JPH03222621A - Gas-insulated spacer - Google Patents

Gas-insulated spacer

Info

Publication number
JPH03222621A
JPH03222621A JP2013623A JP1362390A JPH03222621A JP H03222621 A JPH03222621 A JP H03222621A JP 2013623 A JP2013623 A JP 2013623A JP 1362390 A JP1362390 A JP 1362390A JP H03222621 A JPH03222621 A JP H03222621A
Authority
JP
Japan
Prior art keywords
groove
insulator
center conductor
spacer
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013623A
Other languages
Japanese (ja)
Other versions
JP2726537B2 (en
Inventor
Masaru Miyagawa
勝 宮川
Tetsuo Yoshida
哲雄 吉田
Nobuo Masaki
信男 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013623A priority Critical patent/JP2726537B2/en
Publication of JPH03222621A publication Critical patent/JPH03222621A/en
Application granted granted Critical
Publication of JP2726537B2 publication Critical patent/JP2726537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/06Totally-enclosed installations, e.g. in metal casings
    • H02G5/066Devices for maintaining distance between conductor and enclosure

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Installation Of Bus-Bars (AREA)

Abstract

PURPOSE:To make an apparatus smaller, as it maintains insulating properties, and to eliminate machining to reduce a manufacturing cost by forming the longitudinal section of a central conductor into an H-shape and by providing a first groove shaped into a ring, in the manner of coaxially facing the central conductor, and a second groove. CONSTITUTION:A central conductor 21 forms an H-shape in the longitudinal section, and an insulator 22 is formed by a main body part 23 on the central conductor 21 side, a flange 24 thinner than the main body part 23 on the outer peripheral end side and a U-shaped groove 25 as a first groove. Also, a semicircular groove 26 is provided as a second groove in the vicinity of the boundary between the insulator surface 22a and U-shaped groove 25. The H-shielded central conductor 21 forms a recessed part in the boundary of the insulator 23, the central conductor 21 and an insulating gas to prevent a triple junction. When the width of the U-shaped groove is selected in a specified manner, it is possible to suppress the electric field strength of the insulator surface. Thus, the diameter of a spacer is reduced and working properties are improved.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、ガス絶縁電気機器に装着され、各コンパート
メントのガス区分かできるガス絶縁スペーサに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a gas insulated spacer that is attached to gas insulated electrical equipment and is capable of dividing the gas in each compartment.

(従来の技術) 第2図は、従来のガス絶縁スペーサを装着したガス絶縁
開閉装置の一例を示す。また、第3図および第4図は、
従来のガス絶縁スペーサの中心線に沿って一側を切断し
た断面図を示す。
(Prior Art) FIG. 2 shows an example of a gas insulated switchgear equipped with a conventional gas insulated spacer. In addition, Figures 3 and 4 are
1 shows a cross-sectional view of a conventional gas insulating spacer, cut along one side along the center line.

ガス絶縁開閉装置は、第2図に示すように接地金属容器
1の中に遮断器2.断路器3.母線4゜ケーブルヘッド
5が収納され、事故拡大防止のため各々接地金属仕切板
1aにより収納場所が区分されている。
The gas insulated switchgear includes a circuit breaker 2.2 in a grounded metal container 1 as shown in FIG. Disconnector 3. The busbar 4° cable head 5 is housed, and the storage locations are separated by grounded metal partition plates 1a to prevent the spread of accidents.

このため、これらの機器は、接地金属仕切板1aにガス
絶縁スペーサ(以下、スペーサという)6を取付け、こ
のスペーサ6を介して導体7で接続されている。
For this reason, these devices are connected by a gas insulating spacer (hereinafter referred to as a spacer) 6 attached to a grounded metal partition plate 1a, and via a conductor 7 via this spacer 6.

また、一般にガス絶縁開閉装置は、数面の列盤構成とな
るため、母線4により各盤を電気的に接続している。こ
こでも前記同様、事故拡大防止のため各盤の母線室は、
接地金属仕切板1aで仕切られているので、スペーサ6
を取付け、これを介して各盤の母線4か接続されている
Further, since a gas insulated switchgear generally has a configuration of several panels in rows, each panel is electrically connected by a bus bar 4. Here, as above, in order to prevent the accident from spreading, the busbar room of each panel is
Since it is partitioned by a grounded metal partition plate 1a, the spacer 6
The busbar 4 of each panel is connected through this.

一方、接地金属仕切板1aで区分されている各部屋は、
SF6ガスのような絶縁ガス8が封入されているので、
スペーサ6は各部屋の気密を保つように構成されている
On the other hand, each room divided by a grounded metal partition plate 1a is
Since it is filled with an insulating gas 8 such as SF6 gas,
The spacer 6 is configured to keep each room airtight.

スペーサ6は、第3図に示すように中心導体9と、この
中心導体9と同軸にエポキシ樹脂材を注型した円盤状の
絶縁体1oで構成されている。なお、中心導体9の両側
端部には、導体7を接続するためのネジ穴(図示しない
)が設けられている。
As shown in FIG. 3, the spacer 6 is composed of a central conductor 9 and a disc-shaped insulator 1o formed by casting an epoxy resin material coaxially with the central conductor 9. Note that screw holes (not shown) for connecting the conductor 7 are provided at both end portions of the center conductor 9.

スペーサ6の固定方法は、接地金属仕切板1aを取付ベ
ース■1とし、これにネジ穴Llaとその内側にOリン
グ溝11bを設け、取付ベース11と金属材から形成さ
れた固定フランジ12の間に絶縁体1oの外周側端部を
挾み込み、ボルト13で固定する。なお、この時Oリン
グ溝11bはOリング14を挿入し、絶縁体10と取付
ベース11の間のガスシールを行っている。
The method of fixing the spacer 6 is to use a grounded metal partition plate 1a as a mounting base 1, provide a screw hole Lla and an O-ring groove 11b inside the screw hole Lla, and connect the mounting base 11 and a fixing flange 12 made of a metal material. Insert the outer circumferential end of the insulator 1o between the holes and secure with bolts 13. At this time, the O-ring 14 is inserted into the O-ring groove 11b to provide a gas seal between the insulator 10 and the mounting base 11.

ところで、同図に示すスペーサ6の特徴は、絶縁体10
.取付ベース11および固定フランジ12とSF6ガス
の界面に生じるトリプルジャンクションを防止するため
に、取付ベース11と固定フランジ12に挟まれる部分
の絶縁体10の形状を凸形とすることにより、取付ベー
ス11と固定フランジ12との接触角を90’ D上と
し、かつ、取付ベース11と固定フランジ12の中心導
体9対向側端部(内周面)に耐圧を満足できるだけの曲
率を持たせていることである。
By the way, the feature of the spacer 6 shown in the figure is that the insulator 10
.. In order to prevent a triple junction occurring at the interface between the mounting base 11 and the fixed flange 12 and the SF6 gas, the shape of the insulator 10 at the portion sandwiched between the mounting base 11 and the fixed flange 12 is made convex. The contact angle between the mounting base 11 and the fixed flange 12 is 90' D or more, and the ends (inner peripheral surfaces) of the mounting base 11 and the fixed flange 12 on the side facing the center conductor 9 have a curvature sufficient to satisfy the withstand pressure. It is.

このような構成とすることにより、絶縁体1oの部に電
界緩和用の埋込み電極を設けることなく接地側の電界を
緩和できるようになっている。また、短時間電流などに
よるスペーサ6の機械的強度を増大するため、中心導体
9接着部分近傍の絶縁体10の接着面積と厚さを大きく
している。
With such a configuration, the electric field on the ground side can be relaxed without providing a buried electrode for electric field relaxation in the insulator 1o. Further, in order to increase the mechanical strength of the spacer 6 due to short-time current, etc., the bonding area and thickness of the insulator 10 near the bonding portion of the center conductor 9 are increased.

第4図に示すスペーサ6の構成は、接地側の電界緩和方
法が第3図に示すスペーサ6と異なるだけで、その他は
同じである。接地側電界緩和(トリプルジャンクション
の回避を含む)方法としては、取付ベース11と固定フ
ランジ12に挟まれる絶縁体10に内部電極15を埋設
することにより行っている。
The configuration of the spacer 6 shown in FIG. 4 is the same as the spacer 6 shown in FIG. 3, except for the method of relaxing the electric field on the ground side. As a method for alleviating the electric field on the ground side (including avoiding triple junctions), the internal electrode 15 is buried in the insulator 10 sandwiched between the mounting base 11 and the fixed flange 12.

(発明が解決しようとする課題) 従来のスペーサ6は、その絶縁性能が中心導体9の直径
、取付ベース11と固定フランジI2の中心導体9対向
側端部の曲率半径および中心導体9と取付ベース11ま
たは固定フランジ12の距離によって決定されるもので
あり、絶縁性能の向上を図るには、これらの寸法を大き
くすることが有効であった。つまり、絶縁性能を維持し
たままスペーサの直径を小さくするには、中心導体9の
直径を大きくし、取付ベース11と固定フランジ12の
中心導体9対向側端部の曲率を大きくする必要があり、
これらを大きくすることはスペーサの直径を大きくする
ことであり、スペーサの直径を小さくするには限界があ
った。
(Problems to be Solved by the Invention) The insulation performance of the conventional spacer 6 is based on the diameter of the center conductor 9, the radius of curvature of the end of the mounting base 11 and the fixed flange I2 facing the center conductor 9, and the center conductor 9 and the mounting base. 11 or the fixed flange 12, and it has been effective to increase these dimensions in order to improve insulation performance. In other words, in order to reduce the diameter of the spacer while maintaining insulation performance, it is necessary to increase the diameter of the center conductor 9 and increase the curvature of the ends of the mounting base 11 and fixed flange 12 on the side opposite to the center conductor 9.
Increasing these means increasing the diameter of the spacer, and there is a limit to reducing the diameter of the spacer.

また、取付ベース11と固定フランジ12の中心導体9
対向側端部に曲率を持たせるため、この部分を機械加工
する必要がある。ところが、この部分は、半円状である
から一方の面側からだけでは加工できず、中間で段取り
変えを行って他方の面側からも加工しなければならず、
しかも、3相回路では取付ベース11の加工が3回、固
定フランジ12の加工が3回で合計6回もあり、これら
の加工に多くの製作費が要求され、高価となっていた。
In addition, the center conductor 9 of the mounting base 11 and the fixed flange 12
In order to have a curvature at the opposite end, this part needs to be machined. However, since this part is semicircular, it cannot be machined from only one side, and the setup must be changed in the middle and machined from the other side as well.
Moreover, in a three-phase circuit, the mounting base 11 has to be machined three times and the fixed flange 12 has to be machined three times, a total of six times, and these processes require a large manufacturing cost, making it expensive.

さらに、トリプルジャンクションの回避方法は、第゛3
図に示すスペーサ6では、絶縁体IOの接地側端部を凸
形とし、かつ取付ベース11と固定フランジ12に前述
した曲率を持たせる加工が必要であり、接地側の取付寸
法が大きくなっており、第4図に示すスペーサ6では、
絶縁体10の接地側端部に内部電極15を埋込む必要が
あり、絶縁体lOと内部電極15が剥離し、部分放電や
クラックが生じたり、注型時に内部電極15の位置がず
れて正常の機能を果せなくなったりすることがあり、特
に、クラックが生じた場合には、電気機器として致命的
事故に至ることが予想される。このように、注型技術的
にも困難を伴うものがあり、これらの解決が望まれてい
た。
Furthermore, the method for avoiding triple junctions is
In the spacer 6 shown in the figure, it is necessary to make the ground side end of the insulator IO convex and to give the mounting base 11 and fixed flange 12 the aforementioned curvature, which increases the mounting dimensions on the ground side. In the spacer 6 shown in FIG.
It is necessary to embed the internal electrode 15 in the ground side end of the insulator 10, and the insulator 10 and the internal electrode 15 may peel off, causing partial discharge or cracks, or the position of the internal electrode 15 may shift during casting, which may cause malfunction. In particular, if a crack occurs, it is expected that a fatal accident will occur as an electrical device. As described above, there are some difficulties in the casting technique, and a solution to these problems has been desired.

そこで、本発明の目的は、 (1)絶縁性能を維持したまま、縮小化し安価とするこ
と。
Therefore, the objects of the present invention are: (1) To reduce the size and reduce the cost while maintaining insulation performance.

(2)取付ベースおよび固定フランジの曲率を形成する
ための機械加工をなくし安価とすること。
(2) To reduce the cost by eliminating the need for machining to form the curvature of the mounting base and fixed flange.

(3)トリプルジャンクションを回避する場合、接地側
取付部を大きくせず、絶縁体に内部電極を埋込むことな
く、注型技術上の困難をなくし、信頼性、生産性を向上
すること。
(3) When avoiding triple junctions, eliminate difficulties in casting technology and improve reliability and productivity by not increasing the size of the ground side attachment part or embedding internal electrodes in the insulator.

を満足したガス絶縁スペーサを提供するこ吉にある。Kokichi provides gas insulated spacers that meet your needs.

(課頴を解決するための手段) 本発明は、中心導体と、この中心導体と同軸にエポキシ
樹脂を注型した絶縁体から構成され、ガス絶縁電気機器
に装着して各コンパートメントのガス区分を可能とした
ガス絶縁スペーサにおいて、中心導体の縦断面形状をH
字状に形成し、絶縁体の外周側端部に段差をもって薄く
したフランジ部を形成すると共に、この段差部に、固定
部を構成する接地金属部材の厚さ以上とした幅を有し、
かつ中心導体と同軸で対向してリング状とした第1の溝
と、この第1の溝と絶縁体の沿面の境界近傍の第1の溝
側に中心導体の軸方向に円弧を持ち、かつ中心導体と同
軸でリング状とした第2の溝とを設け、さらに、この第
2の溝までの第1の溝とフランジ部には固定部と同電位
になる接地層を設けたものである。
(Means for Solving Issues) The present invention consists of a center conductor and an insulator in which epoxy resin is cast coaxially with the center conductor, and the insulator is attached to gas-insulated electrical equipment to separate the gas divisions of each compartment. In the gas insulated spacer, the longitudinal cross-sectional shape of the center conductor is H.
A thin flange portion is formed in the shape of a letter and has a step at the outer peripheral end of the insulator, and the step portion has a width equal to or greater than the thickness of the ground metal member constituting the fixing portion,
and a ring-shaped first groove coaxially facing the center conductor, and having a circular arc in the axial direction of the center conductor on the first groove side near the boundary between the first groove and the creeping surface of the insulator, and A ring-shaped second groove coaxial with the center conductor is provided, and a ground layer having the same potential as the fixed portion is provided in the first groove and the flange portion up to the second groove. .

(作 用) フランジ部とこれを固定するための固定部とが同電位で
あり、絶縁体の沿面を挟んで鋭角部を形成することがな
いので、トリプルジャンクションが防止できる。また、
絶縁体の沿面とU字溝の境界に半円溝を設けた接地層と
しているので、接地層と絶縁体の沿面の境界付近の等電
位線か持ち上げられ、この近傍のトリプルジャンクショ
ンも防止できる。そして、高圧側はHシールドされた中
心導体であるので、絶縁体、中心導体および絶縁ガスの
境界が凹部になっていて、トリプルジャンクションを防
止することができる。
(Function) The flange part and the fixing part for fixing it are at the same potential, and no acute angle part is formed across the creeping surface of the insulator, so triple junctions can be prevented. Also,
Since the ground layer is provided with a semicircular groove at the boundary between the creeping surface of the insulator and the U-shaped groove, the equipotential line near the boundary between the ground layer and the creeping surface of the insulator is lifted, and triple junctions in this vicinity can also be prevented. Since the high-voltage side has an H-shielded center conductor, the boundary between the insulator, the center conductor, and the insulating gas is a recess, which can prevent triple junctions.

さらに、絶縁性能は、中心導体の直径、Hシールドの曲
率半径、Hシールド上部の絶縁体の肉厚。
Furthermore, the insulation performance is determined by the diameter of the center conductor, the radius of curvature of the H shield, and the thickness of the insulator on the top of the H shield.

接地層と中心導体との距離、接地層の曲率半径等に影響
されるが、これらの寸法を固定した場合には、絶縁体の
沿面形状に左右される。そして、Hシールドの電界強度
が強くなるので、Hシールド上部の絶縁体の肉厚を厚く
し、接地側の第1の溝の幅を所定に選択することにより
、絶縁体の沿面の電界強度の抑制が図れる。また、従来
のガス絶縁スペーサのように接地側が、露出して絶縁ガ
ス空間に存在することなく絶縁体で囲まれているので、
絶縁ガスとエポキシ樹脂の誘電率の比1:5と形状によ
る係数αを乗じた値α15たけ接地側の電界強度を低下
させることができ、全体の電界強度も抑制する効果もあ
る。ただし、1≦α≦5である。
It is influenced by the distance between the ground layer and the center conductor, the radius of curvature of the ground layer, etc., but if these dimensions are fixed, it is influenced by the creeping shape of the insulator. Since the electric field strength of the H shield becomes stronger, by increasing the thickness of the insulator on the upper part of the H shield and selecting a predetermined width of the first groove on the ground side, the electric field strength on the creeping surface of the insulator can be reduced. It can be controlled. In addition, unlike conventional gas insulated spacers, the ground side is not exposed and present in the insulating gas space, but instead is surrounded by an insulator.
The electric field strength on the ground side can be reduced by α15, which is the product of the dielectric constant ratio of the insulating gas and the epoxy resin of 1:5 by the coefficient α depending on the shape, and there is also the effect of suppressing the overall electric field strength. However, 1≦α≦5.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。第
1図は、本発明の一実施例を中心線に沿って一画を切断
した断面図である。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of one embodiment of the present invention taken along the center line.

同図において、スペーサ20は、中心導体21と、この
中心導体21と同軸にエポキシ樹脂材を注型した円盤状
の絶縁体22で構成されている。
In the figure, the spacer 20 is composed of a center conductor 21 and a disc-shaped insulator 22 formed by casting an epoxy resin material coaxially with the center conductor 21.

この構成において、中心導体21は、縦断面形状がH字
状をなし、円盤状部21aと、この円盤状部21aの外
周側に形成されて先端を半円状とした環状の外周突出部
21bから構成され、円盤状部21aの両側面には、導
体7を接続するためのネジ穴(図示しない)が設けられ
ている。
In this configuration, the center conductor 21 has an H-shaped vertical cross section, and includes a disc-shaped portion 21a and an annular outer peripheral protrusion 21b formed on the outer peripheral side of the disc-shaped portion 21a and having a semicircular tip. Screw holes (not shown) for connecting the conductor 7 are provided on both sides of the disc-shaped portion 21a.

また、絶縁体22は、中心導体21側の主体部23と、
外周端部側で主体部23より厚さが薄いフランジ部24
と、このフランジ部24の上下で固定フランジI2と取
付ベース11の各々の厚さと同等以上の幅(Tで示す)
を有するU字溝25で構成されている。
Further, the insulator 22 has a main body portion 23 on the center conductor 21 side,
A flange portion 24 that is thinner than the main body portion 23 on the outer peripheral end side
And, the width above and below this flange part 24 is equal to or greater than the respective thicknesses of the fixed flange I2 and the mounting base 11 (indicated by T).
The U-shaped groove 25 has a U-shaped groove 25.

このU状溝25は、取付ベース11に対向する部分25
aと、固定フランジ12に対向する部分25bから成り
、固定フランジ12を用いて取付ベース11に固定する
場合、取付ベース11の表側、裏側の何れからでも取付
可能(つまり、固定時の方向性を無くす)とするため、
取付ベース11と固定フランジ12の頭部の何れか厚い
方を基準とした幅とする。また、中心導体21と対向す
る方向の距離をD  (mu)とし、定格電圧を印加し
た際ここに加わる電圧をV (kv)としたとき、g≧
Vの関係を保ち、中心導体21と同軸のリング状に設け
る。
This U-shaped groove 25 has a portion 25 facing the mounting base 11.
a and a portion 25b facing the fixing flange 12. When fixing to the mounting base 11 using the fixing flange 12, it can be mounted from either the front side or the back side of the mounting base 11 (in other words, the directionality when fixing can be changed). In order to eliminate
The width is based on the thicker of either the mounting base 11 or the head of the fixed flange 12. Further, when the distance in the direction facing the center conductor 21 is D (mu), and the voltage applied here when the rated voltage is applied is V (kv), g≧
It is provided in a ring shape coaxial with the center conductor 21 while maintaining the V relationship.

さらに、絶縁体沿面22aとU字溝25の境界付近のU
字溝25側に、半円溝26を主体部22の全周に亘り設
ける。ここで、半円溝26は、その半径(γで示す)を
絶縁体沿面21aの接地側電界強度の大きさと分布状態
に関連させる。また、半円溝2Bの始点と絶縁体沿面2
2aまでの距離(tで示す)は、絶縁体沿面22aの接
地側電界強度の大きさに関連させる。
Furthermore, U near the boundary between the insulator creeping surface 22a and the U-shaped groove 25
A semicircular groove 26 is provided on the side of the groove 25 over the entire circumference of the main body portion 22. Here, the radius (indicated by γ) of the semicircular groove 26 is related to the magnitude and distribution state of the ground side electric field strength of the insulator creeping surface 21a. Also, the starting point of the semicircular groove 2B and the creeping surface 2 of the insulator
The distance to 2a (indicated by t) is related to the magnitude of the ground side electric field strength of the insulator creeping surface 22a.

一方、絶縁体沿面22aとU字溝25との境界から距離
tたけ入った位置、すなわち半円溝26の始点からU字
溝25の最深部およびフランジ部24には、銅メツキま
たは導電塗料の塗布により、接地層27を形成する。
On the other hand, a position a distance t from the boundary between the insulator creeping surface 22a and the U-shaped groove 25, that is, from the starting point of the semicircular groove 26 to the deepest part of the U-shaped groove 25 and the flange portion 24, is coated with copper plating or conductive paint. A ground layer 27 is formed by coating.

次に、高圧側は、中心導体21の外周側突部21bの外
側を、角部を円弧状として絶縁体22で覆うようにモー
ルド(Hシールド)する。
Next, on the high-voltage side, the outside of the outer circumferential protrusion 21b of the center conductor 21 is molded (H shield) so that the corners are arcuate and covered with an insulator 22.

以上のように構成されたスペーサ20は、前述した従来
のスペーサ6と同様に取付ベース11に設けたOリング
溝11bにOリング14を挿入し、フランジ部24を取
付ベース11の上に乗せ、固定フランジ12をフランジ
部24にかぶせ、ボルト13を取付ベース■1のネジ穴
11aにねじ込むことにより固定する。
In the spacer 20 configured as described above, the O-ring 14 is inserted into the O-ring groove 11b provided in the mounting base 11 in the same way as the conventional spacer 6 described above, and the flange portion 24 is placed on the mounting base 11. The fixing flange 12 is placed over the flange portion 24 and fixed by screwing the bolt 13 into the screw hole 11a of the mounting base 1.

なお、この固定方法の場合、取付ベース11と固定フラ
ンジ12の中心導体21対向側端部は、U字溝25内に
突設させない。また、取付ベース11と固定フランジ1
2の中心導体21対向側端部には、従来のような曲率を
設けない。
In addition, in the case of this fixing method, the ends of the mounting base 11 and the fixing flange 12 on the side opposite to the center conductor 21 are not made to protrude into the U-shaped groove 25. In addition, the mounting base 11 and the fixed flange 1
The opposite end of the center conductor 21 of No. 2 is not provided with a curvature as in the conventional case.

次に、以上の構成によるスペーサ20の作用を説明する
。スペーサ20を取付ベース11に固定したとき、フラ
ンジ部24が接地電位となり取付ベース11と固定フラ
ンジ12と同電位であり、かつ、U字溝25より取付ベ
ース11と固定フランジ12が突出することはなく、そ
の上、接地層27か形成されているので、スペーサ20
の沿面と取付ベース11および固定フランジ12とSF
6ガスの界面に生じるトリプルジャンクションを防止す
ることができる。
Next, the operation of the spacer 20 with the above configuration will be explained. When the spacer 20 is fixed to the mounting base 11, the flange portion 24 is at ground potential and the mounting base 11 and the fixed flange 12 are at the same potential, and the mounting base 11 and the fixed flange 12 do not protrude from the U-shaped groove 25. In addition, since the ground layer 27 is formed, the spacer 20
creepage, mounting base 11, fixed flange 12 and SF
Triple junctions occurring at the interface of six gases can be prevented.

また、絶縁体沿面22aとU字溝25の境界に半径溝2
6を設は接地電位としていることから、絶縁体沿面22
aと接地層27の境界付近の等電位線が持ち上げられる
まで、この部分に生じるトリプルジャンクションを防止
することができる。しかし、この半円溝26による等電
位線の上昇により、半円溝26近傍の絶縁体沿面22a
上に等電位線が密になる所か現われ、局部的な電界集中
を生じる。そこで、これを防止するために、半円溝28
の始点を絶縁体沿面22aとU字溝25との境界から距
離tだけ入った位置としている。
Also, a radial groove 2 is provided at the boundary between the insulator creeping surface 22a and the U-shaped groove 25.
Since 6 is set at ground potential, the insulator creepage 22
Until the equipotential line near the boundary between a and the ground layer 27 is raised, a triple junction occurring in this portion can be prevented. However, due to the rise of the equipotential line due to the semicircular groove 26, the creeping surface 22a of the insulator near the semicircular groove 26
At the top, dense equipotential lines appear, causing local electric field concentration. Therefore, in order to prevent this, the semicircular groove 28
The starting point is a distance t from the boundary between the insulator creeping surface 22a and the U-shaped groove 25.

また、接地側の電界緩和は、U字溝25の接地層27に
より行われていて、取付ベース11と固定フランジ12
が中心導体21から見て接地層27に完全に隠されてい
るので、取付ベース11と固定フランジ12の中心導体
21対向側端部の形状は、鋭角部を有していても絶縁上
問題とならない。
Further, electric field relaxation on the ground side is performed by the ground layer 27 of the U-shaped groove 25, and the mounting base 11 and the fixed flange 12
is completely hidden by the ground layer 27 when viewed from the center conductor 21, so even if the shapes of the ends of the mounting base 11 and the fixed flange 12 on the side facing the center conductor 21 have sharp corners, there is no problem in terms of insulation. No.

一方、スペーサ20のフランジ*24は、第3図に示す
従来のスペーサ6の絶縁体IOのように厚さは厚くなく
てよい。U字溝25を設けたので、これより中心導体2
1に近い側の絶縁体22は厚く、沿面の中間に段差を設
けたりすることなく、中心導体21との接合面積を大き
くとれる。
On the other hand, the flange *24 of the spacer 20 does not have to be as thick as the insulator IO of the conventional spacer 6 shown in FIG. Since the U-shaped groove 25 is provided, the center conductor 2
The insulator 22 on the side closer to the center conductor 21 is thicker and can have a larger bonding area with the center conductor 21 without creating a step in the middle of the creeping surface.

また、スペーサ20の絶縁性能は、中心導体21の直径
、Hシールドの曲率半径、Hシールド上部の絶縁体21
の肉厚り、接地層27と中心導体21との距離ff、U
字溝25の曲率半径等に影響されるが、特に、U字溝2
5の形状に大きく影響される。従来のように接地側が露
出して絶縁ガス空間に存在するものではなく、絶縁体2
2で囲まれたU字溝25がこれに相当するため、絶縁ガ
スとエポキシ樹脂の誘電率比l:5と電極形状による係
数αを乗じた値α15(1≦α≦5)だけ絶縁体22に
囲まれている接地側の電界強度を下げることができ、か
つ、絶縁体沿面21a全体の電界強度も抑制している。
In addition, the insulation performance of the spacer 20 is determined by the diameter of the center conductor 21, the radius of curvature of the H shield, and the insulator 21 on the top of the H shield.
, the distance ff between the ground layer 27 and the center conductor 21, and U
Although it is influenced by the radius of curvature of the U-shaped groove 25, in particular, the U-shaped groove 2
It is greatly influenced by the shape of 5. Instead of existing in the insulating gas space with the ground side exposed like in the past, the insulator 2
Since the U-shaped groove 25 surrounded by 2 corresponds to this, the insulator 22 is divided by the value α15 (1≦α≦5), which is the dielectric constant ratio of the insulating gas and the epoxy resin, l:5, multiplied by the coefficient α depending on the electrode shape. The electric field strength on the ground side surrounded by the insulator can be lowered, and the electric field strength of the entire insulator creeping surface 21a is also suppressed.

さらに、高圧側は、縦断面形状をH字状とじた中心導体
2IをHシールドしているので、絶縁体22と絶縁ガス
および中心導体21の境界が凹部になっていてトリプル
ジャンクションを防止しているが、Hシールド先端の電
界強度か高くなり、絶縁体沿面22a上に局部的電界集
中部が生じるので、これを防止するためにHシールド上
部の絶縁体22の肉厚りを所定寸法としている。
Furthermore, on the high voltage side, the center conductor 2I, which has an H-shaped vertical cross section, is H-shielded, so the boundaries between the insulator 22, the insulating gas, and the center conductor 21 are recessed to prevent triple junctions. However, the electric field strength at the tip of the H shield becomes high and a local electric field concentration area occurs on the creeping surface 22a of the insulator, so in order to prevent this, the thickness of the insulator 22 on the top of the H shield is set to a predetermined size. .

なお、実験結果によれば、大気圧近傍のSF6ガス中で
定格電圧が20KVから140KVでは、半円溝26の
半径γをU字溝の幅Tに対してT/20≦γ≦T/2、
絶縁体沿面22aとU字溝25の境界から半径溝26の
始点までの距離t (mm)を3≦t≦1O1Hシール
ドの肉厚L(關)をL−10〜30、中心導体21の高
さく外周突出部21bの軸方向長さ)に対して、フラン
ジ部24の幅と上下のU字溝25の幅(2XT)を加え
たものを約70%とすることにより、所期の効果を得ら
れることが分った。
According to the experimental results, when the rated voltage is from 20KV to 140KV in SF6 gas near atmospheric pressure, the radius γ of the semicircular groove 26 is T/20≦γ≦T/2 with respect to the width T of the U-shaped groove. ,
The distance t (mm) from the boundary between the insulator creeping surface 22a and the U-shaped groove 25 to the starting point of the radial groove 26 is 3≦t≦1O1H The wall thickness L of the shield is L-10 to 30, and the height of the center conductor 21 is By setting the sum of the width of the flange portion 24 and the width (2XT) of the upper and lower U-shaped grooves 25 to approximately 70% of the axial length of the outer peripheral protruding portion 21b, the desired effect can be achieved. I found out that I can get it.

したがって、以上の構成による実施例は、接地側の電界
緩和やトリプルジャンクションの回避が容易であり、従
来のように取付ベース11や固定フランジ12の機械加
工(曲率を形成するための)が不要であり、また、絶縁
体の接地側部分内部に埋込電極か不要であるため、注型
が容易となり、生産性や信頼性の向上が図れる。
Therefore, in the embodiment with the above configuration, it is easy to alleviate the electric field on the ground side and avoid triple junctions, and there is no need for machining (to form curvature) of the mounting base 11 and fixed flange 12 as in the conventional case. In addition, since there is no need to embed an electrode inside the ground side portion of the insulator, casting becomes easy and productivity and reliability can be improved.

さらに、各部の電界強度が抑制できるので、絶縁性能を
維持したまま縮小化が図れる。
Furthermore, since the electric field strength at each part can be suppressed, the size can be reduced while maintaining insulation performance.

なお、以上の説明は、スペーサ20を絶縁ガス(SF6
ガス)中で使用する場合について行ったが、気中にも適
用できることは明白である。ただし、気中においてはト
リプルジャンクションが存在しないのでその効果だけは
ない。
Note that in the above explanation, the spacer 20 is
Although we have described the case where the method is used in air (gas), it is clear that it can also be applied in air. However, in the air, there is no triple junction, so there is no effect.

[発明の効果] 以上説明したように本発明によれば、従来ガス絶縁開閉
装置にスペーサと断路器を収納する場合、これらの相間
ピッチが相違していたため、接続導体の曲げ加工や組立
時の3次元の寸法出しによる作業時間の長大化などがあ
ったが、本発明のスペーサは、各部の電界強度が抑制で
きることから、絶縁性能を維持したままスペーサの直径
を縮小化でき、他の機器との相間ピッチを同一化でき、
作業性や導体加工性が向上する。
[Effects of the Invention] As explained above, according to the present invention, when a spacer and a disconnector are conventionally housed in a gas-insulated switchgear, the pitch between these phases is different, so it is difficult to bend the connecting conductor or when assembling. However, the spacer of the present invention can suppress the electric field strength at each part, so the diameter of the spacer can be reduced while maintaining insulation performance, making it easier to connect with other equipment. The pitch between the phases can be made the same,
Improves workability and conductor processability.

また、取付ベースと固定フランジの中心導体側対向端部
は、曲率を設けないのでこのための機械加工が3相回路
で6回も不要になり、取付ベースと固定フランジの加工
性か大幅に改善される。
In addition, since the opposing ends of the mounting base and fixed flange on the center conductor side do not have curvature, machining for this purpose is no longer required six times in a 3-phase circuit, greatly improving the machinability of the mounting base and fixed flange. be done.

さらに、トリプルジャンクションの回避と接地側の電界
緩和が容易にでき、絶縁体内に埋込電極等が不要となり
、注型も容易となってクラックや部分放電の恐れかなく
なり、信頼性1作業性2歩留りの向上が図れる。
Furthermore, it is possible to easily avoid triple junctions and relax the electric field on the ground side, eliminating the need for embedded electrodes in the insulator, making casting easier, eliminating the risk of cracks and partial discharges, and improving reliability (1) workability (2). Yield can be improved.

その他、本発明のスペーサを用いることにより、スペー
サの縮小化か図れるばかりでなく、ガス絶縁電気機器全
体の縮小化と加工性9組立作業性。
In addition, by using the spacer of the present invention, it is possible not only to reduce the size of the spacer, but also to reduce the size of the entire gas-insulated electrical equipment and improve workability and ease of assembly.

歩留り、信頼性を向上できると共に全体として安価なも
のとすることができる。
Yield and reliability can be improved, and the overall cost can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を中心線に沿って一側を切断
して示す断面図、第2図は本発明に関連するガス絶縁開
閉装置の側面図、第3図は従来のガス絶縁スペーサを中
心線に沿って一側を切断して示す断面図、第4図は第3
図と異なる従来のガス絶縁スペーサを中心線に沿って一
側を切断して示す断面図である。 11・・・取付ベース 21・・・中心導体 23・・・主体部 25・・・U字溝 27・・・接地層 12・・・固定フランジ 22・・・絶縁体 24・・・フランジ部 26・・・半円溝 (8733)  代理人 弁理士 猪 股 祥 晃(ほ
か1名) 箒 2 風
FIG. 1 is a cross-sectional view showing an embodiment of the present invention, with one side cut along the center line, FIG. 2 is a side view of a gas-insulated switchgear related to the present invention, and FIG. 3 is a conventional gas-insulated switchgear. A cross-sectional view showing one side of the insulating spacer cut along the center line.
FIG. 2 is a cross-sectional view showing a conventional gas insulating spacer, which is different from the one shown in the drawing, with one side cut along the center line. 11... Mounting base 21... Center conductor 23... Main body portion 25... U-shaped groove 27... Ground layer 12... Fixed flange 22... Insulator 24... Flange portion 26 ...Semi-circular groove (8733) Agent Patent attorney Yoshiaki Inomata (and 1 other person) Houki 2 Kaze

Claims (1)

【特許請求の範囲】[Claims] 中心導体と、この中心胴体と同軸にエポキシ樹脂を注型
した絶縁体から構成され、ガス絶縁電気機器に装着して
各コンパートメントのガス区分を可能としたガス絶縁ス
ペーサにおいて、前記中心導体の縦断面形状をH字状に
形成し、前記絶縁体の外周側端部に段差をもって薄くし
たフランジ部を形成すると共にこの段差部に、固定部を
構成する接地金属部材の厚さ以上とした幅を有し、かつ
前記中心導体と同軸で対向してリング状とした第1の溝
と、この第1の溝と前記絶縁体の沿面の境界近傍の前記
第1の溝側に前記中心導体の軸方向に円弧を持ち、かつ
前記中心導体と同軸でリング状とした第2の溝とを設け
、さらに、この第2の溝までの前記第1の溝と前記フラ
ンジ部には前記固定部と同電位になる接地層を設けたこ
とを特徴とするガス絶縁スペーサ。
In a gas insulated spacer, which is composed of a center conductor and an insulator in which epoxy resin is cast coaxially with the center body, and which is attached to gas insulated electrical equipment to enable gas division of each compartment, the longitudinal section of the center conductor is The insulator is formed into an H-shape, and a thin flange portion with a step is formed at the outer peripheral end of the insulator, and the step portion has a width equal to or greater than the thickness of the grounding metal member constituting the fixing portion. and a ring-shaped first groove coaxially facing the center conductor, and a ring-shaped first groove in the axial direction of the center conductor on the first groove side near the boundary between the first groove and the creeping surface of the insulator. a ring-shaped second groove having a circular arc and coaxial with the center conductor, and further, the first groove and the flange portion up to the second groove are provided with the same potential as the fixed portion. A gas insulating spacer characterized by being provided with a ground layer.
JP2013623A 1990-01-25 1990-01-25 Gas insulating spacer Expired - Lifetime JP2726537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013623A JP2726537B2 (en) 1990-01-25 1990-01-25 Gas insulating spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013623A JP2726537B2 (en) 1990-01-25 1990-01-25 Gas insulating spacer

Publications (2)

Publication Number Publication Date
JPH03222621A true JPH03222621A (en) 1991-10-01
JP2726537B2 JP2726537B2 (en) 1998-03-11

Family

ID=11838362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013623A Expired - Lifetime JP2726537B2 (en) 1990-01-25 1990-01-25 Gas insulating spacer

Country Status (1)

Country Link
JP (1) JP2726537B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1306954A1 (en) * 2001-10-29 2003-05-02 Abb Research Ltd. Insulating spacer with integrated barrier for gas-insulated electrical installation
JP2007089356A (en) * 2005-09-26 2007-04-05 Mitsubishi Electric Corp Insulating structure of switchgear
JP2010282923A (en) * 2009-06-08 2010-12-16 Mitsubishi Electric Corp Vacuum valve
KR102661701B1 (en) * 2023-12-14 2024-04-29 (주)서전기전 Environment-friendly gas-insulated switchgear that uses insulating gas Dry-Air and has insulation performance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1306954A1 (en) * 2001-10-29 2003-05-02 Abb Research Ltd. Insulating spacer with integrated barrier for gas-insulated electrical installation
US6624352B2 (en) 2001-10-29 2003-09-23 Abb Research Ltd GIS post insulator with an integrated barrier
JP2007089356A (en) * 2005-09-26 2007-04-05 Mitsubishi Electric Corp Insulating structure of switchgear
JP4498251B2 (en) * 2005-09-26 2010-07-07 三菱電機株式会社 Switchgear insulation structure
JP2010282923A (en) * 2009-06-08 2010-12-16 Mitsubishi Electric Corp Vacuum valve
KR102661701B1 (en) * 2023-12-14 2024-04-29 (주)서전기전 Environment-friendly gas-insulated switchgear that uses insulating gas Dry-Air and has insulation performance

Also Published As

Publication number Publication date
JP2726537B2 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
EP2214191B1 (en) Gas-insulated equipment
US3324272A (en) Termination of insulators
JP3860553B2 (en) Gas insulated switchgear
US4272642A (en) Gas-insulated high-voltage bushing with shield electrode embedded in an annular insulating body
JPH03222621A (en) Gas-insulated spacer
JPH1023620A (en) Electric field relief device
US4477692A (en) High voltage terminal bushing for electrical apparatus
JP3585517B2 (en) Gas insulated bushing
JPH02223324A (en) Gas insulating spacer
JPH10247444A (en) Gas insulation vacuum circuit breaker
JPH08182127A (en) Gas-insulated equipment, gas-insulated switchgear, gas-insulated bus and gas-insulated switchgear directly connected to cable
US4101727A (en) High-tension electric cable
JPS6252527B2 (en)
JPH06162854A (en) Insulative supporting tool
CN215815424U (en) Spacer assembly for a gas insulation system and gas insulation system
JPS61137309A (en) Gas insulated potential transformer
JPH0556528A (en) Conductor connector
AU661291B2 (en) High voltage connecting terminal
JP2001224120A (en) Gas-insulated bus
JPS6240495Y2 (en)
JP2000032618A (en) Power receiving and distributing facility
JPH0622420A (en) Switchgear
JPH0130831Y2 (en)
JP4130249B2 (en) DC surge arrester
JP3373048B2 (en) Insulated conductor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 13