JPH0145685B2 - - Google Patents

Info

Publication number
JPH0145685B2
JPH0145685B2 JP12083782A JP12083782A JPH0145685B2 JP H0145685 B2 JPH0145685 B2 JP H0145685B2 JP 12083782 A JP12083782 A JP 12083782A JP 12083782 A JP12083782 A JP 12083782A JP H0145685 B2 JPH0145685 B2 JP H0145685B2
Authority
JP
Japan
Prior art keywords
insulating
gas
center conductor
arc
bushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12083782A
Other languages
Japanese (ja)
Other versions
JPS5912511A (en
Inventor
Katamasa Harumoto
Eiji Kawagoe
Koichi Hirooka
Shoichi Inamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Kansai Denryoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Kansai Denryoku KK filed Critical Mitsubishi Electric Corp
Priority to JP12083782A priority Critical patent/JPS5912511A/en
Publication of JPS5912511A publication Critical patent/JPS5912511A/en
Publication of JPH0145685B2 publication Critical patent/JPH0145685B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は変圧器、コンデンサまたは油入しや断
器等の電気機器の口出線を器箱から絶縁して外部
に引出すために用いるガスブツシングに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas bushing used for insulating the lead wires of electrical equipment such as transformers, capacitors, oil fillers, disconnectors, etc. from a container box and leading them out to the outside.

従来のこの種のガスブツシングは第1図に示す
第1の例と、第2図に示す第2の例と、第3図に
示す第3の例とがあつた。
Conventional gas bushings of this type include a first example shown in FIG. 1, a second example shown in FIG. 2, and a third example shown in FIG. 3.

第1図において、1は絶縁套管、2は絶縁套管
1の中心に貫通支持された中心導体、3は絶縁套
管1を取付ける電気機器、例えばSF6ガス絶縁開
閉装置の接地金属外被である。4は上記電気機器
の高電圧の引出線であつて、上記中心導体2と例
えばチユーリツプ形接触子5を介して電気的に接
続されている。6は上記接続部に位置するように
電気機器内に設けたシールド電極で、このシール
ド電極6は必ずしも必要ではないが、本例では上
記接地金属外被3と同電位となるように構成され
ている。
In Fig. 1, 1 is an insulating jacket, 2 is a central conductor that is supported through the center of the insulating jacket 1, and 3 is a grounded metal jacket of an electrical equipment to which the insulating jacket 1 is attached, such as an SF 6 gas-insulated switchgear. It is. Reference numeral 4 denotes a high-voltage lead wire of the electrical equipment, which is electrically connected to the center conductor 2 via, for example, a tube-shaped contact 5. Reference numeral 6 denotes a shield electrode provided within the electrical equipment so as to be located at the connection portion. Although this shield electrode 6 is not necessarily required, in this example it is configured to have the same potential as the ground metal jacket 3. There is.

上記の絶縁套管1と中心導体2の基板2aおよ
び絶縁套管1と上記接地金属外被3とは、例えば
Oリングとボルトによる公知の方法で気密かつ強
固に接続されている。7は絶縁套管1および接地
金属外被3内に充填された例えば4気圧のSF6
スである。
The insulating jacket 1 and the substrate 2a of the center conductor 2, and the insulating jacket 1 and the ground metal jacket 3 are connected airtightly and firmly by a known method using, for example, an O-ring and a bolt. 7 is SF 6 gas filled in the insulating jacket 1 and the grounded metal jacket 3 at, for example, 4 atmospheres.

また、従来のガスブツシングの第2の例を示す
第2図において、31は上端に雄ねじ32が形成
された中心導体、33はこの中心導体31と同心
的に強固、かつ気密に固着されたコンデンサコ
ア、34は電圧分布制御用の複数個の同心円筒電
極、35は例えばエポキシ樹脂含浸紙を巻き固め
た主絶縁体で、同心円筒電極34と主絶縁体35
とによりコンデンサコア33が形成される。36
は下フランジであつて、コンデンサコア33と同
心的に強固かつ気密に固着してある。そして、中
心導体31、コンデンサコア33および下フラン
ジ36を一体化することにより所謂レジン含浸紙
コンデンサブツシングとして公知のブツシングを
形成している。37は絶縁套管、38は上フラン
ジであつて、この上フランジ38の中心部に雄ね
じ32と螺合する雌ねじ39が形成されている。
そして、レジン含浸紙コンデンサブツシングの上
部を絶縁套管37内に挿入し、上フランジ38を
中心導体31にねじ込むことにより絶縁套管37
を上フランジ38と下フランジ36との間に締付
け固定する。また絶縁套管37と上、下フランジ
36,38とのそれぞれの接触面は図示しないが
ガスケツト等で気密保持されている。雄ねじ32
と雌ねじ39との螺合部分には例えば半乾性の液
状シール材を浸透硬化させて気密保持している。
内部空間40には例えば4気圧のSF6ガスが封入
されている。
Further, in FIG. 2 showing a second example of a conventional gas bushing, 31 is a center conductor having a male screw 32 formed at its upper end, and 33 is a capacitor core that is firmly and airtightly fixed concentrically to this center conductor 31. , 34 is a plurality of concentric cylindrical electrodes for voltage distribution control, 35 is a main insulator made of, for example, epoxy resin-impregnated paper, and the concentric cylindrical electrode 34 and the main insulator 35 are
A capacitor core 33 is formed by this. 36
is a lower flange, which is firmly and airtightly fixed concentrically to the capacitor core 33. By integrating the center conductor 31, capacitor core 33, and lower flange 36, a bushing known as a so-called resin-impregnated paper capacitor bushing is formed. 37 is an insulating sleeve, and 38 is an upper flange. A female thread 39 is formed in the center of the upper flange 38 to be screwed into the male thread 32.
Then, the upper part of the resin-impregnated paper capacitor bushing is inserted into the insulating sleeve 37, and the upper flange 38 is screwed onto the center conductor 31.
is tightened and fixed between the upper flange 38 and the lower flange 36. Although not shown, the contact surfaces between the insulating sleeve 37 and the upper and lower flanges 36 and 38 are kept airtight with gaskets or the like. Male thread 32
For example, a semi-dry liquid sealing material is infiltrated and hardened into the threaded portion between the female screw 39 and the female thread 39 to maintain airtightness.
The internal space 40 is filled with SF 6 gas at, for example, 4 atmospheres.

さらに、従来のガスブツシングの第3の例を示
す第3図において、41は例えば充填材入りエポ
キシ樹脂注形品である絶縁スペーサであつて、中
心導体31と同心的に強固かつ気密に固着してあ
る。42はコンデンサコア、43は電圧分布制御
用の複数個の同心円筒電極、44は例えばSF6
ス発泡絶縁成形体であつて、例えば未硬化のシク
ロアリフアテイツクエポキシ樹脂材に適当に加圧
したSF6ガスを吹き込み、撹拌して充分にSF6
スを浸透させた後、若干減圧して液状樹脂材内に
多数のSF6ガス気泡を生ぜしめるなどの方法で発
泡させた後に硬化させたものである。この絶縁成
形体44は樹脂単体の固体絶縁体と比較して誘電
率が小さく、可撓性があり、金属埋込み成形が容
易であるなどの性質がある。そして、コンデンサ
コア42に中心導体31を貫通支持し、コンデン
サコア42を絶縁套管37および下フランジ36
に嵌め込み、上フランジ38を中心導体31にね
じ込むことにより下フランジ36および絶縁套管
37を絶縁スペーサ41と上フランジ38との間
に締付固定する。気密保持の方法および内部空間
40へのSF6ガスの封入は第2の例と同様であ
る。
Furthermore, in FIG. 3 showing a third example of the conventional gas bushing, 41 is an insulating spacer made of, for example, a filled epoxy resin cast product, which is firmly and airtightly fixed concentrically to the center conductor 31. be. 42 is a capacitor core, 43 is a plurality of concentric cylindrical electrodes for voltage distribution control, and 44 is, for example, an SF 6 gas foam insulation molded body, which is formed by appropriately pressurizing, for example, an uncured cycloaliphatic epoxy resin material. After blowing SF 6 gas and stirring to sufficiently infiltrate the SF 6 gas, the pressure is slightly reduced to create a large number of SF 6 gas bubbles in the liquid resin material, which is then foamed and then cured. It is. This insulating molded body 44 has properties such as a lower dielectric constant, flexibility, and ease of metal embedding molding than a solid insulator made of resin alone. The center conductor 31 is passed through and supported by the capacitor core 42, and the capacitor core 42 is connected to the insulating sleeve 37 and the lower flange 36.
By fitting the upper flange 38 into the center conductor 31, the lower flange 36 and the insulating sleeve 37 are tightened and fixed between the insulating spacer 41 and the upper flange 38. The method of airtightness and the filling of SF 6 gas into the internal space 40 are the same as in the second example.

従来のガスブツシングの第1の例は以上のよう
に構成されているので、第1図に示したように万
一、中心導体2とシールド電極6との間でアーク
10が発生した場合、このアークは例えば矢印で
示すAの方向に移動し、絶縁套管1の内面に触れ
ることがある。この絶縁套管1内には4気圧程度
のSF6ガスが充填されているので、アーク10の
高熱により絶縁套管1が破壊した場合その破片が
周囲に飛散する可能性がある。
Since the first example of the conventional gas bushing is configured as described above, if an arc 10 occurs between the center conductor 2 and the shield electrode 6 as shown in FIG. may move, for example, in the direction of arrow A and touch the inner surface of the insulating sleeve 1. Since the insulating mantle 1 is filled with SF 6 gas at about 4 atmospheres, if the insulating mantle 1 is broken due to the high heat of the arc 10, its fragments may be scattered around.

また、第2の例は特に高電圧用ブツシングでは
製造設備も大型となり、使用材料も多くなる。第
3の例はブツシング内部に絶縁性気体で発泡させ
た絶縁成形体を充満させたものであつて、第1の
例に比べてアーク10に相当するSF6ガスのアー
クが発生する機会がほとんどなく、それ故絶縁套
管37の内面にアークが直接触れる機会が少な
く、第2の例のように大形の製造設備をほとんど
必要としない点において、第1、第2の例より優
れている。しかし、中心導体31と下フランジ3
6との間にSF6ガス発泡絶縁成形体44が橋絡し
て主絶縁を形成しているので、中心導体31と下
フランジ36との間で絶縁破壊が生じ、短絡電流
が流れると、通常の固定有機絶縁体の貫通絶縁破
壊と同じように導電性の痕跡路が形成されるの
で、短絡電流を短時間で除去した場合でも永久故
障となる可能性が高い。
Furthermore, in the second example, especially for high-voltage bushings, the manufacturing equipment is large and many materials are used. In the third example, the inside of the bushing is filled with an insulating molded body foamed with an insulating gas, and compared to the first example, there is almost no chance that an arc of SF 6 gas corresponding to an arc of 10 will occur. Therefore, it is superior to the first and second examples in that there is less opportunity for the arc to come into direct contact with the inner surface of the insulating jacket 37, and almost no large-scale manufacturing equipment is required as in the second example. . However, the center conductor 31 and the lower flange 3
Since the SF 6 gas foam insulation molded body 44 is bridged between the center conductor 31 and the lower flange 36 to form the main insulation, if a dielectric breakdown occurs between the center conductor 31 and the lower flange 36 and a short circuit current flows, the normal Similar to the through-hole breakdown of fixed organic insulators, a conductive trace path is formed, so permanent failure is likely even if the short-circuit current is removed in a short time.

本発明は上記のような欠点を除去するためにな
されたもので、絶縁套管内面に発泡絶縁成形体製
の内張り層を被着し、この内張り層と中心導体と
の間に絶縁性気体例えば4気圧程度のSF6ガスを
充填して主絶縁を形成したことにより、アークが
直接絶縁套管に接触するのを防止するとともにア
ークによる永久故障の可能性の少ないガスブツシ
ングを提供することを目的とする。
The present invention has been made to eliminate the above-mentioned drawbacks, and includes a lining layer made of a foamed insulating molded product adhered to the inner surface of the insulating sleeve, and an insulating gas, e.g. By filling the main insulation with SF 6 gas at approximately 4 atm, the purpose is to prevent arcs from coming into direct contact with the insulation sleeve and to provide a gas bushing with less chance of permanent failure due to arcs. do.

以下、本発明の実施例を図について説明する。
第4図は第1図と同一の部分に同一符号を付した
本発明の第1実施例を示す。第4図において、2
0は絶縁套管1の内面に被着された発泡絶縁成形
体製の内張り層である。この内張り層20は例え
ば従来の第3の例で説明したSF6ガス発泡絶縁成
形体と同じ材質の絶縁成形体を、絶縁套管1の内
面に密着させて配置することにより構成されてい
る。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 4 shows a first embodiment of the present invention, in which the same parts as in FIG. 1 are given the same reference numerals. In Figure 4, 2
0 is a lining layer made of a foamed insulating molded material applied to the inner surface of the insulating sleeve 1. This lining layer 20 is constructed by, for example, placing an insulating molded body made of the same material as the SF 6 gas foamed insulating molded body described in the third conventional example in close contact with the inner surface of the insulating sleeve 1.

本発明の第1実施例は上記の構成からなるもの
で、中心導体2とシールド電極6との間にアーク
10が発生し、例えば矢印で示すAのようにアー
ク10が移動して内張り層20に触れたとして
も、SF6ガス発泡絶縁成形体の断熱効果により絶
縁套管1に熱衝撃を与えることがない。
The first embodiment of the present invention has the above-described configuration, in which an arc 10 is generated between the center conductor 2 and the shield electrode 6, and the arc 10 moves, for example, as indicated by the arrow A, and the lining layer 20 Even if it comes into contact with the insulating jacket 1, no thermal shock will be applied to the insulating jacket 1 due to the heat insulating effect of the SF 6 gas foam insulation molded body.

そして、アーク発生時間が短かい場合、アーク
が内張り層20に接触している時間も短かく、内
張り層20の表面を僅かに損傷するのみである。
また、内張り層20はブツシングの長手方向に中
心導体2と接地金属外被3との間の電圧が印加さ
れるが、この長手方向の寸法は大きいため該内張
り層20の表面が僅かの寸法だけ絶縁性を失なう
ような損傷を受けたとしても、耐電圧性能を大き
く低下させることは少ない。さらに、中心導体2
とシールド電極6との間の寸法は、ブツシングの
長手方向の寸法に比較して短かいが、この間は絶
縁性気体で主絶縁7してあるので、アーク消滅
後、急速に絶縁性能を回復する。従つて、前記従
来の第3の例の如き永被破壊となることが少な
い。なお、アークは電気機器を電力系統から切離
すことにより消滅させることができる。
If the arc generation time is short, the time the arc is in contact with the lining layer 20 is also short, and the surface of the lining layer 20 is only slightly damaged.
Further, the voltage between the center conductor 2 and the ground metal jacket 3 is applied to the lining layer 20 in the longitudinal direction of the bushing, but since the dimension in the longitudinal direction is large, the surface of the lining layer 20 has only a small dimension. Even if it is damaged to the point where it loses its insulation properties, it is unlikely that its withstand voltage performance will be significantly reduced. Furthermore, the center conductor 2
Although the dimension between the shield electrode 6 and the bushing is shorter than the longitudinal dimension of the bushing, since the main insulation 7 is provided between the two and the shield electrode 6 with an insulating gas, the insulation performance is quickly restored after the arc is extinguished. . Therefore, permanent damage as in the third conventional example described above is unlikely to occur. Note that the arc can be extinguished by disconnecting the electrical equipment from the power system.

第5図は第1図および第4図と同一の部分に同
一符号を付した本発明の第2実施例を示す。第5
図において、21は絶縁套管1内に同心的に配置
した例えばガラスエポキシ樹脂製の補助絶縁筒、
22は絶縁套管1と補助絶縁筒21との間の隙間
に充填した絶縁性気体で発泡させた絶縁粒子であ
る。本実施例は上記補助絶縁筒21と絶縁粒子2
2との内張り層20を構成している。なお、上記
補助絶縁筒21は絶縁粒子22を絶縁套管1との
間に保持しておくものであるから、機械的強度は
小さくてよく網目状のものであつても差支えな
い。
FIG. 5 shows a second embodiment of the present invention, in which the same parts as in FIGS. 1 and 4 are given the same reference numerals. Fifth
In the figure, reference numeral 21 denotes an auxiliary insulating tube made of, for example, glass epoxy resin, arranged concentrically within the insulating sleeve 1;
Reference numeral 22 denotes insulating particles foamed with an insulating gas filled in the gap between the insulating sleeve 1 and the auxiliary insulating cylinder 21. This embodiment uses the auxiliary insulating cylinder 21 and the insulating particles 2.
2 constitutes a lining layer 20. Note that since the auxiliary insulating cylinder 21 is for holding the insulating particles 22 between it and the insulating sleeve 1, it may have a small mechanical strength and may be mesh-like.

本発明の第2実施例は上記の構成からなるもの
で、中心導体2と接地金属外被3との間にアーク
10が発生し、例えば矢印で示すAのように移動
して補助絶縁筒21の内面に触れたとしても発泡
絶縁成形体の断熱効果により絶縁套管1に熱衝撃
を与えることがない。そして、アーク発生時間が
短かい場合、アーク10が補助絶縁筒21に接触
している時間も短かくその表面を僅かに損傷する
のみである。従つて、前記第1実施例と同様に永
久破壊となることは少ないものである。
In the second embodiment of the present invention, the arc 10 is generated between the center conductor 2 and the grounded metal jacket 3, moves as indicated by the arrow A, and moves toward the auxiliary insulating tube 21. Even if the inner surface of the insulating sleeve 1 is touched, no thermal shock will be applied to the insulating sleeve 1 due to the heat insulating effect of the foamed insulating molded body. When the arc generation time is short, the time during which the arc 10 is in contact with the auxiliary insulating cylinder 21 is also short, and the surface thereof is only slightly damaged. Therefore, like the first embodiment, permanent damage is unlikely to occur.

以上のように、本発明によれば、絶縁套管内面
に発泡絶縁成形体の内張り層を設け、この内張り
層と中心導体との間に絶縁性気体を充填して主絶
縁を形成したから、効果的にガスブツシングにお
ける絶縁套管の内部アークによる偏熱破壊の危険
性を大幅に軽減できるとともに、内部アーク発生
時間が極く短時間である場合、引き続きこのガス
ブツシングを使用できる可能性が大きくなる等、
ガスブツシングとしての顕著な効果がある。
As described above, according to the present invention, a lining layer of a foamed insulating molded body is provided on the inner surface of the insulating sleeve, and an insulating gas is filled between the lining layer and the center conductor to form the main insulation. It can effectively significantly reduce the risk of uneven heat breakdown due to internal arcing of the insulating jacket in gas bushings, and if the internal arc generation time is extremely short, there is a greater possibility that this gas bushing can be used continuously. ,
It has a remarkable effect as a gas butsing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のガスブツシングの第1の例を示
す縦断面図、第2図は従来のガスブツシングの第
2の例を示す縦断面図、第3図は従来のガスブツ
シングの第3の例を示す縦断面図、第4図は本発
明のガスブツシングの第1実施例を示す縦断面
図、第5図は同じく第2実施例を示す縦断面図で
ある。 1……絶縁套管、2……中心導体、3……接地
金属外被、4……高電圧の引出線、5……チユー
リツプ接触子、6……シールド電極、7……主絶
縁、10……アーク、20……内張り層、21…
…補助絶縁筒、22……絶縁粒子。なお、図中、
同一符号は同一、又は相当部分を示す。
Fig. 1 is a vertical sectional view showing a first example of a conventional gas bushing, Fig. 2 is a longitudinal sectional view showing a second example of a conventional gas bushing, and Fig. 3 is a third example of a conventional gas bushing. FIG. 4 is a longitudinal sectional view showing a first embodiment of the gas bushing of the present invention, and FIG. 5 is a longitudinal sectional view showing a second embodiment. DESCRIPTION OF SYMBOLS 1... Insulating jacket, 2... Center conductor, 3... Ground metal jacket, 4... High voltage leader wire, 5... Tulip contact, 6... Shield electrode, 7... Main insulation, 10 ... Arc, 20 ... Lining layer, 21 ...
...Auxiliary insulating tube, 22...Insulating particles. In addition, in the figure,
The same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁套管と、この絶縁套管の中心に貫通支持
され電気機器の引出線と接続される中心導体と、
上記絶縁套管の内面に被着され、アークによる熱
的衝撃を阻止する発泡絶縁成形体製の内張り層
と、この内張り層と上記中心導体との間に絶縁性
気体を充填して形成した主絶縁とを備えたガスブ
ツシング。
1. an insulating jacket, a center conductor that is supported through the center of the insulating jacket and connected to the lead wire of the electrical equipment;
A lining layer made of a foamed insulating molded material is adhered to the inner surface of the insulating jacket to prevent thermal shock caused by an arc, and a main conductor is formed by filling an insulating gas between the lining layer and the center conductor. Gas bushing with insulation.
JP12083782A 1982-07-12 1982-07-12 Gas bushing Granted JPS5912511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12083782A JPS5912511A (en) 1982-07-12 1982-07-12 Gas bushing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12083782A JPS5912511A (en) 1982-07-12 1982-07-12 Gas bushing

Publications (2)

Publication Number Publication Date
JPS5912511A JPS5912511A (en) 1984-01-23
JPH0145685B2 true JPH0145685B2 (en) 1989-10-04

Family

ID=14796181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12083782A Granted JPS5912511A (en) 1982-07-12 1982-07-12 Gas bushing

Country Status (1)

Country Link
JP (1) JPS5912511A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61220211A (en) * 1985-03-26 1986-09-30 日本碍子株式会社 Insulator explosion preventor for gas filled insulation equipment
JPS61264612A (en) * 1985-05-17 1986-11-22 日本碍子株式会社 Bushing explosion preventor for gas-filled insulation apparatus
JPS62145609A (en) * 1985-12-18 1987-06-29 日本碍子株式会社 Explosion-proof porcelain bushing for gas-filled insulated equipment

Also Published As

Publication number Publication date
JPS5912511A (en) 1984-01-23

Similar Documents

Publication Publication Date Title
US6897396B2 (en) Switch gear and method of manufacturing thereof
US3324272A (en) Termination of insulators
RU2543984C2 (en) Compact vacuum interrupter with selective encapsulation
JP3860553B2 (en) Gas insulated switchgear
JP3138567B2 (en) Gas insulation equipment
US4296274A (en) High voltage bushing having weathershed and surrounding stress relief collar
US4458101A (en) Gas-insulated epoxy bushing having an internal throat shield and an embedded ground shield
US20040232113A1 (en) Electric switching device for medium or high voltage
US3842318A (en) Shielded metal enclosed electrical equipment
JPH0145685B2 (en)
EP1103988A2 (en) SEmi-capacitance graded bushing insulator of the type with insulating gas filling, such as SF6
CN215342160U (en) Novel dry-type sleeve for electric power system
US4037187A (en) Metal clad insulating circuit breaker
JP6071209B2 (en) Gas insulated switchgear and gas insulated bus
JPH1023620A (en) Electric field relief device
US6140573A (en) Hollow core composite bushings
US5286932A (en) Vacuum bulb provided with electrical insulation
US3617606A (en) Shielded bushing construction
US3705281A (en) Bushing insulator improvements for a dead tank vacuum switch
JP6352782B2 (en) Insulating spacer
CN217009107U (en) Fuse device, inflatable ring main unit comprising same and environment-friendly switch cabinet
KR101860439B1 (en) Electrode device for gas-insulated switchgear
US2524539A (en) Insulating bushing with flexible sheath mounting
JP3432407B2 (en) Gas insulated switchgear and transformer connection device
JP3369319B2 (en) Disconnector with resistance