JPH10242511A - Strained multiple quantum well structure - Google Patents
Strained multiple quantum well structureInfo
- Publication number
- JPH10242511A JPH10242511A JP4531497A JP4531497A JPH10242511A JP H10242511 A JPH10242511 A JP H10242511A JP 4531497 A JP4531497 A JP 4531497A JP 4531497 A JP4531497 A JP 4531497A JP H10242511 A JPH10242511 A JP H10242511A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- composition
- barrier layer
- quantum well
- multiple quantum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は光半導体素子の活性
層に用いられる歪多重量子井戸構造に関する。The present invention relates to a strained multiple quantum well structure used for an active layer of an optical semiconductor device.
【0002】[0002]
【従来の技術】厚さが数十Åの量子井戸層(以下、単に
井戸層と言う)を、それよりもバンドギャップの大きな
障壁層で挟み、それらを多層に積層した多重量子井戸構
造(MQW)は、現在の光半導体素子の活性層に広く利
用されている。近年、井戸層に圧縮歪を導入した歪多重
量子井戸構造(歪MQW)を活性層に用いたレーザが、
従来の基板に格子整合した井戸層を有するMQWに較
べ、素子特性(しきい値電流、光出力など)が向上する
ことを多くの研究機関により報告されている。素子特性
は、井戸層の歪量が大きくなるほど向上する。しかしな
がら、所望の歪量を持つ井戸層を、基板に格子整合した
障壁層で挟み、それらを交互に多層に積層して歪MQW
を形成すると、歪MQW全体の厚さがある一定の臨界値
(いわゆる、臨界膜厚)を超えると、基板と歪MQWと
の界面にミスフィット転位が発生する。井戸層の歪が大
きいほど臨界膜厚は小さくなる。これは、井戸層の歪に
よる応力が井戸層の数が増えるごとに歪MQWに蓄積さ
れ、この応力がミスフィット転位の発生を招くからであ
る。素子特性を向上させるためには、大きな歪を懸ける
必要があるものの、歪MQWの厚さが臨界膜厚で制限さ
れる。これを避けるために、歪補償型の歪MQWが提案
されている。この歪補償型の歪MQWでは、圧縮歪を有
する井戸層に対し、引張歪を有する障壁層を組み合わせ
ることにより、ミスフィット転位を発生させる応力を相
殺させ、ミスフィット転位の発生を抑制するものであ
る。歪補償型歪MQWを作製する際には、ガイドライン
として、次の(数1)式で定義される実効歪εを、ほぼ
ゼロにすることが提案されている〔B.I.Milleret a
l.,Appl.Phys.Lett.,58,(1991),p.1952〕。 ε=(εwh+εbH)/(h+H)……(数1) ここで、上記(数1)式中のhとHは、それぞれ井戸層
と障壁層の厚さ、εwとεbは、それぞれ井戸層と障壁層
の歪(引張歪は−、圧縮歪は+の符号を用いる)を表わ
す。すなわち、実効歪εをできるだけ小さくするように
井戸層および障壁層の厚さと歪を選ぶことが、ミスフィ
ット転位の無い歪補償型の歪MQWを成長させるための
条件となる。歪補償型の歪MQWにおいては、上述した
ように、圧縮歪の井戸層と引張歪の障壁層(あるいは、
引張歪の井戸層と圧縮歪の井戸層)を組み合わせること
から、井戸層と障壁層との界面に大きな歪の食い違いが
生じる。そのため、井戸層の上に障壁層を成長する際
に、障壁層が層状に成長せず3次元的な島状に成長する
ことが知られている。そのため、島同士が合体するとき
に欠陥(ミスフィット転位以外の欠陥)が入り、歪MQ
Wの光学特性を劣化させていた〔A.G.Culliset al.,
Journal of Crystal Growth,158,(1996),p.15〜2
7〕。また、障壁層の上に井戸層を成長するときも同様
の欠陥導入が生じる。このような欠陥導入は、井戸層と
障壁層の歪の食い違いが大きいほど顕著であり、成長温
度が高いほど顕著である。したがって、歪補償型歪MQ
Wにおいて実効歪を完全にゼロとしても、ミスフィット
転位以外の欠陥により、光学特性が劣化するという問題
があった。また、InP基板上において引張歪をかける
ことは、障壁層であるInGaAsPの組成を非混和領
域に近付けるか、または侵入させることとなる。そのた
め、InGaAsP層が熱力学的に不安定となり組成分
離を起こすことになり、上記の島状成長の原因となるも
のと考えられている。2. Description of the Related Art A multiple quantum well structure (MQW) in which a quantum well layer having a thickness of several tens of millimeters (hereinafter simply referred to as a well layer) is sandwiched by barrier layers having a larger band gap and stacked in multiple layers. Is widely used for the active layer of the current optical semiconductor device. In recent years, a laser using a strained multiple quantum well structure (strained MQW) in which a compressive strain is introduced into a well layer as an active layer has been developed.
Many research organizations have reported that the device characteristics (threshold current, optical output, etc.) are improved as compared to MQW having a well layer lattice-matched to a conventional substrate. The element characteristics improve as the strain amount of the well layer increases. However, a well layer having a desired strain amount is sandwiched between barrier layers lattice-matched to a substrate, and these layers are alternately stacked in multiple layers to form a strain MQW.
When the thickness of the entire strained MQW exceeds a certain critical value (a so-called critical film thickness), misfit dislocations occur at the interface between the substrate and the strained MQW. The larger the strain of the well layer, the smaller the critical film thickness. This is because the stress due to the strain in the well layer is accumulated in the strain MQW as the number of well layers increases, and this stress causes misfit dislocation. To improve the device characteristics, a large strain needs to be applied, but the thickness of the strain MQW is limited by the critical film thickness. In order to avoid this, a distortion compensation type distortion MQW has been proposed. In this strain compensation type strain MQW, the stress that causes misfit dislocations is offset by combining a well layer having compressive strain with a barrier layer having tensile strain, thereby suppressing the occurrence of misfit dislocations. is there. As a guideline, when fabricating a strain-compensated strain MQW, it has been proposed that the effective strain ε defined by the following equation (1) is made substantially zero [BI Miller et al.
I., Appl. Phys. Lett., 58, (1991), p. 1952]. ε = (ε w h + ε b H) / (h + H) (1) where h and H in the above equation (1) are the thickness of the well layer and the barrier layer, respectively, and ε w and ε b Represents the strain of the well layer and the barrier layer (the tensile strain uses a sign of − and the compressive strain uses a sign of +). That is, selecting the thickness and strain of the well layer and the barrier layer so as to minimize the effective strain ε is a condition for growing the strain-compensated strain MQW without misfit dislocation. In the strain-compensated strain MQW, as described above, the well layer of the compressive strain and the barrier layer of the tensile strain (or
The combination of the tensile strain well layer and the compressive strain well layer) causes a large strain discrepancy at the interface between the well layer and the barrier layer. Therefore, it is known that when growing a barrier layer on a well layer, the barrier layer does not grow in a layered manner but grows in a three-dimensional island shape. Therefore, when islands are united, defects (defects other than misfit dislocations) are formed, and the strain MQ
W. The optical properties of W were degraded [AG Culliset al.,
Journal of Crystal Growth, 158, (1996), pp. 15-2
7]. Similar defects are introduced when a well layer is grown on the barrier layer. Such defect introduction becomes more remarkable as the difference in strain between the well layer and the barrier layer becomes larger, and becomes more remarkable as the growth temperature becomes higher. Therefore, the distortion compensation type distortion MQ
Even if the effective strain is completely zero in W, there is a problem that optical characteristics are deteriorated due to defects other than misfit dislocations. Applying tensile strain on the InP substrate causes the composition of InGaAsP, which is a barrier layer, to approach or enter the immiscible region. Therefore, it is considered that the InGaAsP layer becomes thermodynamically unstable and causes composition separation, which causes the above-described island-like growth.
【0003】[0003]
【発明が解決しようとする課題】上述したように、従来
の歪補償型の歪MQWにおいては、井戸層と障壁層との
界面に大きな歪の食い違いが生じる。そのため、井戸層
の上に障壁層を成長する際に、障壁層は層状に成長せず
3次元的な島状に成長し、島状に成長したもの同士が合
体するときに欠陥(ミスフィット転位以外の欠陥)が生
じ、歪MQWの光学特性を劣化させていた。また、障壁
層の上に井戸層を成長する時にも上記と同様の欠陥が生
じるので、歪補償型の歪MQWにおいては実効歪をほぼ
ゼロ(零)にしてもミスフィット転位以外の欠陥により
光学特性が劣化するという問題があった。また、InP
基板上において引張歪をかけることは、障壁層であるI
nGaAsPの組成を非混和領域に近付けるか、または
侵入させることになり、そのため、InGaAsP層が
熱力学的に不安定となって組成分離が生じ、上記島状成
長の原因になるものと考えられる。As described above, in the conventional strain-compensated strain MQW, a large difference in strain occurs at the interface between the well layer and the barrier layer. Therefore, when the barrier layer is grown on the well layer, the barrier layer does not grow in a layered form but grows in a three-dimensional island form, and defects (misfit dislocations) are formed when the grown layers are united. Defects other than the above) and deteriorated the optical characteristics of the strain MQW. Further, when a well layer is grown on the barrier layer, the same defects as described above occur. Therefore, in the strain compensation type MQW, even if the effective strain is almost zero (zero), optical defects are caused by defects other than misfit dislocations. There is a problem that characteristics are deteriorated. Also, InP
Applying a tensile strain on the substrate is caused by the barrier layer I
It is considered that the composition of nGaAsP approaches or enters the immiscible region, so that the InGaAsP layer becomes thermodynamically unstable and causes compositional separation, which causes the island growth.
【0004】本発明の目的は、上記従来技術における問
題点を解消し、大きな歪の井戸層の上に、InGaAs
Pよりなる障壁層を成長させても組成分離が生じない、
すなわち、障壁層が3次元的な島状に成長することを阻
止して、ミスフィット転位以外の欠陥の生成を抑制し、
歪MQWの構造が安定した優れた光学特性を有する歪多
重量子井戸構造を提供することにある。An object of the present invention is to solve the above-mentioned problems in the prior art and to form InGaAs on a well layer having a large strain.
No composition separation occurs even when a barrier layer made of P is grown.
That is, the barrier layer is prevented from growing in a three-dimensional island shape, and the generation of defects other than misfit dislocations is suppressed,
An object of the present invention is to provide a strained multiple quantum well structure having a stable MQW structure and excellent optical characteristics.
【0005】[0005]
【課題を解決するための手段】上記本発明の目的を達成
するために、本発明は特許請求の範囲に記載のような構
成とするものである。すなわち、本発明は請求項1に記
載のように、InP基板上に形成された歪多重量子井戸
構造であって、該歪多重量子井戸構造を構成する障壁層
は、In1-xGaxAsyP1-y(式中、xはGa組成、y
はAs組成で、いずれも0〜1の範囲を表わす。)より
なる組成を有し、かつ、As組成yを0.5以下とした
歪多重量子井戸構造とするものである。また、本発明は
請求項2に記載のように、請求項1において、井戸層は
InGaAsよりなり、歪多重量子井戸構造の発光波長
が2μm帯である歪多重量子井戸構造とするものであ
る。また、本発明は請求項3に記載のように、請求項1
において、井戸層はInAsPよりなり、歪多重量子井
戸構造の発光波長が1.55μm帯である歪多重量子井
戸構造とするものである。また、本発明は請求項4に記
載のように、請求項1ないし請求項3のいずれか1項に
おいて、井戸層の数が4以上である歪多重量子井戸構造
とするものである。 本発明の歪多重量子井戸構造は、
請求項1ないし請求項4に記載のように、InP基板上
に形成された歪多重量子井戸構造における障壁層をIn
1-xGaxAsyP1-yよりなる組成とし、かつ障壁層のA
s組成yを0.5以下とすることにより、大きな歪の井
戸層の上に障壁層を成長させても組成分離が生じない安
定した構造の光学特性に優れた歪多重量子井戸構造を実
現できる効果がある。Means for Solving the Problems In order to achieve the object of the present invention, the present invention is configured as described in the claims. That is, according to the present invention, as described in claim 1, a strained multiple quantum well structure formed on an InP substrate, wherein the barrier layer constituting the strained multiple quantum well structure is formed of In 1-x Ga x As y P 1-y (where x is Ga composition, y
Represents an As composition, each of which represents a range of 0 to 1. ) And a strained multiple quantum well structure with an As composition y of 0.5 or less. According to a second aspect of the present invention, in the first aspect, the well layer is made of InGaAs and has a strained multiple quantum well structure in which the emission wavelength of the strained multiple quantum well structure is in the 2 μm band. Further, the present invention provides the first aspect as described in the third aspect.
Wherein the well layer is made of InAsP and has a strained multiple quantum well structure in which the emission wavelength of the strained multiple quantum well structure is in the 1.55 μm band. According to a fourth aspect of the present invention, there is provided a strained multiple quantum well structure according to any one of the first to third aspects, wherein the number of well layers is four or more. The strained multiple quantum well structure of the present invention comprises:
The barrier layer in the strained multiple quantum well structure formed on the InP substrate may be made of In.
1-x Ga x As y P 1-y consisting of a composition, and the barrier layer A
By setting the s composition y to 0.5 or less, it is possible to realize a strained multiple quantum well structure having a stable structure and excellent optical characteristics with no composition separation even when a barrier layer is grown on a well layer having a large strain. effective.
【0006】[0006]
〈実施の形態1〉図1は、本実施の形態で例示する歪多
重量子井戸構造の構成を示す模式図である。図におい
て、(001)面を持つn型InP基板1の上に、In
Pバッファー層2、厚さ1000ÅのInGaAsPガ
イド層3、4層のInGaAs井戸層5と、5層のIn
GaAsP障壁層6よりなる歪多重量子井戸構造4、厚
さ1000ÅのInGaAsPガイド層7、厚さ800
ÅのInPキャップ層8を積層している。InGaAs
Pガイド層3はn型InP基板1に格子整合し、その組
成は、歪多重量子井戸構造の発光波長に応じて変え得
る。また、InGaAs井戸層5とInGaAsP障壁
層6の組成も発光波長に応じて変え得る。本発明の一つ
の応用である発光波長2μmの歪MQWを得るために
は、井戸層として厚さ120ÅのIn0.76Ga0.24As
(歪:1.65%)を用い、障壁層として基板に格子整
合し発光波長1.2μmのInGaAsP(厚さ200
Å)、ガイド層として障壁層と同じ発光波長1.2μm
のInGaAsPを用いる。2.05μm帯のレーザ
は、発振波長が二酸化炭素(CO2)等の気体分子の吸
収帯にあたるため、ガスセンサーや医療機器への応用が
期待されている(例えば、特開平5−142146号公
報)。薄膜の成長は、有機金属分子線エピタキシ(MO
MBE)法〔H.Sugiura,M.Mitsuhara,H.Oohashi,
T.Hirono,and K.Nakashima,J.Crystal Growth,1
47,(1995),1.〕で行った。MOMBE法による成長は、
VG社製V−400CBE装置を用いた。III族原料
は、トリメチルインジウム(TMI)と、トリエチルガ
リウム(TEG)を用い、V族原料は、フォスフィン
(PH3)とアルシン(AsH3)を用いた。成長時の基
板温度は520℃とした。基板温度はInSbの融点で
校正したパイロメータを用いて測定した。図2に、図1
の歪多重量子井戸構造のPL強度の障壁層の組成依存性
を示す。障壁層はInP基板に格子整合させた。また、
2μm帯の発光波長が得られるように、井戸層の厚さを
120Å、組成をIn0.76Ga0.24As(歪:1.65
%)とした。また、ガイド層の組成は障壁層と同じにし
た。障壁層の組成は、発光波長1.1μm、1.2μm、
1.3μm、1.5μmのInGaAsP(各々1.1
Q、1.2Q、1.3Q、1.5Qと略記する)とInG
aAsを用いた。1.1Q、1.2Q、1.3Q、1.5Q
およびInGaAsのAs組成yは、それぞれ、0.3
3、0.48、0.61、0.85、1.0である。また、
障壁層の厚さは、すべて200Åとした。As組成が
0.5以下では強いPL発光が得られるが、As組成が
0.5を超えるとPL発光強度は減少する。そして、A
s組成yが0.85と1.0の障壁層を用いた時にはPL
発光は得られなかった。図3は、InGaAs(井戸
層)/InGaAsP(障壁層)よりなる歪MQWの断
面を、透過電子顕微鏡(TEM)で観察した結果を模式
的に表わしたものである。InGaAsP障壁層16の
As組成yが0.61〔図3(b)〕の時には、障壁層
とその上に成長したInGaAs井戸層15との界面が
揺らいでいる。この揺らぎは、障壁層を積層するごとに
大きくなっている。そして、第3層目の障壁層におい
て、界面の揺らぎが上方に凸になっている辺りから(1
11)面に沿う欠陥が発生している。この欠陥の発生に
よりPL発光が得られなかったものと考えられる。障壁
層と、その上に成長した井戸層との界面が揺らいでいる
状態から考えて、障壁層が成長する時に、障壁層の表面
に凹凸が発生して、そのため井戸層との界面が揺らいだ
ものと考えられる。そして、InGaAsP障壁層16
のAs組成yが0.48〔図3(a)〕の時には、障壁
層とその上に成長したInGaAs井戸層15との界面
は平坦であり、(111)面に沿う欠陥の発生は見られ
なかった。そして、障壁層の成長において表面に凹凸が
発生しなかったため、障壁層と、その上に成長した井戸
層との界面が平坦になったものと考えられる。 すなわ
ち、障壁層のAs組成yを0.61から0.48に減少さ
せると、障壁層の成長様態が変化し平坦な成長表面が得
られるようになったものと考えられる。次に、障壁層の
表面に凹凸ができる原因について考察する。図4は、I
nGaAsPの組成と非混和領域の関係を示したもので
ある。左下から斜めに右上に伸びている直線はInPに
格子整合する組成を表わす。また、図4に描いてある楕
円の内側は、温度520℃における非混和領域を表わ
す。この領域の組成を持つInGaAsPは、温度52
0℃において、GaPに近い組成を有する相と、InA
sに近い組成を有する相の二つに分離する傾向がある。
InPに格子整合する組成においては、As組成yが
0.45から0.98までの範囲が成長温度に近い520
℃において非混和領域に入る。As組成yが0.45か
ら0.98までの範囲は、図2におけるPL発光強度が
低下するときの障壁層のAs組成yの範囲にほぼ対応す
る。このことから、障壁層における組成分離が、成長時
における障壁層表面の凹凸発生の原因ではないかと考え
られる。障壁層における組成分離が、成長時における障
壁層表面の凹凸発生を招き、ひいては欠陥発生の原因と
なることは、本発明とは異なる成長法である有機金属気
相エピタキシ法により歪MQWを成長した場合にも起る
ことが報告されている(Elimination of wavy layer gr
owth phenomena in strain−compensated GaInAsP/GaI
nAsP multiple quantum well stacks.R.L.Glew,K.Scarr
ott,A.T.R.Briggs,A.D.Smith,V.A.Wilkinson.Journal o
f Crystal Growth,vol. 145,1994年発行、pp.764〜77
0)。また、これまで光素子の活性層として用いられて
きた発光波長1.3μmおよび1.55μmのInGaA
sPも含め、非混和領域内の組成を持つInGaAsP
が組成分離を起すことは、透過電子顕微鏡による観察か
ら明らかになっている(Spinodal−like decomposition
of InGaAs(P)/(100)InP grown by gas source mole
cular beam epitaxy,R.R.LaPierre,T.Okada,B.J.Robins
on,D.A.Thompson,G.C.Weatherly,Journal of Crystal G
rowth,vol.155,1995年発行、pp.1〜15)。図5は、本発
明の歪多重量子井戸構造を活性層に持つ半導体レーザの
断面図である。基板として(001)面を持つn型In
P基板21(電子濃度:2×1018cm~3)を用い、そ
の上に、厚さ0.5μmのSnドープInPバッファー
層22(電子濃度:5×1017cm~3)、厚さ1000
ÅのInGaAsPガイド層23、4層のInGaAs
井戸層(厚さ120Å、1.65%圧縮歪)と、5層の
InGaAsP障壁層(厚さ200Å、As組成0.4
8、基板に格子整合)からなる歪多重量子井戸構造2
4、厚さ1000ÅのInGaAsPガイド層27、厚
さ0.3μmのBeドープInPクラッド層28(正孔
濃度:5×1017cm~3)、厚さ1.2μmのZnドー
プInPクラッド層29(正孔濃度:2×1018cm
~3)、厚さ0.3μmのZnドープInGaAsコンタ
クト層30(正孔濃度:5×1018cm~3)を積層して
いる。SnドープInPバッファー層22からBeドー
プInPクラッド層28までの成長をMOMBE法で行
った後、一旦、大気中にウエハを取り出し、その上に有
機金属気相エピタキシ法により、ZnドープInPクラ
ッド層29とZnドープInGaAsコンタクト層30
の成長を行った。ZnドープInGaAsコンタクト層
30はInP基板と格子整合している。成長したウエハ
のn型InP基板21側にn電極31を、ZnドープI
nGaAsコンタクト層30側にp電極32を形成し、
図5に示すような歪多重量子井戸構造24を有する発光
素子を完成した。図5に示すレーザ構造を持つウエハ
を、p電極32側をメサ加工して、ブロードコンタクト
レーザとし、しきい値電流密度を評価した。その結果、
共振器長が900μmにおいて、しきい値電流密度は
2.0kA/cm2であった。また発振波長は2.05μ
mであった。<Embodiment 1> FIG. 1 is a schematic diagram showing a configuration of a strained multiple quantum well structure exemplified in this embodiment. In the figure, an In-type InP substrate 1 having a (001) plane is
P buffer layer 2, InGaAsP guide layer 3 having a thickness of 1000 °, four InGaAs well layers 5, five In layers
Strained multiple quantum well structure 4 comprising GaAsP barrier layer 6, InGaAsP guide layer 7 having a thickness of 1000 °, thickness 800
The InP cap layer 8 is laminated. InGaAs
The P guide layer 3 is lattice-matched to the n-type InP substrate 1, and its composition can be changed according to the emission wavelength of the strained multiple quantum well structure. Further, the compositions of the InGaAs well layer 5 and the InGaAsP barrier layer 6 can be changed according to the emission wavelength. In order to obtain strained MQW having an emission wavelength of 2 μm, which is one application of the present invention, it is necessary to form a well layer of In 0.76 Ga 0.24 As with a thickness of 120 °.
(Strain: 1.65%), lattice matched to the substrate as a barrier layer, and InGaAsP (thickness: 200 μm) having an emission wavelength of 1.2 μm.
Å), the same emission wavelength as the barrier layer as the guide layer: 1.2 μm
Of InGaAsP is used. Since a laser in the 2.05 μm band has an oscillation wavelength corresponding to an absorption band of gas molecules such as carbon dioxide (CO 2 ), it is expected to be applied to gas sensors and medical equipment (for example, JP-A-5-142146). ). The growth of thin films is based on metalorganic molecular beam epitaxy (MO
MBE) method [H. Sugiura, M. Mitsuhara, H. Oohashi,
T. Hirono, and K. Nakashima, J. Crystal Growth, 1
47, (1995), 1.]. Growth by the MOMBE method
A V-400 CBE device manufactured by VG was used. Group III materials used were trimethylindium (TMI) and triethylgallium (TEG), and group V materials used were phosphine (PH 3 ) and arsine (AsH 3 ). The substrate temperature during growth was 520 ° C. The substrate temperature was measured using a pyrometer calibrated with the melting point of InSb. In FIG. 2, FIG.
3 shows the composition dependence of the PL intensity of the strained multiple quantum well structure of FIG. The barrier layer was lattice-matched to the InP substrate. Also,
In order to obtain an emission wavelength in the 2 μm band, the thickness of the well layer is set to 120 ° and the composition is set to In 0.76 Ga 0.24 As (strain: 1.65).
%). The composition of the guide layer was the same as that of the barrier layer. The composition of the barrier layer is such that the emission wavelength is 1.1 μm, 1.2 μm,
1.3 μm and 1.5 μm InGaAsP (1.1 μm each)
Q, 1.2Q, 1.3Q, 1.5Q) and InG
aAs was used. 1.1Q, 1.2Q, 1.3Q, 1.5Q
And InGaAs have an As composition y of 0.3, respectively.
3, 0.48, 0.61, 0.85, and 1.0. Also,
The thickness of the barrier layers was all 200 °. When the As composition is less than 0.5, strong PL emission is obtained, but when the As composition exceeds 0.5, the PL emission intensity decreases. And A
When barrier layers with s composition y of 0.85 and 1.0 are used, PL
No luminescence was obtained. FIG. 3 schematically shows a result of observing a cross section of a strained MQW composed of InGaAs (well layer) / InGaAsP (barrier layer) with a transmission electron microscope (TEM). When the As composition y of the InGaAsP barrier layer 16 is 0.61 [FIG. 3B], the interface between the barrier layer and the InGaAs well layer 15 grown thereon fluctuates. This fluctuation increases as the barrier layers are stacked. Then, in the third barrier layer, the fluctuation of the interface becomes upwardly convex (1).
11) Defects along the plane have occurred. It is considered that PL emission could not be obtained due to the generation of this defect. Considering the state where the interface between the barrier layer and the well layer grown thereon fluctuates, when the barrier layer grows, irregularities are generated on the surface of the barrier layer, and the interface with the well layer fluctuates. It is considered something. Then, the InGaAsP barrier layer 16
When the As composition y is 0.48 (FIG. 3A), the interface between the barrier layer and the InGaAs well layer 15 grown on the barrier layer is flat, and generation of defects along the (111) plane is observed. Did not. Since no irregularities were generated on the surface during the growth of the barrier layer, it is considered that the interface between the barrier layer and the well layer grown thereon became flat. That is, it is considered that when the As composition y of the barrier layer is reduced from 0.61 to 0.48, the growth state of the barrier layer is changed and a flat growth surface is obtained. Next, the cause of unevenness on the surface of the barrier layer will be considered. FIG.
3 shows the relationship between the composition of nGaAsP and the immiscible region. A straight line extending obliquely from the lower left to the upper right represents a composition lattice-matched to InP. The inside of the ellipse shown in FIG. 4 represents an immiscible region at a temperature of 520 ° C. InGaAsP having a composition in this region has a temperature of 52%.
At 0 ° C., a phase having a composition close to GaP
There is a tendency to separate into two phases with compositions close to s.
In a composition lattice-matched to InP, the range of As composition y from 0.45 to 0.98 is 520 close to the growth temperature.
Enter the immiscible region at ° C. The range of the As composition y from 0.45 to 0.98 substantially corresponds to the range of the As composition y of the barrier layer when the PL emission intensity decreases in FIG. From this, it is considered that the composition separation in the barrier layer may be the cause of the occurrence of unevenness on the barrier layer surface during growth. The fact that the compositional separation in the barrier layer causes unevenness of the barrier layer surface during growth and, consequently, the occurrence of defects, was achieved by growing strained MQW by a metal organic vapor phase epitaxy method which is a growth method different from the present invention. Has also been reported to occur (Elimination of wavy layer gr
owth phenomena in strain-compensated GaInAsP / GaI
nAsP multiple quantum well stacks.RLGlew, K.Scarr
ott, ATRBriggs, ADSmith, VAWilkinson.Journal o
f Crystal Growth, vol. 145, published in 1994, pp. 764-77
0). Further, InGaAs having an emission wavelength of 1.3 μm and 1.55 μm, which has been used as an active layer of an optical element, has been used.
InGaAsP having a composition in an immiscible region including sP
It is evident from the observation with a transmission electron microscope that composition separation occurs (Spinodal-like decomposition
of InGaAs (P) / (100) InP grown by gas source mole
cular beam epitaxy, RRLaPierre, T.Okada, BJRobins
on, DAThompson, GCWeatherly, Journal of Crystal G
rowth, vol.155, published in 1995, pp.1-15). FIG. 5 is a sectional view of a semiconductor laser having a strained multiple quantum well structure of the present invention in an active layer. N-type In having (001) plane as substrate
A P-substrate 21 (electron concentration: 2 × 10 18 cm 3 ) was used, and a 0.5 μm thick Sn-doped InP buffer layer 22 (electron concentration: 5 × 10 17 cm 3 ) and a thickness 1000
In InGaAsP guide layer 23, four layers of InGaAs
A well layer (thickness: 120 °, 1.65% compressive strain) and five InGaAsP barrier layers (thickness: 200 °, As composition: 0.4)
8, strained multiple quantum well structure 2)
4, Be-doped InP cladding layer 28 of InGaAsP guide layer 27, the thickness of 0.3μm thickness 1000 Å (hole concentration: 5 × 10 17 cm ~ 3 ), a thickness of 1.2 [mu] m Zn-doped InP cladding layer 29 ( Hole concentration: 2 × 10 18 cm
~ 3), Zn-doped InGaAs contact layer 30 (hole concentration of thickness 0.3 [mu] m: are stacked 5 × 10 18 cm ~ 3) . After the growth from the Sn-doped InP buffer layer 22 to the Be-doped InP clad layer 28 was performed by the MOMBE method, the wafer was once taken out into the atmosphere, and then the Zn-doped InP clad layer 29 was formed thereon by the metal organic vapor phase epitaxy method. And Zn-doped InGaAs contact layer 30
Grew. The Zn-doped InGaAs contact layer 30 is lattice-matched to the InP substrate. An n-electrode 31 is placed on the n-type InP substrate 21 side of the grown wafer,
forming a p electrode 32 on the nGaAs contact layer 30 side;
A light emitting device having a strained multiple quantum well structure 24 as shown in FIG. 5 was completed. The wafer having the laser structure shown in FIG. 5 was mesa-processed on the side of the p-electrode 32 to form a broad contact laser, and the threshold current density was evaluated. as a result,
When the cavity length was 900 μm, the threshold current density was 2.0 kA / cm 2 . The oscillation wavelength is 2.05μ
m.
【0007】〈実施の形態2〉図6は、本発明の第2の
実施例の構造図である。(001)面を持つn型InP
基板41上に、InPバッファー層42、厚さ1000
ÅのInGaAsPガイド層43、4層のInAsP井
戸層45と、5層のInGaAsP障壁層46からなる
歪多重量子井戸構造44、厚さ1000ÅのInGaA
sPガイド層47、厚さ800ÅのInPキャップ層4
8を積層している。InGaAsPガイド層43はn型
InP基板41に格子整合し、その組成は、歪多重量子
井戸構造44の発光波長に応じて変える。また、InA
sP井戸層45とInGaAsP障壁層46の組成も発
光波長に応じて変える。本発明の一つの応用である発光
波長1.55μmの歪MQWを得るためには、井戸層と
して、厚さ50ÅのInAs0.7P0.3(歪:2.1%)
を用い、障壁層として基板に格子整合し発光波長1.1
μmのInGaAsP(厚さ100Å)、ガイド層とし
て障壁層と同じ発光波長1.1μmのInGaAsPを
用いる。InAsPを井戸層とする歪MQWは、InA
sPとInGaAsPの界面における伝導帯不連続が大
きいため、温度による発振波長の変化や、しきい値電流
の変化の少ないレーザが得られるとの理論予測があるた
め注目されている〔H.Oohashi,T.Hirono,S.Seki,
H.Sugiura,J.Nakano,M.Yamamoto,Y.Tohmori,an
d K.Yokoyama,J.Appl.Phys.,77,(1995),p.411
9.〕。図7は、図6に示す歪多重量子井戸構造における
PL発光強度の障壁層のAs組成依存性を示す。障壁層
はInPに格子整合させた。1.55μm帯の発光波長
が得られるように井戸層の厚さと組成を、それぞれ50
ÅとInAs0.7P0.3(歪:2.1%)とした。また、
ガイド層の組成は障壁層と同じにした。障壁層の組成
は、発光波長1.1μmと1.3μmのInGaAsP
(各々1.1Q、1.3Qと略記する)を用いた。1.1
Qと1.3QのAs組成は、それぞれ0.33と0.61
である。障壁層の厚さは、すべて100Åとした。As
組成が0.33では強いPL発光が得られたが、As組
成が0.61では発光しなかった。障壁層のAs組成が
0.33の場合には、障壁層において組成分離が起こら
なかったために、欠陥の無い良好な歪MQWが得られ
た。そのため強いPL発光が得られた。しかし、障壁層
のAs組成が0.61の場合には障壁層において組成分
離が起こり、欠陥が発生したためPL発光しなかった。[Embodiment 2] FIG. 6 is a structural view of a second embodiment of the present invention. N-type InP with (001) plane
An InP buffer layer 42 having a thickness of 1000
歪 InGaAsP guide layer 43, four InAsP well layers 45, and five InGaAsP barrier layers 46, strained multiple quantum well structure 44, 1000 Å thick InGaAs
sP guide layer 47, 800 nm thick InP cap layer 4
8 are stacked. The InGaAsP guide layer 43 is lattice-matched to the n-type InP substrate 41, and its composition is changed according to the emission wavelength of the strained multiple quantum well structure 44. Also, InA
The compositions of the sP well layer 45 and the InGaAsP barrier layer 46 are also changed according to the emission wavelength. In order to obtain strained MQW having an emission wavelength of 1.55 μm, which is one application of the present invention, InAs 0.7 P 0.3 (strain: 2.1%) having a thickness of 50 ° is used as a well layer.
And lattice-matched to the substrate as a barrier layer to obtain an emission wavelength of 1.1.
InGaAsP having a thickness of 100 .mu.m and InGaAsP having a light emission wavelength of 1.1 .mu.m, which is the same as that of the barrier layer, are used as the guide layer. The strain MQW using InAsP as a well layer is InA
Since the conduction band discontinuity at the interface between sP and InGaAsP is large, there is theoretical prediction that a laser with a small change in the oscillation wavelength due to temperature and a small change in the threshold current can be obtained. T. Hirono, S. Seki,
H. Sugiura, J. Nakano, M. Yamamoto, Y. Tohmori, an
d K. Yokoyama, J. Appl. Phys., 77, (1995), p. 411
9.]. FIG. 7 shows the dependency of the PL emission intensity on the As composition of the barrier layer in the strained multiple quantum well structure shown in FIG. The barrier layer was lattice-matched to InP. The thickness and composition of the well layer are adjusted to 50
Å and InAs 0.7 P 0.3 (strain: 2.1%). Also,
The composition of the guide layer was the same as that of the barrier layer. The composition of the barrier layer is such that the emission wavelengths are 1.1 μm and 1.3 μm InGaAsP.
(Abbreviated as 1.1Q and 1.3Q, respectively). 1.1
As compositions of Q and 1.3Q are 0.33 and 0.61, respectively.
It is. The thicknesses of the barrier layers were all 100 °. As
When the composition was 0.33, strong PL emission was obtained, but when the As composition was 0.61, no emission was observed. When the As composition of the barrier layer was 0.33, no compositional separation occurred in the barrier layer, and thus a good strain-free MQW without defects was obtained. Therefore, strong PL emission was obtained. However, when the As composition of the barrier layer was 0.61, composition separation occurred in the barrier layer, and PL was not emitted due to generation of defects.
【0008】[0008]
【発明の効果】本発明の歪多重量子井戸構造によれば、
障壁層としてAs組成yが0.5以下のInGaAsP
を用いるため、大きな歪の井戸層の上に成長させても組
成分離が生じない。そのため、安定な構造の光学特性に
優れた歪多重量子井戸構造を実現できるという顕著な効
果がある。According to the strained multiple quantum well structure of the present invention,
InGaAsP having an As composition y of 0.5 or less as a barrier layer
Is used, no compositional separation occurs even when grown on a well layer having a large strain. Therefore, there is a remarkable effect that a strained multiple quantum well structure having a stable structure and excellent optical characteristics can be realized.
【図1】本発明の実施の形態1で例示した歪多重量子井
戸構造の構成を示す模式図。FIG. 1 is a schematic diagram showing a configuration of a strained multiple quantum well structure exemplified in Embodiment 1 of the present invention.
【図2】本発明の実施の形態1で例示した歪多重量子井
戸構造の障壁層のAs組成とPL発光強度の関係を示す
図。FIG. 2 is a diagram showing a relationship between an As composition of a barrier layer of a strained multiple quantum well structure and a PL emission intensity exemplified in the first embodiment of the present invention.
【図3】本発明の実施の形態1で例示した歪多重量子井
戸構造の障壁層のAs組成が0.48と0.61の場合に
おける透過電子顕微鏡(TEM)による歪MQWの観察
結果を示す説明図。FIG. 3 shows the results of observation of strain MQW by a transmission electron microscope (TEM) when the As composition of the barrier layer of the strained multiple quantum well structure exemplified in the first embodiment of the present invention is 0.48 and 0.61. FIG.
【図4】本発明の実施の形態1で例示した歪多重量子井
戸構造における非混和領域と障壁層のAs組成との関係
を示す説明図。FIG. 4 is an explanatory diagram showing a relationship between an immiscible region and an As composition of a barrier layer in the strained multiple quantum well structure exemplified in the first embodiment of the present invention.
【図5】本発明の実施の形態1で例示した歪多重量子井
戸構造を活性層に持つ半導体レーザの構成を示す模式
図。FIG. 5 is a schematic diagram showing a configuration of a semiconductor laser having a strained multiple quantum well structure exemplified in Embodiment 1 of the present invention in an active layer.
【図6】本発明の実施の形態2で例示した歪多重量子井
戸構造の構成を示す模式図。FIG. 6 is a schematic diagram showing a configuration of a strained multiple quantum well structure exemplified in Embodiment 2 of the present invention.
【図7】本発明の実施の形態2で例示した歪多重量子井
戸構造の障壁層のAs組成とPL発光強度の関係を示す
図。FIG. 7 is a diagram showing a relationship between an As composition of a barrier layer of a strained multiple quantum well structure and a PL emission intensity exemplified in the second embodiment of the present invention.
1…n型InP基板 2…InPバッファー層 3…InGaAsPガイド層 4…歪多重量子井戸構造 5…InGaAs井戸層 6…InGaAsP障壁層 7…InGaAsPガイド層 8…InPキャップ層 13…InGaAsPガイド層 15…InGaAs井戸層 16…InGaAsP障壁層 17…InGaAsPガイド層 21…n型InP基板 22…SnドープInPバッファー層 23…InGaAsPガイド層 24…歪多重量子井戸構造 27…InGaAsPガイド層 28…BeドープInPクラッド層 29…ZnドープInPクラッド層 30…ZnドープInPクラッド層 31…n電極 32…p電極 41…n型InP基板 42…InPバッファー層 43…InGaAsPガイド層 44…歪多重量子井戸構造 45…InAsP井戸層 46…InGaAsP障壁層 47…InGaAsPガイド層 48…InPキャップ層 DESCRIPTION OF SYMBOLS 1 ... n-type InP board 2 ... InP buffer layer 3 ... InGaAsP guide layer 4 ... Strained multiple quantum well structure 5 ... InGaAs well layer 6 ... InGaAsP barrier layer 7 ... InGaAsP guide layer 8 ... InP cap layer 13 ... InGaAsP guide layer 15 ... InGaAs well layer 16 ... InGaAsP barrier layer 17 ... InGaAsP guide layer 21 ... n-type InP substrate 22 ... Sn-doped InP buffer layer 23 ... InGaAsP guide layer 24 ... Strained multiple quantum well structure 27 ... InGaAsP guide layer 28 ... Be-doped InP clad layer 29 Zn-doped InP cladding layer 30 Zn-doped InP cladding layer 31 n-electrode 32 p-electrode 41 n-type InP substrate 42 InP buffer layer 43 InGaAsP guide layer 44 strained multiple quantum well structure 45 InA P-well layer 46 ... InGaAsP barrier layer 47 ... InGaAsP guide layer 48 ... InP cap layer
Claims (4)
構造であって、該歪多重量子井戸構造を構成する障壁層
は、In1-xGaxAsyP1-y( 式中、xはGa組成、
yはAs組成で、いずれも0〜1の範囲を表わす。)よ
りなる組成を有し、かつ、As組成yが0.5以下であ
ることを特徴とする歪多重量子井戸構造。1. A strained multiple quantum well structure formed on an InP substrate, a barrier layer constituting a strained multiple quantum well structure, in In 1-x Ga x As y P 1-y ( wherein, x is a Ga composition,
y is an As composition, and each represents a range of 0 to 1. ), And wherein the As composition y is 0.5 or less.
よりなり、歪多重量子井戸構造の発光波長が2μm帯で
あることを特徴とする歪多重量子井戸構造。2. The method according to claim 1, wherein the well layer is made of InGaAs.
Wherein the emission wavelength of the strained multiple quantum well structure is in the 2 μm band.
りなり、歪多重量子井戸構造の発光波長が1.55μm
帯であることを特徴とする歪多重量子井戸構造。3. The structure of claim 1, wherein the well layer is made of InAsP, and the emission wavelength of the strained multiple quantum well structure is 1.55 μm.
A strained multiple quantum well structure characterized by being a band.
おいて、井戸層の数が4以上であることを特徴とする歪
多重量子井戸構造。4. The strained multiple quantum well structure according to claim 1, wherein the number of well layers is four or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4531497A JPH10242511A (en) | 1997-02-28 | 1997-02-28 | Strained multiple quantum well structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4531497A JPH10242511A (en) | 1997-02-28 | 1997-02-28 | Strained multiple quantum well structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10242511A true JPH10242511A (en) | 1998-09-11 |
Family
ID=12715854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4531497A Pending JPH10242511A (en) | 1997-02-28 | 1997-02-28 | Strained multiple quantum well structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10242511A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007194334A (en) * | 2006-01-18 | 2007-08-02 | Sharp Corp | Semiconductor laser device, method for manufacturing the same, and space optical transmission system |
JP2008186902A (en) * | 2007-01-29 | 2008-08-14 | Hitachi Ltd | Optical semiconductor element and manufacturing method therefor |
JP2013110208A (en) * | 2011-11-18 | 2013-06-06 | Fujitsu Ltd | Optical semiconductor element and manufacturing method of the same |
JP2018101675A (en) * | 2016-12-20 | 2018-06-28 | Dowaエレクトロニクス株式会社 | Semiconductor light-emitting element and method of manufacturing the same |
-
1997
- 1997-02-28 JP JP4531497A patent/JPH10242511A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007194334A (en) * | 2006-01-18 | 2007-08-02 | Sharp Corp | Semiconductor laser device, method for manufacturing the same, and space optical transmission system |
JP2008186902A (en) * | 2007-01-29 | 2008-08-14 | Hitachi Ltd | Optical semiconductor element and manufacturing method therefor |
JP4629687B2 (en) * | 2007-01-29 | 2011-02-09 | 株式会社日立製作所 | Optical semiconductor device and manufacturing method thereof |
JP2013110208A (en) * | 2011-11-18 | 2013-06-06 | Fujitsu Ltd | Optical semiconductor element and manufacturing method of the same |
JP2018101675A (en) * | 2016-12-20 | 2018-06-28 | Dowaエレクトロニクス株式会社 | Semiconductor light-emitting element and method of manufacturing the same |
US11205739B2 (en) | 2016-12-20 | 2021-12-21 | Dowa Electronics Materials Co., Ltd. | Semiconductor light-emitting device and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4952005B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2724827B2 (en) | Infrared light emitting device | |
JP2007201040A (en) | Semiconductor light emitting element | |
JP4662345B2 (en) | Multiple strain quantum well structure and manufacturing method thereof | |
JPH09139543A (en) | Semiconductor laser element | |
US9401404B2 (en) | Semiconductor device and fabrication method | |
JP2969979B2 (en) | Semiconductor structures for optoelectronic components | |
JP4886634B2 (en) | Quantum well structure, optical confinement quantum well structure, semiconductor laser, distributed feedback semiconductor laser, and method of manufacturing quantum well structure | |
JP5026115B2 (en) | Quantum well structure, semiconductor laser, spectroscopic measurement apparatus, and method for manufacturing quantum well structure | |
JP3768790B2 (en) | Quantum dot structure and semiconductor device apparatus having the same | |
JPH10242511A (en) | Strained multiple quantum well structure | |
EP1505699A1 (en) | Semiconductor optical device on an indium phosphide substrate for long operating wavelengths | |
JP2661563B2 (en) | Semiconductor laser | |
JPH0541560A (en) | Semiconductor laser element | |
JP4086465B2 (en) | Quantum dot structure and method for forming the same, and semiconductor device device having the quantum dot structure | |
US5302847A (en) | Semiconductor heterostructure having a capping layer preventing deleterious effects of As-P exchange | |
JPH10190143A (en) | Compressive-strain multiple quantum well structure | |
JPH053367A (en) | Semiconductor laser | |
JP3239821B2 (en) | Method for producing strained semiconductor crystal | |
JPH01130584A (en) | Semiconductor light emitting device | |
JP2556270B2 (en) | Strained quantum well semiconductor laser | |
JPH10242571A (en) | Strained multiple quantum well structure and its manufacture | |
JPH1131811A (en) | Method for growing strained multiple quantum well structure | |
JPH0529715A (en) | Semiconductor element having distortion quantum well structure | |
JP2917974B2 (en) | Crystal growth method and semiconductor laser manufacturing method |