JP4005982B2 - Gas insulated vacuum circuit breaker - Google Patents

Gas insulated vacuum circuit breaker Download PDF

Info

Publication number
JP4005982B2
JP4005982B2 JP2004156084A JP2004156084A JP4005982B2 JP 4005982 B2 JP4005982 B2 JP 4005982B2 JP 2004156084 A JP2004156084 A JP 2004156084A JP 2004156084 A JP2004156084 A JP 2004156084A JP 4005982 B2 JP4005982 B2 JP 4005982B2
Authority
JP
Japan
Prior art keywords
electric field
electrode
insulating
field relaxation
embedded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004156084A
Other languages
Japanese (ja)
Other versions
JP2004281415A (en
Inventor
哲雄 吉田
哲 塩入
冨夫 郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004156084A priority Critical patent/JP4005982B2/en
Publication of JP2004281415A publication Critical patent/JP2004281415A/en
Application granted granted Critical
Publication of JP4005982B2 publication Critical patent/JP4005982B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Patch Boards (AREA)

Description

本発明は、ガス絶縁スイッチギヤに用いられるガス絶縁真空遮断器に係り、特に、電界緩和作用並びに耐電圧を向上させ、絶縁縮小化を図るガス絶縁真空遮断器に関する。   The present invention relates to a gas-insulated vacuum circuit breaker used for a gas-insulated switchgear, and more particularly to a gas-insulated vacuum circuit breaker that improves electric field relaxation and withstand voltage and reduces insulation.

近年、ガス絶縁スイッチギア等の受配電機器では、絶縁ガスにより絶縁耐圧を向上させ、設置スペースの縮小化が図られている。   In recent years, power receiving and distribution equipment such as gas-insulated switchgear has been improved in insulation withstand voltage by an insulating gas, and the installation space has been reduced.

図6はこの種のガス絶縁スイッチギア及びその周辺構成を示す側面図である。このガス絶縁スイッチギヤは、外周を軟鋼板で気密に囲まれた箱体1の内部に、SF6 ガスなどの絶縁ガス2が密封されている。箱体1の上方の室1aには断路器3Aが収納されている。また、箱体1の下方の室1bには、ガス絶縁真空遮断器4と、上方の断路器3Aと同形の断路器3Bが収納されている。また、絶縁ガス中の各収納機器は、がいし5に固定された主回路導体6により相互が接続されている。主回路導体6は、箱体1の側部に取付けられた受電用のケーブルヘッド7を介して外部の電力用ケーブル8に電気的に接続される。この電力用ケーブル8は、貫通形変流器9により、ガス絶縁スイッチギヤへの受電および通電電流が計測される。また、箱体1の上方の室1aの主回路導体は、箱体1の天井部に設けられた気中−ガスブッシング10により、図面上下に列盤されている隣接盤に電気的に接続されている。 FIG. 6 is a side view showing this type of gas-insulated switchgear and its peripheral configuration. In this gas insulated switchgear, an insulating gas 2 such as SF 6 gas is sealed inside a box 1 whose outer periphery is hermetically surrounded by a mild steel plate. A disconnector 3 </ b> A is accommodated in the chamber 1 a above the box 1. Further, a gas insulated vacuum circuit breaker 4 and a disconnector 3B having the same shape as the upper disconnector 3A are accommodated in the lower chamber 1b of the box 1. Each storage device in the insulating gas is connected to each other by a main circuit conductor 6 fixed to the insulator 5. The main circuit conductor 6 is electrically connected to an external power cable 8 via a power receiving cable head 7 attached to the side of the box 1. In the power cable 8, the feed-through current transformer 9 measures the power reception and energization current to the gas-insulated switchgear. Further, the main circuit conductor in the chamber 1a above the box 1 is electrically connected to the adjacent boards arranged in the upper and lower directions in the drawing by an air-gas bushing 10 provided on the ceiling of the box 1. ing.

このようなガス絶縁スイッチギヤでは、各収納機器は絶縁ガス2の破壊電圧が強い電界依存性を示すため、適切な電界緩和がなされ耐電圧が保たれている。   In such a gas-insulated switchgear, each storage device exhibits an electric field dependence in which the breakdown voltage of the insulating gas 2 is strong, so that appropriate electric field relaxation is performed and the withstand voltage is maintained.

例えばガス絶縁真空遮断器4の電界緩和構造は、図7に示すように、真空バルブ11の封じ切り電極12の電界緩和のため、絶縁筒13とラップする位置まで大きな曲率をもった電界緩和用電極14がボルト15により取付けられている。係る電界緩和の方式は、例えば実公平1−15071号公報に開示され、真空バルブ11の直径よりも大きい直径の電界緩和用電極14が用いられる。電界緩和用電極14では曲率半径をもつ外周面の始点が絶縁筒13と接する面になる。この外周面は、極間方向14Aと相間方向14Bとで互いに異なる曲率半径を有する曲面に分類され、各曲面が互いに連続的に形成されている。これにより電界緩和用電極14は単体で電界緩和を図っている。   For example, as shown in FIG. 7, the electric field relaxation structure of the gas insulated vacuum circuit breaker 4 is for electric field relaxation having a large curvature up to the position where it wraps with the insulating cylinder 13 in order to relax the electric field of the sealing electrode 12 of the vacuum valve 11. Electrode 14 is attached by bolt 15. Such an electric field relaxation method is disclosed in, for example, Japanese Utility Model Publication No. 1-15071, and an electric field relaxation electrode 14 having a diameter larger than the diameter of the vacuum valve 11 is used. In the electric field relaxation electrode 14, the starting point of the outer peripheral surface having a radius of curvature is a surface in contact with the insulating cylinder 13. The outer peripheral surface is classified into curved surfaces having different radii of curvature in the inter-pole direction 14A and the inter-phase direction 14B, and the curved surfaces are continuously formed. Thereby, the electric field relaxation electrode 14 is intended to relax the electric field alone.

しかしながら以上のようなガス絶縁真空遮断器では、電界緩和用電極14の曲率半径を大にして電界緩和を図り、耐電圧を向上させる一方、電界緩和用電極14を大形化させる問題がある。   However, the gas insulated vacuum circuit breaker as described above has a problem that the electric field relaxation is achieved by increasing the radius of curvature of the electric field relaxation electrode 14 to improve the withstand voltage, while the electric field relaxation electrode 14 is enlarged.

すなわち、電界緩和の観点から電界緩和用電極14の曲率半径を大にしてガスギャップを短縮しても、電界緩和用電極14自体を大形化させることから、3相分を配置させると結果的に大形化となる問題がある。すなわち、このような曲率半径を大とした電界緩和に基づく縮小化には限界がある。また、最近の趨勢である縮小化に逆行してしまう。   That is, from the viewpoint of electric field relaxation, even if the radius of curvature of the electric field relaxation electrode 14 is increased and the gas gap is shortened, the electric field relaxation electrode 14 itself is increased in size, so that the arrangement of three phases results. However, there is a problem that becomes larger. That is, there is a limit to downsizing based on electric field relaxation with a large radius of curvature. Moreover, it goes against the recent trend of downsizing.

本発明は上記実情を考慮してなされたもので、電界緩和用電極の曲率半径を大にせずに耐電圧を向上させ、もって、縮小化を図り得るガス絶縁真空遮断器を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a gas-insulated vacuum circuit breaker that can improve the withstand voltage without increasing the radius of curvature of the electric field relaxation electrode, and can be reduced in size. And

請求項1に対応する発明は、絶縁ガスを封入し、絶縁容器と前記絶縁容器の両端にガスギャップGだけ離して端部が配置された電界緩和用電極とを有する真空バルブを備えたガス絶縁真空遮断器において、前記真空バルブの可動電極に連結され、前記真空バルブの軸方向とは略直角方向に沿って進退可能に形成された絶縁操作捧と、前記絶縁操作棒の軸方向に沿って当該絶縁操作棒に対向配置され、前記絶縁操作捧との対向部分に略U字状で前記絶縁操作棒と同軸状の凹部を有し、前記真空バルブを固定する支持がいしとを備え、前記支持がいしと前記絶縁操作棒とは同一の絶縁材料よりなり、前記支持がいしとしては、略楕円状の断面形状を有し、前記真空バルブの軸方向に平行に埋込まれた第1及び第2の埋込み電極と、略楕円状の断面形状を有し、前記第1及び第2の埋込み電極を介して前記絶縁操作棒に対向するように埋込まれた第3の埋込み電極とを備え、前記第1乃至第3の埋込み電極は互いに同電位であり、前記第1乃至第3の埋込み電極からなる見かけ上の電極は、個々の埋込み電極よりも大きいガス絶縁真空遮断器である。 According to a first aspect of the present invention, there is provided a gas insulating apparatus comprising a vacuum valve that includes an insulating gas, and includes an insulating container and an electric field relaxation electrode having ends disposed at both ends of the insulating container and separated by a gas gap G. In the vacuum circuit breaker, an insulation operation element connected to the movable electrode of the vacuum valve and formed to be movable back and forth along a direction substantially perpendicular to the axial direction of the vacuum valve, and along the axial direction of the insulation operation rod. A support insulator that is disposed opposite to the insulating operation rod, has a substantially U-shaped concave portion coaxial with the insulating operation rod, and a support insulator for fixing the vacuum valve. the said insulation operation rod insulator Ri name of the same insulating material, as the supporting insulators, has a substantially elliptical cross-sectional shape, the first and second of embedded parallel to the axial direction of the vacuum valve Embedded electrode and a substantially elliptical cross section And a third embedded electrode embedded so as to face the insulating operation rod via the first and second embedded electrodes, and the first to third embedded electrodes are mutually connected The apparent electrode composed of the first to third embedded electrodes having the same potential is a gas-insulated vacuum circuit breaker larger than the individual embedded electrodes .

(作用)
従って、請求項1に対応する発明は、真空バルブを固定する支持がいしをU字状とし、このU字状の開口部に真空バルブを開閉する絶縁操作捧を設けることにより、U字状の開口部に同一の絶縁材料よりなる絶縁物を位置させて電界の乱れを減少させ、耐電圧の向上を図ることができる。更に、支持がいしと絶縁操作捧のスペースを縮小でき、全体形状を小型化することができる。
(Function)
Therefore, in the invention corresponding to claim 1, the support insulator for fixing the vacuum valve is formed in a U-shape, and the U-shaped opening is provided with an insulating operation for opening and closing the vacuum valve. An insulator made of the same insulating material is positioned in the part to reduce the electric field disturbance and improve the withstand voltage. Furthermore, the space for the support insulator and the insulation operation can be reduced, and the overall shape can be reduced.

さらに、請求項に対応する発明は、埋込み電極を複数に分割したことにより、埋込む金属の体積を小さくしてモールド時に金型の温度に早急に上昇でき、絶縁樹脂との接着性を良くしてボイドや剥離などの欠陥を生成し難くして良好な絶縁特性を実現できる。また、分割された個々の埋込み電極は、見かけ上、大きな電極にできるので、支持がいしに固定される真空バルブなどの被支持物の電界緩和を図ることができる。 Furthermore, the invention corresponding to claim 1 divides the embedded electrode into a plurality of parts, so that the volume of the embedded metal can be reduced, and the temperature of the mold can be quickly raised during molding, and the adhesiveness with the insulating resin is improved. Thus, it is difficult to generate defects such as voids and peeling, and good insulation characteristics can be realized. In addition, since each of the divided embedded electrodes can be formed into an apparently large electrode, the electric field of a supported object such as a vacuum valve fixed to a support insulator can be reduced.

以上説明したように本発明によれば、電界緩和用電極の曲率半径を大にせずに耐電圧を向上させ、もって、縮小化を図ることができるガス絶縁真空遮断器を提供できる。   As described above, according to the present invention, it is possible to provide a gas-insulated vacuum circuit breaker capable of improving the withstand voltage without increasing the radius of curvature of the electric field relaxation electrode and thereby reducing the size.

以下、本発明の一実施形態について図面を参照しながら説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は本発明の一実施形態に係るガス絶縁真空遮断器の内部構成を示す側面図であり、図7と同一部分には同一符号を付してその詳しい説明は省略し、ここでは異なる部分についてのみ述べる。   FIG. 1 is a side view showing the internal configuration of a gas-insulated vacuum circuit breaker according to an embodiment of the present invention. The same parts as those in FIG. Only about.

すなわち、本実施形態は、電界緩和用電極の曲率半径を大にせずに電界緩和の実現を図るものであり、具体的には以下に述べる構造となっている。   That is, this embodiment is intended to realize electric field relaxation without increasing the radius of curvature of the electric field relaxation electrode, and specifically has the structure described below.

図1において、真空バルブ11の上下には電界緩和と通電を兼ねた電界緩和用電極16a,16bが設けられる。電界緩和用電極16a,16bは、互いに真空バルブの軸方向に平行な絶縁支え板17を介して固定されると共に、真空バルブの軸方向に垂直な各支持がいし18a,18bを介してフランジ19に支持固定されている。   In FIG. 1, electric field relaxation electrodes 16 a and 16 b that serve both as electric field relaxation and energization are provided above and below the vacuum valve 11. The electric field relaxation electrodes 16a and 16b are fixed to each other via an insulating support plate 17 parallel to the axial direction of the vacuum valve, and to the flange 19 via respective support insulators 18a and 18b perpendicular to the axial direction of the vacuum valve. The support is fixed.

また、下部の電界緩和用電極16b内部には、真空バルブ11内の可動電極 (図示せず)を開閉するラッセル機構部20があり、このラッセル機構部20に連結された絶縁操作捧21が下部の支持がいし18bと平行して配置されている。絶縁操作捧21は、気中側の操作機構部22に連結されている。   Further, in the lower electric field relaxation electrode 16b, there is a Russell mechanism portion 20 for opening and closing a movable electrode (not shown) in the vacuum valve 11, and an insulation operation portion 21 connected to the Russell mechanism portion 20 is provided at the lower portion. Are arranged in parallel with the insulator 18b. The insulation operation deed 21 is connected to the operation mechanism unit 22 on the air side.

一方、上部の電界緩和用電極16aは、真空バルブ11との対向面側を除いた上部側の表面に例えばテフロン樹脂またはエポキシ樹脂などの絶縁材料から成る被膜23aが形成されている。被膜の絶縁厚さは数10μmであり、ここでは略25μmとしている。同様に、下部の電界緩和用電極16bは、真空バルブ11との対向面側を除いた下部側に被膜23bが形成されている。すなわち、被膜23a、23bの形成された電界緩和用電極は、図2に拡大して示すように、ガスギャップGを介して絶縁筒に対向しており、曲率半径が大であり、電界利用率の大きい準平等電界を実現可能となっている。被膜の絶縁材料の比誘電率は、支持がいしの比誘電率よりも小さい値となっている。   On the other hand, in the upper electric field relaxation electrode 16a, a coating 23a made of an insulating material such as Teflon resin or epoxy resin is formed on the upper surface excluding the surface facing the vacuum valve 11. The insulating thickness of the film is several tens of μm, and is approximately 25 μm here. Similarly, a coating 23b is formed on the lower side of the lower electric field relaxation electrode 16b except for the surface facing the vacuum bulb 11. That is, the electric field relaxation electrode on which the coatings 23a and 23b are formed is opposed to the insulating cylinder through the gas gap G as shown in an enlarged view in FIG. A large quasi-equal electric field can be realized. The dielectric constant of the insulating material of the film is smaller than the dielectric constant of the supporting insulator.

具体的には、電界緩和用電極16aは、ボルト15により固定され、下部表面が被膜などが形成されず素地である。電界緩和用電極16aの端部は、真空バルブ11の封じ切り電極12と絶縁筒13とを結合する電極部24付近までとし、絶縁筒13端部からギャップ長Gが数mmを保たれる上方に位置している。よって、電界緩和用電極16a下部単体(又は絶縁筒との対向側)においては、端部が鋭角となる不平等電界となる。   Specifically, the electric field relaxation electrode 16a is fixed by a bolt 15, and the lower surface is a base without a film or the like formed thereon. The end portion of the electric field relaxation electrode 16a extends to the vicinity of the electrode portion 24 that couples the sealing electrode 12 of the vacuum valve 11 and the insulating cylinder 13, and the gap length G is maintained from the end of the insulating cylinder 13 to a few mm. Is located. Therefore, in the lower part of the electric field relaxation electrode 16a (or on the side facing the insulating cylinder), an unequal electric field having an acute angle at the end is obtained.

また、支持がいし18bは、図3に示すように、絶縁操作捧21に対向して同軸状にU字状の開口部18cが設けられている。すなわち、この開口部18cに沿って絶縁操作捧21が平行に配置される。この絶縁操作捧21と開口部18cとのギャップは10数mmとし、部分放電が発生しない適切な値としている。また支持がいし中には、各埋込み金具25a,25b,25cが開口部18cを除いた各辺に夫々設けられている。   Further, as shown in FIG. 3, the support insulator 18 b is provided with a U-shaped opening 18 c coaxially facing the insulation operation element 21. That is, the insulating operation elements 21 are arranged in parallel along the opening 18c. The gap between the insulating operation 21 and the opening 18c is set to a value of several tens of millimeters, which is an appropriate value that does not cause partial discharge. Further, in the support insulator, each of the embedded metal fittings 25a, 25b, 25c is provided on each side excluding the opening 18c.

上部の支持がいし18aは、図4に示すように、電界緩和用電極16aの端部に接続された電極27が埋込まれ、この電極27により電界緩和用電極を16aを固定的に支持している。ここで、支持がいし18a中の電極27の径φ1と、電界緩和用電極16aの径φ2とは、φ1>φ2の関係にあることが等電位線28の拡張による電界緩和の観点から好ましい。   As shown in FIG. 4, the upper support insulator 18a is embedded with an electrode 27 connected to the end of the electric field relaxation electrode 16a, and the electrode 27 supports the electric field relaxation electrode 16a in a fixed manner. Yes. Here, the diameter φ1 of the electrode 27 in the support insulator 18a and the diameter φ2 of the electric field relaxation electrode 16a are preferably in a relationship of φ1> φ2 from the viewpoint of electric field relaxation due to the expansion of the equipotential line 28.

次に、以上のように構成されたガス絶縁真空遮断器の作用について述べる。なお、各構造は夫々独立して電界緩和を実現するため、構造毎に分けて作用を説明する。   Next, the operation of the gas insulated vacuum circuit breaker configured as described above will be described. In addition, since each structure implement | achieves an electric field relaxation each independently, an effect | action is demonstrated for every structure separately.

(被膜による電界緩和)
図5は破壊(インパルスフラッシオーバ)電圧と被膜の有無との関係を曲率半径を変えて調査した結果を示す電圧特性図である。黒印の特性は、曲率半径R=40mmを有してガスギャップ10mmに配置された電界緩和用電極16a,14における破壊電圧を被膜23aの有無について比較している。白印の特性は、黒印の特性における電界緩和用電極16a,14を曲率半径R=3mmとしている。ここで、前者のR=40mmの場合は電界利用率U=0.88で準平等電界であり、後者のR=3mmの場合は電界利用率U=0.26で不平等電界である。なお電界利用率Uは、次式で近似値が得られる。
(Electric field relaxation by coating)
FIG. 5 is a voltage characteristic diagram showing the result of investigating the relationship between the breakdown (impulse flashover) voltage and the presence / absence of a film by changing the radius of curvature. The characteristic of the black mark compares the breakdown voltage in the electric field relaxation electrodes 16a and 14 having a radius of curvature R = 40 mm and disposed in the gas gap 10 mm with or without the coating 23a. The white mark characteristics are such that the electric field relaxation electrodes 16a and 14 in the black mark characteristics have a curvature radius R = 3 mm. Here, when the former R = 40 mm, the electric field utilization factor U = 0.88 is a quasi-equal electric field, and when the latter R = 3 mm, the electric field utilization factor U = 0.26 is an unequal electric field. The electric field utilization factor U can be approximated by the following equation.

電界利用率U=R/{0.9(R+G)}
但し、R;電極の曲率半径、G;ガスギャップ長。
Electric field utilization factor U = R / {0.9 (R + G)}
Where R: radius of curvature of electrode, G: gas gap length.

図より、準平等電界では、被膜23a有の電極のとき、破壊電圧が裸電極に比べて約25%上昇している。一方、不平等電界では、被膜23a有の電極の破壊電圧がほとんど上昇していない。なお、図2に示す電界緩和用電極16aにおいては、曲率半径R=30mmでガスギャップG=65mmとして電界利用率U=0.35となるとき、破壊電圧を約10%上昇できた。すなわち、電界利用率Uに比例して(又は平等電界になるに従い)、被膜23aの効果が現れるため、被膜23aを用いて破壊電圧を上昇できるといえる。具体的には、被膜23aは、電極表面の凸凹を滑らかにして電界強度を抑制すると共に電極からの電子放出を抑制する作用があると推測される。このため、電界緩和用電極16の曲率半径Rを小さくでき、相間や対地間のガスギャップGを短縮できるので、電界緩和用電極16aの単体形状の縮小化およびガス絶縁真空遮断器の全体形状の縮小化を図ることができる。なお、被膜23の形成工程上、電界緩和用電極16の約半分に形成することが困難な場合、電界緩和用電極16の全面に被膜23を設けてもよい。   From the figure, in the quasi-equal electric field, the breakdown voltage is increased by about 25% compared to the bare electrode when the electrode has the coating 23a. On the other hand, in the unequal electric field, the breakdown voltage of the electrode having the coating 23a hardly increases. In the electric field relaxation electrode 16a shown in FIG. 2, the breakdown voltage could be increased by about 10% when the radius of curvature R = 30 mm, the gas gap G = 65 mm, and the electric field utilization rate U = 0.35. That is, since the effect of the film 23a appears in proportion to the electric field utilization factor U (or as the field becomes equal), it can be said that the breakdown voltage can be increased using the film 23a. Specifically, it is estimated that the coating 23a has an effect of smoothing unevenness on the surface of the electrode to suppress the electric field strength and suppress the electron emission from the electrode. For this reason, the radius of curvature R of the electric field relaxation electrode 16 can be reduced, and the gas gap G between the phases and the ground can be shortened. Therefore, the single shape of the electric field relaxation electrode 16a can be reduced and the overall shape of the gas insulated vacuum circuit breaker can be reduced. Reduction can be achieved. If it is difficult to form the coating film 23 on about half of the electric field relaxation electrode 16, the coating film 23 may be provided on the entire surface of the electric field relaxation electrode 16.

ここで、電界緩和用電極16aの端部は、単体では不平等電界を形成するが、真空バルブ11との組合せにより、絶縁筒13に結合させる電極24との相乗効果により、全体形状として電界緩和を図ることができる。この電界緩和は、絶縁筒13と電界緩和用電極16a端部とのガスギャップ長Gに大きく影響され、実験によると2mm程度のガスギャップGのとき、ガスギャップ部分からの破壊はなかった。ガスギャップGを形成できずに絶縁筒13とラップさせる場合が最も破壊電圧の低下をもたらす。なお、上部の電界緩和用電極16aの構成を例に挙げて説明したが、下部の電界緩和用電極16bにおいても同様の構成でよい。   Here, the end portion of the electric field relaxation electrode 16a forms an unequal electric field by itself, but the electric field relaxation as a whole shape by a synergistic effect with the electrode 24 to be coupled to the insulating cylinder 13 in combination with the vacuum valve 11. Can be achieved. This electric field relaxation is greatly influenced by the gas gap length G between the insulating cylinder 13 and the end portion of the electric field relaxation electrode 16a. According to experiments, when the gas gap G is about 2 mm, there was no destruction from the gas gap portion. When the gas gap G cannot be formed and is wrapped with the insulating cylinder 13, the breakdown voltage is most lowered. Although the configuration of the upper electric field relaxation electrode 16a has been described as an example, the lower electric field relaxation electrode 16b may have the same configuration.

(埋込み金具等による電界緩和)
支持がいし中の各埋込み金具25a〜25cは開口部18cを除いた各辺に設けられるので、絶縁操作捧21と支持がいしの開口部18cは、適切なギャップ長により電界を乱すことなく耐電圧の向上を図ることができる。特に、絶縁操作捧21においては支持がいし18bより電極間距離が短いので電界集中を起こし易いが、支持がいし18bの絶縁層が近接しているので、電界強度を抑制することができる。
(Electric field relaxation by embedded metal fittings)
Since each of the embedded metal fittings 25a to 25c in the support insulator is provided on each side except the opening 18c, the insulation operation 21 and the opening 18c of the support insulator have a withstand voltage without disturbing the electric field due to an appropriate gap length. Improvements can be made. In particular, in insulation operation cowpea 21 is prone to the electrode distance is shorter electric field concentration than the support insulators 18b, since the insulating layer supporting region insulators 18b are close, it is possible to suppress the electric field strength.

また、U字状の開口部18cに沿って絶縁操作捧21を配置するため、一般の回転対称形の支持がいしと絶縁操作捧21とを夫々単独で配置する構造に比べ、スペースを小さくできる。   Further, since the insulating operation element 21 is disposed along the U-shaped opening 18c, the space can be reduced as compared with the structure in which the general rotationally symmetric support insulator and the insulating operation element 21 are individually disposed.

また、個々の埋込み金具25a、25b,25cは分割されているので、支持がいし18bの絶縁層に埋込む金属の体積を縮小できる。このため、モールド時に金型の温度に早急に上昇でき、絶縁樹脂との接着性を向上させ、ボイドや剥離などの欠陥ができ難く、良好な絶縁特性を得ることができる。   In addition, since each of the embedded metal fittings 25a, 25b, and 25c is divided, the volume of the metal embedded in the insulating layer of the support insulator 18b can be reduced. For this reason, the temperature of the mold can be quickly raised at the time of molding, the adhesiveness with the insulating resin is improved, and defects such as voids and peeling are difficult to occur, and good insulating properties can be obtained.

更に、各埋込み金具25は同電位であるので、個々には小さい埋込み金具(電極)であっても、見かけ上、大きな埋込み金具(電極)となる。よって、支持がいし18bに固定される下部の電界緩和用電極16b及び真空バルブ11等の被支持物の電界緩和を図ることができる。すなわち、被支持物としての電界緩和用電極16や真空バルブに対し、埋込み金具25を見かけ上、大きくすることにより、絶縁ガス側の電極に影響を与え、電界強度の抑制を図ることができる。   Furthermore, since each embedded metal fitting 25 has the same potential, even a small embedded metal fitting (electrode) is apparently a large embedded metal fitting (electrode). Therefore, it is possible to reduce the electric field of the object to be supported such as the lower electrode 16b for electric field relaxation and the vacuum valve 11 fixed to the support insulator 18b. That is, by apparently enlarging the embedded metal fitting 25 with respect to the electric field relaxation electrode 16 or vacuum valve as a supported object, the electrode on the insulating gas side can be affected, and the electric field strength can be suppressed.

(大径の埋込み電極による電界緩和)
図4は支持がいしによる固定構造と電界緩和との関係を説明するための模式図である。図示するように、上部の支持がいし18aにおいて、絶縁層26に埋込まれた電極27の径をφ1とし、電界緩和用電極16aの径をφ2としたとき、両者をφ1>φ2の関係とすることにより電界緩和を図ることができる。すなわち、電界緩和用電極16a近傍の等電位線28が支持がいし18aにより広げられ、電界緩和がされている。よって、電界緩和用電極16aの曲率半径を小さくできるので、電界緩和用電極16a自体の形状の縮小化を図ることができる。
(Electric field relaxation by large-diameter embedded electrode)
FIG. 4 is a schematic diagram for explaining the relationship between the fixing structure by the supporting insulator and the electric field relaxation. As shown in the figure, when the diameter of the electrode 27 embedded in the insulating layer 26 is φ1 and the diameter of the electric field relaxation electrode 16a is φ2 in the upper support insulator 18a, the relationship between the two is φ1> φ2. Thus, electric field relaxation can be achieved. That is, the equipotential line 28 in the vicinity of the electric field relaxation electrode 16a is widened by the support insulator 18a, and the electric field is relaxed. Therefore, since the radius of curvature of the electric field relaxation electrode 16a can be reduced, the shape of the electric field relaxation electrode 16a itself can be reduced.

(低い比誘電率の被膜による電界緩和)
電界緩和用電極16a,16bの被膜23a,23bの比誘電率に比べ、電界緩和用電極16a,16bを支持固定する支持がいし18a,18bの比誘電率の方を高くすれば、被膜23a,23bによる電界緩和の効果を大きく現すことができる。これは、高い比誘電率の絶縁材料で支持がいし18a,18bを構成することにより、沿面の等電位線が広がるためである。また、被膜した電界緩和用電極16a,16bでは、ガスギャップGとの間で電位分担が決まるため、低い比誘電率をもつ被膜23a,23bの方がガスギャップGの電位分担を低減できる。これらのことより、被膜した電界緩和用電極とそれを固定する支持がいしとの縮小化を図ることができる。
(Electric field relaxation by low dielectric constant film)
If the relative dielectric constants of the support insulators 18a and 18b for supporting and fixing the electric field relaxation electrodes 16a and 16b are made higher than the relative dielectric constants of the coating films 23a and 23b of the electric field relaxation electrodes 16a and 16b, the coating films 23a and 23b. The effect of relaxing the electric field can be greatly exhibited. This is because the equipotential lines on the creeping surface are widened by forming the support insulators 18a and 18b with an insulating material having a high relative dielectric constant. Further, in the coated electric field relaxation electrodes 16a and 16b, since the potential sharing with the gas gap G is determined, the coating 23a and 23b having a lower relative dielectric constant can reduce the potential sharing of the gas gap G. As a result, it is possible to reduce the size of the coated electric field relaxation electrode and the support insulator for fixing the electrode.

上述したように本実施形態によれば、電界利用率の大きい準平等電界においては、電極表面に絶縁材料よりなる被膜23aの形成により、電界緩和用電極16a,16bの曲率半径を大にせずに耐電圧特性を向上できるので、曲率半径を小にして電界緩和用電極16a,16bを小さくできると共に、真空遮断器の相間や対地間の絶縁距離を短くでき、もって、小型化及び縮小化を図ることができる。   As described above, according to the present embodiment, in a quasi-equal electric field having a large electric field utilization factor, the formation of the coating 23a made of an insulating material on the electrode surface does not increase the curvature radius of the electric field relaxation electrodes 16a and 16b. Since the withstand voltage characteristics can be improved, the curvature radius can be reduced to reduce the electric field relaxation electrodes 16a and 16b, and the insulation distance between the phases of the vacuum circuit breaker and the ground can be shortened, thereby achieving miniaturization and reduction in size. be able to.

また、被膜23a,23bが略25μmの厚さを有してテフロン樹脂又はエポキシ樹脂から形成されるので、被膜23a,23bによる電界緩和を容易かつ確実に奏することができる。   Further, since the coatings 23a and 23b have a thickness of approximately 25 μm and are formed of Teflon resin or epoxy resin, electric field relaxation by the coatings 23a and 23b can be easily and reliably achieved.

さらに、電界利用率の小さい不平等電界においては、電界緩和用電極の端部を真空バルブ11の絶縁筒13から数mm離すことにより、絶縁筒13に設けられた電極24との相乗効果による電界緩和作用を働かせ、耐電圧の向上を図ることができる。   Further, in an unequal electric field with a small electric field utilization factor, the electric field due to a synergistic effect with the electrode 24 provided on the insulating cylinder 13 is obtained by separating the end of the electric field relaxation electrode from the insulating cylinder 13 of the vacuum valve 11 by several mm. It is possible to improve the withstand voltage by acting a relaxation action.

また、真空バルブ11を固定する支持がいし18bをU字状とし、このU字状の開口部18cに真空バルブ11を開閉する絶縁操作捧21を設けることにより、U字状の開口部18cに同一の絶縁材料よりなる絶縁物を位置させて電界の乱れを減少させ、耐電圧の向上を図ることができる。更に、支持がいし18bと絶縁操作捧21のスペースを縮小でき、全体形状を小型化することができる。   Further, the support insulator 18b for fixing the vacuum valve 11 is U-shaped, and the U-shaped opening 18c is provided with an insulating operation 21 for opening and closing the vacuum valve 11, so that the U-shaped opening 18c is identical. It is possible to reduce the electric field disturbance by positioning an insulator made of this insulating material, and to improve the withstand voltage. Furthermore, the space for the support insulator 18b and the insulating operation 21 can be reduced, and the overall shape can be reduced.

さらに、埋込み電極25a〜25cを複数に分割したことにより、埋込む金属の体積を小さくしてモールド時に金型の温度に早急に上昇でき、絶縁樹脂との接着性を良くしてボイドや剥離などの欠陥を生成し難くして良好な絶縁特性を実現できる。また、分割された個々の埋込み電極は、見かけ上、大きな電極にできるので、支持がいし18a,18bに固定される真空バルブ11などの被支持物の電界緩和を図ることができる。   Further, by dividing the embedded electrodes 25a to 25c into a plurality of parts, the volume of the embedded metal can be reduced, and the temperature of the mold can be quickly raised at the time of molding. This makes it difficult to generate defects and realizes good insulation characteristics. In addition, each of the divided embedded electrodes can be formed into a large electrode, so that the electric field of the supported object such as the vacuum bulb 11 fixed to the support insulators 18a and 18b can be reduced.

また、支持がいし18aが電界緩和用電極16aの外径よりも大きい外径をもつ電極27を有するので、電界緩和用電極16aの近傍の等電位線28を広げて電界緩和できるため、電界緩和用電極16aの曲率半径を小さくでき、電界緩和用電極16aの形状を縮小することができる。   In addition, since the support insulator 18a has the electrode 27 having an outer diameter larger than the outer diameter of the electric field relaxation electrode 16a, the electric field can be relaxed by widening the equipotential line 28 in the vicinity of the electric field relaxation electrode 16a. The radius of curvature of the electrode 16a can be reduced, and the shape of the electric field relaxation electrode 16a can be reduced.

さらに、支持がいし18a,18bが被膜23a,23bの絶縁材料の比誘電率よりも高い比誘電率を有するので、支持がいし18a,18bに沿った領域の等電位線28を広げて電界緩和できるため、電界緩和用電極16a,16bの曲率半径を小さくでき、電界緩和用電極16a,16bの形状を縮小することができる。   Further, since the support insulators 18a and 18b have a relative dielectric constant higher than that of the insulating material of the coatings 23a and 23b, the equipotential lines 28 in the regions along the support insulators 18a and 18b can be widened to relax the electric field. The radius of curvature of the electric field relaxation electrodes 16a and 16b can be reduced, and the shape of the electric field relaxation electrodes 16a and 16b can be reduced.

(他の実施形態)
なお、他の実施形態として、主回路導体を固定する支持がいしや計器用変成器などの口出し部において、絶縁ガスと対向する部分の電極を準平等電界として絶縁材料を被膜し、また支持がいし等との固定側を単独では不平等電界とし、この固定側と支持がいしとの組合せの相乗効果による電界緩和を実現し、全体形状の縮小化を図ってもよい。
(Other embodiments)
As another embodiment, in the lead-out part of the support insulator for fixing the main circuit conductor or the transformer for the instrument, the insulating material is coated with the quasi-equal electric field at the portion of the electrode facing the insulating gas, the support insulator, etc. The non-uniform electric field alone may be used as the non-uniform electric field, and electric field relaxation may be realized by a synergistic effect of the combination of the fixed side and the support insulator, thereby reducing the overall shape.

その他、本発明はその要旨を逸脱しない範囲で種々変形して実施できる。   In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

本発明の一実施形態に係るガス絶縁真空遮断器の内部構成を示す側面図The side view which shows the internal structure of the gas insulated vacuum circuit breaker which concerns on one Embodiment of this invention. 同実施の形態における電界緩和用電極の一部を拡大して示す模式図The schematic diagram which expands and shows a part of electrode for electric field relaxation in the embodiment 同実施の形態における下部の支持がいしの構成を示す斜視図The perspective view which shows the structure of the lower support insulator in the embodiment 同実施の形態における支持がいしによる固定構造と電界緩和との関係を説明するための模式図Schematic diagram for explaining the relationship between the fixed structure by the support insulator and the electric field relaxation in the embodiment 同実施の形態における破壊電圧と被膜の有無との関係を曲率半径を変えて調査した結果を示す特性図The characteristic figure which shows the result of having investigated the relationship between the breakdown voltage and the presence or absence of a film in the same embodiment by changing the radius of curvature 一般的なガス絶縁スイッチギア及びその周辺構成を示す側面図Side view showing a general gas-insulated switchgear and its peripheral configuration ガス絶縁真空遮断器の電界緩和構造を示す模式図Schematic diagram showing the electric field relaxation structure of a gas insulated vacuum circuit breaker

符号の説明Explanation of symbols

11…真空バルブ、12…封じきり電極、13…絶縁筒、16a,16b…電界緩和用電極、15…ボルト、17…絶縁支え板、18a,18b…支持がいし、18c…開口部、19…フランジ、20…ラッセル機構部、21…絶縁操作捧、22…操作機構部、23a,23b…被膜、24,27…電極、25a〜25c…埋込み金具、26…絶縁層、28…等電位線。   DESCRIPTION OF SYMBOLS 11 ... Vacuum valve, 12 ... Sealing electrode, 13 ... Insulating cylinder, 16a, 16b ... Electrode for electric field relaxation, 15 ... Bolt, 17 ... Insulating support plate, 18a, 18b ... Support insulator, 18c ... Opening, 19 ... Flange , 20 ... Russell mechanism part, 21 ... insulation operation dedicated, 22 ... operation mechanism part, 23a, 23b ... coating, 24, 27 ... electrode, 25a to 25c ... embedded metal fitting, 26 ... insulating layer, 28 ... equipotential line.

Claims (1)

絶縁ガスを封入し、絶縁容器と前記絶縁容器の両端にガスギャップGだけ離して端部が配置された電界緩和用電極とを有する真空バルブを備えたガス絶縁真空遮断器において、
前記真空バルブの可動電極に連結され、前記真空バルブの軸方向とは略直角方向に沿って進退可能に形成された絶縁操作捧と、
前記絶縁操作棒の軸方向に沿って当該絶縁操作棒に対向配置され、前記絶縁操作捧との対向部分に略U字状で前記絶縁操作棒と同軸状の凹部を有し、前記真空バルブを固定する支持がいしとを備え、
前記支持がいしと前記絶縁操作棒とは同一の絶縁材料よりなり、
前記支持がいしは、
略楕円状の断面形状を有し、前記真空バルブの軸方向に平行に埋込まれた第1及び第2の埋込み電極と、
略楕円状の断面形状を有し、前記第1及び第2の埋込み電極を介して前記絶縁操作棒に対向するように埋込まれた第3の埋込み電極とを備え、
前記第1乃至第3の埋込み電極は互いに同電位であり、前記第1乃至第3の埋込み電極からなる見かけ上の電極は、個々の埋込み電極よりも大きいことを特徴とするガス絶縁真空遮断器。
In a gas-insulated vacuum circuit breaker comprising a vacuum valve which encloses an insulating gas and has an insulating container and an electric field relaxation electrode disposed at both ends of the insulating container by a gas gap G and having an end portion disposed.
An insulating operation connected to the movable electrode of the vacuum valve and formed to be movable back and forth along a direction substantially perpendicular to the axial direction of the vacuum valve;
It is disposed opposite to the insulation operation rod along the axial direction of the insulation operation rod, and has a substantially U-shaped concave portion coaxial with the insulation operation rod at a portion facing the insulation operation deed, and the vacuum valve It has a support insulator to fix,
The support Ri name of the same insulating material and the insulating operating rod and insulators,
The support insulator is
First and second embedded electrodes having a substantially elliptical cross-sectional shape and embedded in parallel to the axial direction of the vacuum valve;
A third embedded electrode having a substantially elliptical cross-sectional shape and embedded so as to face the insulating operation rod via the first and second embedded electrodes;
The gas-insulated vacuum circuit breaker characterized in that the first to third embedded electrodes are at the same potential, and an apparent electrode made of the first to third embedded electrodes is larger than each embedded electrode . .
JP2004156084A 2004-05-26 2004-05-26 Gas insulated vacuum circuit breaker Expired - Lifetime JP4005982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004156084A JP4005982B2 (en) 2004-05-26 2004-05-26 Gas insulated vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004156084A JP4005982B2 (en) 2004-05-26 2004-05-26 Gas insulated vacuum circuit breaker

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9048955A Division JPH10247444A (en) 1997-03-04 1997-03-04 Gas insulation vacuum circuit breaker

Publications (2)

Publication Number Publication Date
JP2004281415A JP2004281415A (en) 2004-10-07
JP4005982B2 true JP4005982B2 (en) 2007-11-14

Family

ID=33297092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004156084A Expired - Lifetime JP4005982B2 (en) 2004-05-26 2004-05-26 Gas insulated vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JP4005982B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4918301B2 (en) * 2006-07-19 2012-04-18 ソマール株式会社 Manufacturing method of power switchgear

Also Published As

Publication number Publication date
JP2004281415A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
US11605501B2 (en) HV apparatus and a method of manufacturing such apparatus
CN103026564B (en) Gas insulated electric apparatus
JP3860553B2 (en) Gas insulated switchgear
US8698034B2 (en) Vacuum interrupter
KR101034878B1 (en) High voltage bushings with improved insulating performance electric field relaxation
JP5606252B2 (en) Polymer sleeve
JP4005982B2 (en) Gas insulated vacuum circuit breaker
EP2057641A1 (en) High voltage bushing
WO2011007446A1 (en) Gas insulated bus
JPH10247444A (en) Gas insulation vacuum circuit breaker
JP6071209B2 (en) Gas insulated switchgear and gas insulated bus
CN116438612A (en) Coated conductor in high voltage apparatus and method for improving dielectric strength
JP5697918B2 (en) Cable connection
JP2007104840A (en) Insulation structure of electric apparatus and switchgear therewith
JPH1021768A (en) Insulating bushing
JP2000125451A (en) Gas-insulated switchgear
JPH03222621A (en) Gas-insulated spacer
JPH06231636A (en) Gas insulating bushing
JPS6240495Y2 (en)
JP4908132B2 (en) Insulation structure of electrical equipment and switchgear using the insulation structure
JPH11288629A (en) Bushing
JP4253404B2 (en) Insulator for high voltage equipment
JP2002218610A (en) Gas insulated equipment
JPH0562572A (en) Vacuum circuit breaker
JPH1094115A (en) Through insulation support

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

EXPY Cancellation because of completion of term