外形が大形化する。
The diameter φ2 of the protruding portion 16B is increased,
If φ2> φ1, the component in the normal direction becomes smaller than the component in the tangential direction, and the dielectric strength varies. Therefore, the creepage distance of the insulating layer 17 must be increased, and as a result, the outer shape of the insulating spacer becomes large.

【0043】この絶縁ブッシングの両端に接続導体を接
続するために、突出部16Cを形成し、この突出部16Cの
外径φ3を増やすとともに,大きな曲率半径を形成する
ことができるので、絶縁スペーサの小形化を図ることが
できる。
In order to connect the connecting conductors to both ends of the insulating bushing, the projection 16C is formed, and the outer diameter φ3 of the projection 16C can be increased and a large radius of curvature can be formed. It can be miniaturized.

【0044】このように、小形化された絶縁スペーサを
用いることにより、図3に示すようにガス室の円板
フランジ21に対して、三相分の絶縁スペーサ13 を縦・
横任意の方向に配置できる。
[0044] Thus, by using a miniaturized insulative spacer, relative to the disc-shaped flange 21 of the gas chamber, as shown in FIG. 3, the vertical and the insulating spacers 13 A of the three phases
Can be placed in any direction.

【0045】次に、この絶縁スペーサを採用したガス絶
縁スイッチギヤの他の実施例を図4に示す。なお、図4
において、圧力緩和室11DのGCB室11側には、三相
の接続スペーサ14Aを用いているが、受電室11Aと母線
室11Cには、単相の絶縁スペーサ13Aを図3に示すよう
に横に一列にして取り付けている。
Next, another embodiment of the gas-insulated switchgear employing this insulating spacer is shown in FIG. Note that FIG.
In, the GCB chamber 11 B side of the pressure relief chamber 11D, although using a connection spacer 14A of three-phase, the receiving chamber 11A and bus chamber 11C is an insulating spacer 13A of the single-phase as shown in FIG. 3 It is attached in a row horizontally.

【0046】このため、各相の断路棒が横に一列に配置
されている断路器6A,6Bに対し、圧力緩和室11Dの
内部の三相の接続導体24の位置を変換し、図3に示すよ
うな横に一列に配置して絶縁スペーサ13Aに接続すれ
ば、直線上の機器の相互間を接続できる。
For this reason, the positions of the three-phase connecting conductors 24 inside the pressure relaxation chamber 11D are changed with respect to the disconnecting devices 6A and 6B in which the disconnecting rods of each phase are arranged laterally in a row. By arranging them in a line horizontally as shown and connecting them to the insulating spacer 13A, it is possible to connect the devices on a straight line.

【0047】したがって、絶縁スペーサ13Aと断路器6
A,6Bの間の距離を短縮することができ、全体の外径
の小形化を図ることができる。
Therefore, the insulating spacer 13A and the disconnector 6
The distance between A and 6B can be shortened, and the overall outer diameter can be reduced.

【0048】また、単相の絶縁スペーサ13Aを採用する
ことにより、各絶縁スペーサのフランジの面積が減少
し、この面積の減少によって全面積が受ける圧力も減少
するので、フランジの絶縁層の厚み等を減らすことがで
き、成形サイクルの短縮とひずみの減少及び軽量化を図
ることもできる。
Further, by adopting the single-phase insulating spacer 13A, the area of the flange of each insulating spacer is reduced, and the reduction of this area also reduces the pressure applied to the entire area. Therefore, the thickness of the insulating layer of the flange, etc. It is also possible to shorten the molding cycle, reduce strain and reduce weight.

【0049】なお、上記実施例では、スイッチギヤに組
み込まれる絶縁スペーサについて説明したが、計器用変
成器などの電気機器の両端の主回路端子を絶縁樹脂で一
体に注型成形した高圧電気機器の接続部においても同様
に適用することができる。
In the above embodiment, the insulating spacer incorporated in the switchgear has been described. However, the main circuit terminals at both ends of an electric device such as an instrument transformer are integrally cast-molded with an insulating resin to form a high-voltage electric device. The same can be applied to the connecting portion.

【0050】すなわち、導体の絶縁層の内側に図2で示
した絶縁ブッシングの軸芯部16aに対応する大径部を形
成し、また、この大径部と同一径の図2で示した突出部
16B,16Cに対応する大径部をガス室側に形成して、図
5で示した絶縁スペーサのフランジ17aの左側面から右
側を除いた形状とすることにより、前述したトリプルジ
ャンクションによる電界を緩和するとともに、絶縁層の
沿面の最大電界強度の成分を法線方向成分≧接線方向成
分とすることができ、絶縁耐力を安定し、高圧電気機器
の接続部の小形化を図ることができる。
That is, a large diameter portion corresponding to the shaft core portion 16a of the insulating bushing shown in FIG. 2 is formed on the inside of the insulating layer of the conductor, and the protrusion having the same diameter as this large diameter portion shown in FIG. Department
By forming a large-diameter portion corresponding to 16B and 16C on the gas chamber side and removing the right side from the left side of the flange 17a of the insulating spacer shown in FIG. 5, the electric field due to the triple junction described above is relaxed. In addition, the component of the maximum electric field strength on the creeping surface of the insulating layer can be set to the normal direction component ≧ the tangential direction component, the dielectric strength can be stabilized, and the connection portion of the high-voltage electric device can be downsized.

【0051】[0051]

【0052】[0052]

【発明の効果】 請求項及び請求項に記載の発明によ
れば、封入された絶縁ガスの圧力が異なる第1,第2の
電気機器室の間に、これらの電気機器室の圧力の中間の
圧力の絶縁ガスが封入された導体室を設け、この導体室
に第1,第2の電気機器室の電気機器を接続する導体を
配設することで、第1,第2の電気機器室の電気機器を
接続する導体室の導体の接続部に対し、導体室に封入さ
れた中間の圧力の絶縁ガスによって、耐電圧特性を向上
させたので、内部に収納された電気機器と導体の配置の
自由度を上げることができるガス絶縁スイッチギヤを得
ることができる。
Effects of the Invention According to the invention described in claims 1 and 2, a first pressure of the encapsulated insulation gas is different between the second electrical device chamber, the pressure of these electrical equipment room By providing a conductor chamber in which an insulating gas having an intermediate pressure is filled, and arranging a conductor for connecting the electric devices in the first and second electric device chambers to the conductor chamber, the first and second electric devices are provided. For the connection part of the conductor of the conductor room that connects the electrical equipment of the room, the withstand voltage characteristics were improved by the insulating gas of the intermediate pressure sealed in the conductor room. It is possible to obtain a gas-insulated switchgear capable of increasing the degree of freedom of arrangement.

【0053】また、請求項及び請求項に記載の発明
によれば、遮断器と電気機器室の間に遮断器のガス圧力
と電気機器室のガス圧力の中間の圧力のガス主回路導体
室を隣設し、この主回路導体室に配設された導体の片側
と第1の絶縁スペーサを介して遮断器と接続し、導体の
他側を第2の絶縁スペーサを介して電気機器室に接続す
ることで、第1の絶縁スペーサと第2の絶縁スペーサの
耐電圧特性を主回路導体室に封入された中間の圧力の絶
縁ガスによって向上させ、電気機器室に収納される電気
機器と導体に対し、主回路導体室に配設される導体と絶
縁スペーサによって位置の自由度が向上させたので、内
部に収納された電気機器と導体の配置の自由度を上げる
ことのできるガス絶縁スイッチギヤを得ることができ
る。
According to the third and fourth aspects of the present invention, the gas main circuit conductor having an intermediate pressure between the gas pressure of the circuit breaker and the gas pressure of the electric equipment room is provided between the circuit breaker and the electric equipment room. A chamber adjacent to the main circuit conductor chamber, one side of the conductor is connected to the circuit breaker through the first insulating spacer, and the other side of the conductor is connected through the second insulating spacer to the electrical equipment chamber. By connecting the first insulating spacer and the second insulating spacer with each other, the withstand voltage characteristics of the first insulating spacer and the second insulating spacer are improved by the insulating gas of the intermediate pressure sealed in the main circuit conductor chamber, Since the degree of freedom of position is improved with respect to the conductor by the conductor and the insulating spacer arranged in the main circuit conductor chamber, it is possible to increase the degree of freedom in the arrangement of the electrical equipment and the conductor housed inside. You can get gears.

【0054】[0054]

【図面の簡単な説明】[Brief description of drawings]

【図1】縁スペーサがガス絶縁スイッチギヤに組み込
まれた状態の一例と、請求項1,2,3及び請求項4
記載の発明のガス絶縁スイッチギヤの一実施例を示す右
側面図。
[1] As an example of a state where insulation spacer is incorporated in the gas insulated switchgear, a right side view showing an embodiment of a gas insulated switchgear of the invention described in claim 1, 2, 3 and claim 4 .

【図2】縁スペーサの一実施例を示す部分半断面図。Figure 2 is a partial half cross-sectional view showing an embodiment of insulation spacer.

【図3】縁スペーサの他の実施例を示す図。FIG. 3 shows another embodiment of the insulation spacer.

【図4】請求項1,2,3及び請求項4に記載の発明の
ガス絶縁スイッチギヤの他の実施例を示す右側面図。
FIG. 4 is a right side view showing another embodiment of the gas-insulated switchgear of the invention described in claims 1, 2, 3 and 4 .

【図5】図1に示す絶縁スペーサ13Cの拡大詳細図。5 is an enlarged detailed view of an insulating spacer 13C shown in FIG.

【図6】従来のガス絶縁スイッチギヤの一例を示す右側
面図。
FIG. 6 is a right side view showing an example of a conventional gas insulated switchgear.

【符号の説明】[Explanation of symbols]

1…箱体、2…ブッシング、3…変流器、4…高圧架橋
ポリエチレンケーブル5…接続導体、6A,6B…断路
器、8…ガス絶縁遮断器、9…検電がいし、10…ガス絶
縁ブッシング、11A…受電室、11B…ガス遮断器室、11
C…母線室、11D…圧力緩和室、12…絶縁ガス、13A,
13B,13C,14A,14B…絶縁スペーサ、15,24…接続
導体、16…中心導体、16a…大径部、16B…突出部、17
…絶縁層、18,21…フランジ、19A,19B…溝、20…接
地層。
DESCRIPTION OF SYMBOLS 1 ... Box body, 2 ... Bushing, 3 ... Current transformer, 4 ... High voltage bridge | crosslinking polyethylene cable 5 ... Connection conductor, 6A, 6B ... Disconnector, 8 ... Gas insulation circuit breaker, 9 ... Electric insulation insulator, 10 ... Gas insulation Bushing, 11A ... power receiving room, 11B ... gas circuit breaker room, 11
C ... Bus room, 11D ... Pressure relaxation room, 12 ... Insulating gas, 13A,
13B, 13C, 14A, 14B ... Insulating spacer, 15, 24 ... Connection conductor, 16 ... Center conductor, 16a ... Large diameter portion, 16B ... Projection portion, 17
... Insulating layer, 18, 21 ... Flange, 19A, 19B ... Groove, 20 ... Ground layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阪口 修 東京都府中市東芝町1番地 株式会社東 芝 府中工場内 (56)参考文献 実開 昭54−1187(JP,U) (58)調査した分野(Int.Cl.7,DB名) H02B 13/02 H02G 5/08 361 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Osamu Sakaguchi No. 1 Toshiba-cho, Fuchu-shi, Tokyo Inside the Fuchu factory, Toshiba Corporation (56) Bibliographic references Sho 54-1187 (JP, U) (58) Field (Int.Cl. 7 , DB name) H02B 13/02 H02G 5/08 361

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 絶縁ガスが封入された第1の電気機器室
と、この第1の電気機器室のガス圧力と異なるガス圧力
の第2の電気機器室と、この第2の電気機器室と前記第
1の電気機器室の間に隣設され、前記第1,第2の電気
機器室に収納された電気機器を接続する導体が配設され
前記第1,第2の電気機器室のガス圧力の中間の圧力で
絶縁ガスが封入された導体室とからなるガス絶縁スイッ
チギヤ。
1. A first electric equipment room in which an insulating gas is filled, a second electric equipment room having a gas pressure different from a gas pressure of the first electric equipment room, and a second electric equipment room. A gas in the first and second electric equipment chambers is provided adjacent to the first electric equipment chamber, and a conductor is provided to connect the electric equipments housed in the first and second electric equipment chambers. A gas-insulated switchgear consisting of a conductor chamber filled with insulating gas at an intermediate pressure.
【請求項2】 第1の電気機器室の絶縁ガスの圧力を5
kgf/cm2 、第2の電気機器室の絶縁ガスの圧力を 0.3kg
f/cm2 、導体室の絶縁ガスの圧力を 0.3kgf/cm2 以上4
kgf/cm2 未満としたことを特徴とする請求項に記載の
ガス絶縁スイッチギヤ。
2. The pressure of the insulating gas in the first electric equipment room is set to 5
kgf / cm 2 , the pressure of the insulating gas in the second electrical equipment room is 0.3 kg
f / cm 2 , pressure of insulating gas in conductor chamber is 0.3kgf / cm 2 or more 4
The gas-insulated switchgear according to claim 1 , wherein the gas-insulated switchgear is less than kgf / cm 2 .
【請求項3】 絶縁ガスが封入された遮断器と、この遮
断器のガス圧力と異なるガス圧力の電気機器室と、この
電気機器室と前記遮断器の間に隣設され、前記遮断器と
接続する第1の絶縁スペーサと前記電気機器室と接続す
る第2の絶縁スペーサが貫設され前記遮断器と前記電気
機器室のガス圧の中間の圧力で絶縁ガスが封入された主
回路導体室とからなるガス絶縁スイッチギヤ。
3. A circuit breaker filled with an insulating gas, an electric equipment room having a gas pressure different from the gas pressure of the circuit breaker, and a circuit breaker provided adjacent to the electric equipment room and the circuit breaker. A main circuit conductor chamber in which a first insulating spacer to be connected and a second insulating spacer to be connected to the electric equipment chamber are penetratingly provided, and an insulating gas is filled at an intermediate pressure between gas pressures of the circuit breaker and the electric equipment chamber. Gas insulated switchgear consisting of.
【請求項4】 第1の絶縁スペーサを三相一括形とし、
第2の絶縁スペーサを各相分割形としたことを特徴とす
る請求項に記載のガス絶縁スイッチギヤ。
4. The first insulating spacer is a three-phase collective type,
The gas-insulated switchgear according to claim 3 , wherein the second insulating spacer is of a phase-separated type.
JP17545194A 1994-07-27 1994-07-27 Gas insulated switchgear Expired - Fee Related JP3532252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17545194A JP3532252B2 (en) 1994-07-27 1994-07-27 Gas insulated switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17545194A JP3532252B2 (en) 1994-07-27 1994-07-27 Gas insulated switchgear

Publications (2)

Publication Number Publication Date
JPH0847123A JPH0847123A (en) 1996-02-16
JP3532252B2 true JP3532252B2 (en) 2004-05-31

Family

ID=15996309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17545194A Expired - Fee Related JP3532252B2 (en) 1994-07-27 1994-07-27 Gas insulated switchgear

Country Status (1)

Country Link
JP (1) JP3532252B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3412982B2 (en) * 1994-11-18 2003-06-03 東芝Itコントロールシステム株式会社 Gas insulated substation equipment
JP4498251B2 (en) * 2005-09-26 2010-07-07 三菱電機株式会社 Switchgear insulation structure

Also Published As

Publication number Publication date
JPH0847123A (en) 1996-02-16

Similar Documents

Publication Publication Date Title
US5578805A (en) Metal-enclosed gas-filled switchgear units
US5898565A (en) Gas insulated switchgear apparatus
EP0570688B1 (en) Switch gear
JPH04123733A (en) Gas-blast circuit breaker
JP2854744B2 (en) Metal closed switchgear
JP3532252B2 (en) Gas insulated switchgear
JPH0158725B2 (en)
US6219225B1 (en) Gas insulated switch gear and method for assembling therefor
JP3208660B2 (en) Gas insulated switchgear
JPH09162041A (en) Gas-insulated transformer
JP3202302B2 (en) Metal closed switchgear
JPH0622420A (en) Switchgear
KR19990023397A (en) Gas Insulation Bus and Gas Insulation Switch
JP2683788B2 (en) Bushing mounting part
JP2683787B2 (en) Cable termination connection
JPH0210725Y2 (en)
JP3482325B2 (en) Gas circuit breaker
JP2800441B2 (en) Insulated case with grounding part between phases
JPH0684419A (en) Insulating fixture
JP2588263B2 (en) Three-phase gas insulated switchgear
JPH08111150A (en) Vacuum circuit breaker
JPH0458704A (en) Gas insulation switchgear
JP2933747B2 (en) Gas insulated switchgear
JPS6033695Y2 (en) gas insulated electrical equipment
JPH0115071Y2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040303

LAPS Cancellation because of no payment of annual fees