JP4629687B2 - Optical semiconductor device and manufacturing method thereof - Google Patents

Optical semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4629687B2
JP4629687B2 JP2007017693A JP2007017693A JP4629687B2 JP 4629687 B2 JP4629687 B2 JP 4629687B2 JP 2007017693 A JP2007017693 A JP 2007017693A JP 2007017693 A JP2007017693 A JP 2007017693A JP 4629687 B2 JP4629687 B2 JP 4629687B2
Authority
JP
Japan
Prior art keywords
layer
ingaasp
inp substrate
waveguide layer
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007017693A
Other languages
Japanese (ja)
Other versions
JP2008186902A (en
Inventor
健 北谷
朋信 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007017693A priority Critical patent/JP4629687B2/en
Publication of JP2008186902A publication Critical patent/JP2008186902A/en
Application granted granted Critical
Publication of JP4629687B2 publication Critical patent/JP4629687B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は光半導体素子に係り、特に、波長可変レーザ、或いは半導体変調器集積型光源等の集積型光半導体素子、及びその製造方法に関する。   The present invention relates to an optical semiconductor device, and more particularly to an integrated optical semiconductor device such as a wavelength tunable laser or a semiconductor modulator integrated light source, and a manufacturing method thereof.

近年のインターネット人口の爆発的増大により、情報伝送の急速な高速化および大容量化が求められており、今後も光通信が重要な役割を果たすと考えられている。光通信で用いられる光源には、より高速な伝送特性が求められている。特に長距離の光通信においては、半導体レーザを直接変調することのみでは対応できないため、半導体レーザの前方に光変調器を集積した変調器集積型光源が用いられている。また、波長多重通信などに対応するため、波長を瞬時に切り替えられる波長可変光源のような付加価値の高い光源も急速に求められている。このような集積型光半導体素子においては、光を発生する活性層(レーザ部)の他に、変調器部や波長調整部といった領域が同一基板上に一括形成されている。   With the explosive growth of the Internet population in recent years, there has been a demand for rapid increase in information transmission and capacity, and optical communication will continue to play an important role in the future. Light sources used in optical communication are required to have higher transmission characteristics. In particular, in long-distance optical communication, a modulator integrated light source in which an optical modulator is integrated in front of the semiconductor laser is used because it cannot be dealt with by directly modulating the semiconductor laser. In addition, in order to cope with wavelength multiplex communication and the like, a light source with high added value such as a wavelength tunable light source capable of instantaneously switching wavelengths is rapidly demanded. In such an integrated optical semiconductor device, regions such as a modulator portion and a wavelength adjusting portion are formed on the same substrate in addition to an active layer (laser portion) that generates light.

図1は、波長可変光源の例である。光を発生するレーザ部と、光の位相を変調し波長を変化させる波長調整部から形成されている。図2は、変調器集積型光源の例である。光を発生するレーザ部、発生した光を変調する変調器部、及び、レーザ部から変調器部に到達する光を効率よく伝搬させる導波路部とから構成されている。これらの波長調整部や導波路部には、光を良好に閉じ込めながら伝播させるために、一般的に数100nm以上の膜厚の半導体層が用いられる。集積型光素子の半導体材料としては、InP基板上に形成されるInGaAsP、InGaAlAsといった材料が用いられる。特にInGaAsPは、材料自体が酸化されにくい特性を有しており、再成長工程を用いる集積型光素子の作製において、非常に適した材料である。   FIG. 1 is an example of a wavelength tunable light source. It is formed of a laser unit that generates light and a wavelength adjustment unit that modulates the phase of light and changes the wavelength. FIG. 2 is an example of a modulator integrated light source. A laser unit that generates light, a modulator unit that modulates the generated light, and a waveguide unit that efficiently propagates light that reaches the modulator unit from the laser unit. In order to propagate light while confining light well in these wavelength adjusting sections and waveguide sections, a semiconductor layer having a thickness of several hundred nm or more is generally used. As a semiconductor material of the integrated optical element, materials such as InGaAsP and InGaAlAs formed on an InP substrate are used. InGaAsP in particular has a characteristic that the material itself is not easily oxidized, and is a very suitable material for manufacturing an integrated optical device using a regrowth process.

ここで、図1の波長可変レーザを例にとって、集積型光素子の作製プロセスを説明する。これは、所謂、分布反射器(DBR: Distributed Bragg Reflector)型といわれる構造である。主に結晶成長に関するプロセス工程を図3に示した。まず、図3(a)に示すように、n-InP基板301上に、通常の結晶成長により、量子井戸構造から成る活性層302を形成する。続いて、図3(b)に示すように絶縁体マスク303を形成した後、不要部分をエッチングにより除去する。さらに、図3(c)に示すように、InGaAsP導波路層304、InPスペーサ層305、InGaAsP回折格子層306などを再成長にて形成する。最後に、図3(d)に示すように、回折格子306の形状を形成した後に、全体にp-InPクラッド層307を再成長にて形成する。この後、メサエッチング工程や電極蒸着工程等を経て、素子として完成する。   Here, a manufacturing process of the integrated optical device will be described by taking the wavelength tunable laser of FIG. 1 as an example. This is a so-called distributed reflector (DBR) type structure. Process steps mainly relating to crystal growth are shown in FIG. First, as shown in FIG. 3A, an active layer 302 having a quantum well structure is formed on an n-InP substrate 301 by normal crystal growth. Subsequently, after forming the insulator mask 303 as shown in FIG. 3B, unnecessary portions are removed by etching. Further, as shown in FIG. 3C, an InGaAsP waveguide layer 304, an InP spacer layer 305, an InGaAsP diffraction grating layer 306, and the like are formed by regrowth. Finally, as shown in FIG. 3D, after the shape of the diffraction grating 306 is formed, a p-InP cladding layer 307 is formed by regrowth on the whole. Thereafter, the device is completed through a mesa etching process, an electrode deposition process, and the like.

このような集積型光素子作製においては、先に説明したように、通常光を発生する活性層が第一番目に形成される。これは、再成長表面のC、O、Siなどの不純物の影響や、マスク近傍での選択成長効果による歪の増大により、多重量子井戸活性層における発光特性の低下を避けるためである。そのため、導波路層は、再成長工程で形成される場合が殆どである。   In manufacturing such an integrated optical device, as described above, an active layer that generates normal light is formed first. This is to avoid the deterioration of the light emission characteristics in the multi-quantum well active layer due to the influence of impurities such as C, O, and Si on the regrowth surface and the increase in strain due to the selective growth effect near the mask. For this reason, the waveguide layer is mostly formed by a regrowth process.

「ジャパニーズ ジャーナル オブ アプライド フィジックス(Japanese Journal of Applied Phisics)」21巻、1982年、p.797Japanese Journal of Applied Phisics, Volume 21, 1982, p. 797 「ジャーナル オブ クリスタルグロース(Journal of Crystal Growth) 27巻、1974年、p.118`` Journal of Crystal Growth 27, 1974, p.118

現在の石英系光ファイバの最低損失波長帯である1.55μm帯の光素子では、光吸収を抑制する為、InGaAsP導波路層の組成波長は1.55μm未満に設定される。典型的には、1.3μm〜1.45μmの範囲に設定される。InGaAsP層の結晶成長時の温度は、通常500-600℃である。成長温度が高すぎると、蒸気圧の高いP原子が表面から抜けてしまい、膜質の低下をもたらすためである。
ここで、InGaAsP層のInP基板からの格子不整合度ε(%)を下記の式で定義する。

ε(%)= [{(InGaAsPの格子定数) ― (InP基板の格子定数)}/ (InP基板の格子定数)]x100

導波路層に用いられるInGaAsP層の場合、数100nm以上の厚さが必要である。典型的には200〜500nmである。そこで、格子不整合転位の発生を防ぐ為、通常InP基板に格子整合する条件で形成する。その際のεの値としては、典型的に-0.05%≦ε≦+0.05%の範囲内に設定される。InP基板とInGaAsP層の熱膨張係数の違いを考慮すると、やや−歪側に設定するのが好ましい。
In an optical element in the 1.55 μm band which is the lowest loss wavelength band of the current silica-based optical fiber, the composition wavelength of the InGaAsP waveguide layer is set to less than 1.55 μm in order to suppress light absorption. Typically, it is set in the range of 1.3 μm to 1.45 μm. The temperature during crystal growth of the InGaAsP layer is usually 500-600 ° C. This is because, if the growth temperature is too high, P atoms having a high vapor pressure escape from the surface, resulting in deterioration of the film quality.
Here, the degree of lattice mismatch ε (%) from the InP substrate of the InGaAsP layer is defined by the following equation.

ε (%) = [{(Lattice constant of InGaAsP)-(Lattice constant of InP substrate)} / (Lattice constant of InP substrate)] x100

In the case of an InGaAsP layer used for a waveguide layer, a thickness of several hundred nm or more is necessary. Typically, it is 200 to 500 nm. Therefore, in order to prevent the occurrence of lattice mismatch dislocations, it is usually formed under conditions that lattice match with the InP substrate. The value of ε at that time is typically set in the range of −0.05% ≦ ε ≦ + 0.05%. Considering the difference in thermal expansion coefficient between the InP substrate and the InGaAsP layer, it is preferable to set it slightly on the negative strain side.

我々が、組成波長1.4μm、膜厚300nm、ε=-0.05%のInGaAsP導波路層を、図3に示すような再成長工程によって結晶成長したところ、表面に多数の欠陥が発生することが判った。その表面写真を、図4(a)に示す。欠陥が大量に観測されている事が判る。作製した素子は、本欠陥を介してリーク電流が流れてしまい、素子特性が大幅に低下した。その後の追加検討により、本InGaAsP層における欠陥の発生は、再成長工程ではなく、第一番目の結晶成長工程で成長した場合には非常に少ない事、また、同じ再成長工程で形成しても、膜厚が100nm以下と薄い場合には、同様に発生量が非常に少ない事が判った。よって、本欠陥の発生は、単なる結晶成長条件のずれなどではなく、何らかの物理的な現象に起因するものであると考えられる。
よって、本発明の目的は、特に再成長により形成するInGaAsP導波路層の欠陥の発生を抑制し、それにより、良好な素子特性を有する集積型光半導体素子を提供することにある。
When we crystallized an InGaAsP waveguide layer with a composition wavelength of 1.4 μm, a film thickness of 300 nm, and ε = −0.05% by the regrowth process as shown in FIG. It was. The surface photograph is shown in FIG. It turns out that a lot of defects are observed. In the fabricated device, a leak current flowed through this defect, and the device characteristics were greatly deteriorated. As a result of subsequent studies, the occurrence of defects in this InGaAsP layer is very small when grown in the first crystal growth process, not in the regrowth process, and even if formed in the same regrowth process. Similarly, when the film thickness was as thin as 100 nm or less, it was found that the generation amount was very small as well. Therefore, the occurrence of this defect is considered to be caused by some physical phenomenon, not simply a shift in crystal growth conditions.
Accordingly, an object of the present invention is to provide an integrated optical semiconductor device that suppresses the occurrence of defects in an InGaAsP waveguide layer formed by regrowth, and thereby has good device characteristics.

本欠陥の発生要因を鋭意検討した結果、次の現象と深く相関していることが判明した。以下に詳細を述べる。InGaAsPという半導体材料には、非混和領域がある事が知られている。非混和領域にあるInGaAsPは熱力学的に不安定で相分離しやすく、その結果、欠陥が発生しやすくなる。ジャパニーズ ジャーナル オブ アプライド フィジックス 21巻、797頁、1982年には、OnabeによるInGaAsPの非混和領域(ミシビリティギャップ)の理論計算結果が記載されている。そのFig.1を図5に引用した。非混和領域は、各絶対温度における楕円領域の内部で示される。   As a result of earnest examination of the cause of this defect, it has been found that it is closely correlated with the following phenomenon. Details are described below. It is known that a semiconductor material called InGaAsP has an immiscible region. InGaAsP in the immiscible region is thermodynamically unstable and easily phase-separated, resulting in defects. Japanese Journal of Applied Physics, Vol. 21, p. 797, 1982 describes the theoretical calculation results of the InGaAsP immiscible region (missibility gap) by Onabe. Fig. 1 is quoted in Fig. 5. The immiscible region is shown inside the elliptical region at each absolute temperature.

即ち、高温で成長するほど混晶が混ざりやすくなり、楕円領域が小さくなるため非混和性が緩和されることが判る。尚、ここで示す絶対温度は、有機金属気相成長(MOVPE: Metal-Organic Vapor Phase Epitaxy)法や分子線エピタキシー(MBE: Molecular Beam Epitaxy)法等の非混和性の高い成長方法においては、成長温度とはあまり一致していない。   That is, it can be seen that the higher the temperature is, the easier the mixed crystal is mixed and the smaller the elliptical region is, so that the immiscibility is relaxed. The absolute temperature shown here is the growth rate for highly immiscible growth methods such as metal-organic vapor phase epitaxy (MOVPE) and molecular beam epitaxy (MBE). It does not agree well with temperature.

本図には、組成波長1.4μmの等バンドギャップ(組成波長)線、及びInP基板の等格子定数線も同時に示している。先述の素子に適用した組成波長1.4μmのInGaAsP層は、InP基板に格子整合する組成条件において最も非混和性の高い組成である事が判る。先に述べたMOVPEやMBE等の非平衡性の高い成長手法を用いることにより、このような非混和性は大きく緩和され、非混和性の高い組成のInGaAsP層でも実素子にも適用可能な品質の膜が得られるようになってきた。しかしながら、本材料系の本質として、相分離しやすい要因は常に内包されていると考えられる。このことから、前項で述べた組成波長1.4μmのInGaAsP層における異常な欠陥の発生は、再成長を行う半導体表面における若干の不純物の付着等を種として、膜中に部分的な相分離が発生し始め、膜厚が厚い場合、それが蓄積して欠陥として出現したものと考えられる。   This figure also shows an equiband gap (composition wavelength) line having a composition wavelength of 1.4 μm and an equi-lattice constant line of the InP substrate. It can be seen that the InGaAsP layer having a composition wavelength of 1.4 μm applied to the above-described device has the most immiscible composition under the composition conditions lattice-matched to the InP substrate. By using the growth method with high non-equilibrium such as MOVPE and MBE described above, such immiscibility is greatly relaxed, and the quality that can be applied to real devices as well as InGaAsP layers with highly immiscible composition. The film has been obtained. However, as the essence of the present material system, it is considered that the factors that easily cause phase separation are always included. Therefore, the occurrence of abnormal defects in the InGaAsP layer with the composition wavelength of 1.4 μm described in the previous section causes partial phase separation in the film, with some impurities adhering to the regrowth semiconductor surface. However, when the film thickness is large, it is considered that it accumulated and appeared as a defect.

図5の等バンドギャップ線(等組成波長線)を参照すると、In組成とP組成を共に増大させれば、組成波長を1.4μmに保ちつつ非混和性の低い左下の領域に移動できることが判る。よって、素子特性上影響を及ぼすことなく非混和性を低下させ、良質なInGaAsP導波路層を形成できると考えられる。このように、InGaAsP層の組成比を、非混和性の低い方向に等組成波長線に沿って変化させることは、結果としてεを+側に設定することと等価である。そこで、次に述べる実際の検討においては、εを用いて記述する。   Referring to the equiband gap line (isocomposition wavelength line) in FIG. 5, it can be seen that if both the In composition and the P composition are increased, the composition wavelength can be kept at 1.4 μm and move to the lower left region with low immiscibility. . Therefore, it is considered that the immiscibility can be reduced without affecting the device characteristics and a good quality InGaAsP waveguide layer can be formed. Thus, changing the composition ratio of the InGaAsP layer in the direction of low immiscibility along the isocomposition wavelength line is equivalent to setting ε to the + side as a result. Therefore, in the actual examination described below, description is made using ε.

図4(b)、(c)は、組成波長を1.4μmに保ちながらIn組成、及びP組成を増大させてεを+側に変化させた場合のInGaAsP層(膜厚300nm、成長温度600℃)の表面写真である。図4(b)のε=+0.04%では、欠陥は依然として非常に多いままであったが、図4(c)のようにεが+0.1%以上になると、欠陥が殆ど観測されなくなった。よって、εを+側に増大することで、欠陥発生を抑制できる事が実験的に確認できた。図5には、本発明の効果が顕著に得られたε=+0.1%の点を示したが、非混和性という観点での低下は僅かであるように見える。このような僅かな非混和性の低下のみで、欠陥抑制に対して大きな効果が得られた原因は現時点で明確ではないが、+側に増大させた歪のエネルギーによって、非混和性がより大きく低下した可能性がある。いずれにしても、εを+側に設定することにより、再成長工程で顕著に見られた表面欠陥を抑制できることを見出すことができた。   4B and 4C show InGaAsP layers (thickness 300 nm, growth temperature 600 ° C.) when ε is changed to the + side by increasing the In composition and the P composition while keeping the composition wavelength at 1.4 μm. ) Surface photograph. At ε = + 0.04% in FIG. 4 (b), the number of defects remained very large, but when ε became + 0.1% or more as shown in FIG. 4 (c), almost no defects were observed. Therefore, it was experimentally confirmed that the occurrence of defects can be suppressed by increasing ε to the + side. FIG. 5 shows the point of ε = + 0.1% at which the effect of the present invention was remarkably obtained, but it appears that the decrease in terms of immiscibility is slight. The reason why such a slight decrease in immiscibility has resulted in a large effect on defect suppression is not clear at this time, but the immiscibility is greater due to the increased strain energy on the + side. It may have declined. In any case, it was found that by setting ε to the + side, it was possible to suppress surface defects that were noticeable in the regrowth process.

図5により、InP基板に格子整合する条件においては、組成波長1.3μmから1.5μmの範囲のInGaAsP層が、同程度の高い非混和性を有する事が判る。よって、先の実験において、組成波長1.4μmのInGaAsP層に対して確認した、εを+側に増大させた場合の欠陥抑制効果は、1.3μmから1.5μmの範囲の他組成波長においても同様に得ることができる。   FIG. 5 shows that the InGaAsP layer having a composition wavelength of 1.3 μm to 1.5 μm has the same high immiscibility under the condition of lattice matching with the InP substrate. Therefore, in the previous experiment, the defect suppression effect when ε was increased to the + side confirmed for the InGaAsP layer with a composition wavelength of 1.4 μm was the same at other composition wavelengths in the range of 1.3 μm to 1.5 μm. Obtainable.

以上の考察から、InP基板上に再成長で形成するInGaAsP層において、εを+側にし、非混和性を低下させる方向に組成比を変化させることにより、再成長工程時に発生する欠陥を抑制できることが判った。このとき、組成波長は変化しないため、素子特性上への影響は非常に小さい。尚、図5に示した理論計算は従来から存在し、InGaAsPの非混和度についての指針を与えるものであった。しかしながら、実際のInGaAsP層に対して、欠陥の発生・抑制の範囲を定量的に明らかにするものではなかった。今回、我々は、InGaAsP層のεを+側の適切な値に設定することで、欠陥が抑制できることを初めて実験的に明らかにした。   From the above considerations, in InGaAsP layers formed by regrowth on InP substrates, it is possible to suppress defects that occur during the regrowth process by changing ε to the + side and changing the composition ratio in a direction that reduces immiscibility. I understood. At this time, since the composition wavelength does not change, the influence on the device characteristics is very small. Note that the theoretical calculation shown in FIG. 5 has existed in the past and provided a guide for the immiscibility of InGaAsP. However, it did not quantitatively clarify the range of generation and suppression of defects in an actual InGaAsP layer. This time, we experimentally demonstrated for the first time that defects can be suppressed by setting ε of the InGaAsP layer to an appropriate value on the + side.

一方、εを+側にする場合、設定膜厚に対しての考慮が必要である。よく知られているように、各ε値に対しては、格子不整合転位の発生という点での膜厚上限値(臨界膜厚)が存在する。臨界膜厚は、Matthews等によって、ジャーナル オブ クリスタルグロース 27巻、118頁、1974年掲載の理論式に示されている。以下にその式を示す。   On the other hand, when ε is set to the + side, it is necessary to consider the set film thickness. As is well known, for each ε value, there is a film thickness upper limit (critical film thickness) in terms of the occurrence of lattice mismatch dislocations. The critical film thickness is shown in the theoretical formula of Journal of Crystal Growth 27, 118, 1974 by Matthews et al. The formula is shown below.

Figure 0004629687
Figure 0004629687

ここで、bはBurgersベクトルの大きさ、νはPoisson比、αは転位線とBurgersベクトルのなす角度、λはすべり面と界面の交線に垂直な面とすべり方向のなす角度である。ここではIII-V族化合物半導体の一般的な値として、b=4, ν=1/3, cosα=1/2, cosλ=1/2としたが、この値は材料により多少変化することは言うまでも無い。   Here, b is the magnitude of the Burgers vector, ν is the Poisson ratio, α is the angle formed by the dislocation line and the Burgers vector, and λ is the angle formed by the plane perpendicular to the line of intersection between the slip surface and the interface. Here, b = 4, ν = 1/3, cosα = 1/2, and cosλ = 1/2 are common values for III-V compound semiconductors, but this value may vary slightly depending on the material. Needless to say.

図6に、上記(1)式に基づいたInP基板上に再成長で形成する組成波長1.4μmのInGaAsP層における本発明の有効範囲を示す。集積型光素子に使用する導波路層の膜厚の下限値は典型的に150nmである。Matthews等の理論式によると、臨界膜厚150nmに対応するεの値は、約+0.4%となる。この場合、本発明の有効範囲は、図6のABCで囲まれる斜線領域で具体的に示される。   FIG. 6 shows the effective range of the present invention in an InGaAsP layer having a composition wavelength of 1.4 μm formed by regrowth on an InP substrate based on the above equation (1). The lower limit of the film thickness of the waveguide layer used in the integrated optical device is typically 150 nm. According to the theoretical formula of Matthews et al., The value of ε corresponding to the critical film thickness of 150 nm is about + 0.4%. In this case, the effective range of the present invention is specifically indicated by the hatched area surrounded by ABC in FIG.

また、図4の検討では、In組成とP組成を同時に増大させてεを増大させたが、In組成のみの増大、或いはP組成のみの増大によっても、非混和性を低下させる事ができるのは言うまでも無い。但し、この場合は組成波長が変化するので、素子特性への影響を予め考慮することが必要である。   In the study of FIG. 4, the In composition and the P composition were increased simultaneously to increase ε, but the immiscibility can be lowered by increasing only the In composition or only the P composition. Needless to say. However, in this case, since the composition wavelength changes, it is necessary to consider the influence on the element characteristics in advance.

尚、本発明は、再成長で形成するInGaAsP層に対して最も顕著な効果が得られるが、材料の本質としての非混和性は変わらないため、第一番目の成長工程で形成した場合でも、本発明による条件を適用する方がより高品質なInGaAsP膜が得られると考えられる。   The present invention is most effective for the InGaAsP layer formed by regrowth, but the immiscibility as the essence of the material does not change, so even when formed in the first growth step, It is considered that a higher quality InGaAsP film can be obtained by applying the conditions according to the present invention.

本発明によれば、主に1.55μm帯の光集積素子の導波路層として用いられる組成波長1.4μmのInGaAsP層において、そのInP基板との格子不整合度εを、+0.1%≦ε≦+0.4%の範囲内に設定することにより、欠陥の発生を抑制して、良質な膜を得る事ができる。その結果、本導波路層を用いた集積型光素子の特性の向上効果が得られる。   According to the present invention, in an InGaAsP layer having a composition wavelength of 1.4 μm, which is mainly used as a waveguide layer of an optical integrated device in a 1.55 μm band, the degree of lattice mismatch ε with the InP substrate is set to + 0.1% ≦ ε ≦ + By setting it within the range of 0.4%, it is possible to suppress the generation of defects and obtain a good film. As a result, the effect of improving the characteristics of the integrated optical device using this waveguide layer can be obtained.

以下、本発明の実施例を図1、図2を用いて説明する。   Embodiments of the present invention will be described below with reference to FIGS.

第1の実施例は、本発明を波長可変レーザに適用したものである。成長方法としては、MOVPE法を用いた。III族元素の原料は、トリエチルガリウム、トリメチルインジウムを用いた。V族元素の原料には、アルシンとフォスフィンを用いた。また、n型ドーパントとしてはジシランを、p型ドーパントとしてはジメチル亜鉛を用いた。尚、成長法としては、MOVPEのみに限定されるものではなく、MBE法、化学ビーム成長(CBE: Chemical Beam Epitaxy)法、有機金属文視線エピタキシー(MOMBE: Metal-Organic Molecular Beam Epitaxy)法などを用いても良い。   In the first embodiment, the present invention is applied to a wavelength tunable laser. The MOVPE method was used as the growth method. Triethylgallium and trimethylindium were used as the group III element raw material. Arsine and phosphine were used as raw materials for Group V elements. Disilane was used as the n-type dopant, and dimethylzinc was used as the p-type dopant. The growth method is not limited to MOVPE, but includes MBE method, chemical beam epitaxy (CBE) method, metal-organic molecular beam epitaxy (MOMBE) method, etc. It may be used.

図1は素子の断面構造を示している。成長方法としては、MOVPE法を用いた。III族元素の原料は、トリエチルガリウム、トリメチルインジウムを用いた。V族元素の原料には、アルシンとフォスフィンを用いた。また、n型ドーパントとしてはジシランを、p型ドーパントとしてはジメチル亜鉛を用いた。
n-InP基板102上に、InGaAsPから成る10周期の1.55μm帯多重量子井戸活性層109を形成した。次に、ホト工程によって、必要な部分に絶縁体マスクを形成した。これをマスクにして、ドライエッチングとウエットエッチングにより不要部分を除去した。続いて、膜厚300nmの組成波長1.4μmのInGaAsP導波路層103、InPスペーサ層104、組成波長1.15μmInGaAsP回折格子層105を形成した。InGaAsP導波路層103の歪量は+0.1%に設定したため、欠陥の発生は無く、表面状態は良好であった。続いて、回折格子層105の形状を加工し、絶縁体マスクを除去した後に、全体をp-InPクラッド層106で埋込み、最後にp-InGaAsコンタクト層107を形成した。その後、コンタクト層の一部を除去して素子分離し、メサエッチング、基板研磨後に、電極101、108を形成し、へき開後、両端面に反射膜を形成して素子として完成した。完成した素子のしきい値電流は10mA、波長可変幅は6nmと良好な値を示した。
FIG. 1 shows a cross-sectional structure of the element. The MOVPE method was used as the growth method. Triethylgallium and trimethylindium were used as the group III element raw material. Arsine and phosphine were used as raw materials for Group V elements. Disilane was used as the n-type dopant, and dimethylzinc was used as the p-type dopant.
A 10-cycle 1.55 μm-band multiple quantum well active layer 109 made of InGaAsP was formed on the n-InP substrate 102. Next, an insulator mask was formed in a necessary portion by a photo process. Using this as a mask, unnecessary portions were removed by dry etching and wet etching. Subsequently, an InGaAsP waveguide layer 103 having a thickness of 300 nm and a composition wavelength of 1.4 μm, an InP spacer layer 104, and an InGaAsP diffraction grating layer 105 having a composition wavelength of 1.15 μm were formed. Since the strain amount of the InGaAsP waveguide layer 103 was set to + 0.1%, no defects were generated and the surface state was good. Subsequently, after the shape of the diffraction grating layer 105 was processed and the insulator mask was removed, the whole was buried with the p-InP cladding layer 106, and finally the p + -InGaAs contact layer 107 was formed. Thereafter, a part of the contact layer was removed to separate the elements, and after mesa etching and substrate polishing, electrodes 101 and 108 were formed. After cleavage, reflection films were formed on both end faces to complete the element. The completed device had a good threshold current of 10 mA and a variable wavelength width of 6 nm.

第2の実施例は、本発明を変調器集積型光源に適用したものである。成長方法としては、ここでもMOVPE法を用いたが、それに限定されるものでは無く、同一の効果が得られれば他の手法でも良い。原料は、実施例1に加え、アルミニウム原料としてトリメチルアルミニウムを用いた。図2は素子の断面構造を示している。   In the second embodiment, the present invention is applied to a modulator integrated light source. As a growth method, the MOVPE method is used here, however, it is not limited to this, and other methods may be used as long as the same effect can be obtained. As a raw material, trimethylaluminum was used as an aluminum raw material in addition to Example 1. FIG. 2 shows a cross-sectional structure of the element.

n-InP基板202上に、レーザ部としてInGaAlAsから成る4周期の多重量子井戸活性層210を形成した。次に、ホト工程によって、必要な部分に絶縁体マスクを形成した。これをマスクにして、ドライエッチングとウエットエッチングにより不要部分を除去した。続いて、変調器部として、InGaAlAsから成る8周期の多重量子井戸層203を形成し、連続的にInPスペーサ層204、InGaAsP回折格子層205を形成した。続いて、回折格子層205を凸型に加工し、絶縁体マスクを除去した後に、再度ホト工程によって必要な部分に絶縁体マスクを形成した。これをマスクにして、ドライエッチングとウエットエッチングにより不要部分を除去した。続いて、膜厚400nmの組成波長1.3μmのInGaAsP導波路層209を形成した。   On the n-InP substrate 202, a four-period multiple quantum well active layer 210 made of InGaAlAs was formed as a laser part. Next, an insulator mask was formed in a necessary portion by a photo process. Using this as a mask, unnecessary portions were removed by dry etching and wet etching. Subsequently, an 8-period multiple quantum well layer 203 made of InGaAlAs was formed as a modulator portion, and an InP spacer layer 204 and an InGaAsP diffraction grating layer 205 were continuously formed. Subsequently, the diffraction grating layer 205 was processed into a convex shape, and after removing the insulator mask, an insulator mask was formed again in a necessary portion by a photo process. Using this as a mask, unnecessary portions were removed by dry etching and wet etching. Subsequently, an InGaAsP waveguide layer 209 having a film thickness of 400 nm and a composition wavelength of 1.3 μm was formed.

InGaAsP導波路層209の歪量は+0.1%に設定したため、欠陥の発生は無く、表面状態は良好であった。続いて、絶縁体マスクを除去した後に、全体をp-InPクラッド層206で埋込み、最後にp-InGaAsコンタクト層207を形成した。その後、コンタクト層の一部を除去して素子分離し、メサエッチング、基板研磨後に、電極201、208を形成し、へき開後、両端面に反射膜を形成して素子として完成した。完成した素子のしきい値電流は15mA、20℃から85℃の範囲で、10GHzの良好な変調特性を示した。 Since the strain amount of the InGaAsP waveguide layer 209 was set to + 0.1%, no defects were generated and the surface state was good. Subsequently, after removing the insulator mask, the whole was buried with the p-InP clad layer 206, and finally the p + -InGaAs contact layer 207 was formed. Thereafter, a part of the contact layer was removed to separate the elements, and after mesa etching and substrate polishing, electrodes 201 and 208 were formed. After cleavage, reflection films were formed on both end faces to complete the element. The completed device had a threshold current of 15 mA, a range of 20 ° C to 85 ° C, and good modulation characteristics of 10 GHz.

第3の実施例は、本発明を1.55μm帯スポット拡大器集積レーザに適用したものである。成長方法としては、ここでも実施例2と同様にMOVPE法を用いたが、それに限定されるものでは無く、同一の効果が得られれば他の手法でも良い。図7に素子の断面構造を示している。   In the third embodiment, the present invention is applied to a 1.55 μm band spot expander integrated laser. As the growth method, the MOVPE method is used here as in the second embodiment, but the method is not limited thereto, and other methods may be used as long as the same effect can be obtained. FIG. 7 shows a cross-sectional structure of the element.

n-InP基板702上に、下側のn-InPクラッド層703を積層し、続いて、レーザ部としてInGaAlAsから成る10周期の多重量子井戸活性層708を形成した。次に、ホト工程によって、必要な部分に絶縁体マスクを形成した。これをマスクにして、ドライエッチングとウエットエッチングにより不要部分を除去した。続いて、スポット拡大部として、平坦基板上の設計値で膜厚200nmとなるように、組成波長1.3μmのInGaAsP導波路層704をテーバー状に形成した。InGaAsP導波路層704の歪量は+0.1%に設定したため、欠陥の発生は無く、表面状態は良好であった。続いて、絶縁体マスクを除去した後に、全体をp-InPクラッド層705で埋込み、最後にp-InGaAsコンタクト層707を形成した。その後、コンタクト層の一部を除去して素子分離し、メサエッチング、基板研磨後に、電極701、706を形成し、へき開後、両端面に反射膜を形成して素子として完成した。完成した素子のしきい値電流は5mA、FFPは垂直方向が12度、水平方向が11度と良好であった。 On the n-InP substrate 702, a lower n-InP clad layer 703 was laminated, and subsequently, a 10-cycle multiple quantum well active layer 708 made of InGaAlAs was formed as a laser part. Next, an insulator mask was formed in a necessary portion by a photo process. Using this as a mask, unnecessary portions were removed by dry etching and wet etching. Subsequently, an InGaAsP waveguide layer 704 having a composition wavelength of 1.3 μm was formed in a taber shape as a spot expansion portion so as to have a film thickness of 200 nm as a design value on a flat substrate. Since the strain amount of the InGaAsP waveguide layer 704 was set to + 0.1%, no defects were generated and the surface state was good. Subsequently, after removing the insulator mask, the whole was buried with a p-InP clad layer 705, and finally a p + -InGaAs contact layer 707 was formed. Thereafter, part of the contact layer was removed to separate the elements, and after mesa etching and substrate polishing, electrodes 701 and 706 were formed. After cleavage, a reflection film was formed on both end faces to complete the element. The completed device had a good threshold current of 5 mA, and FFP was good at 12 degrees in the vertical direction and 11 degrees in the horizontal direction.

本発明による波長可変レーザの構造図。1 is a structural diagram of a wavelength tunable laser according to the present invention. 本発明による変調器集積型光源の構造図。FIG. 3 is a structural diagram of a modulator integrated light source according to the present invention. (a)-(d)は、図1で示す素子の結晶成長プロセス工程図。(a)-(d) is the crystal growth process process drawing of the element shown in FIG. (a)-(c)は、歪量の異なるInGaAsP層の表面写真。(a)-(c) are surface photographs of InGaAsP layers with different strains. InGaAsP層の非混和領域の理論計算図。Theoretical calculation diagram of immiscible region of InGaAsP layer. 本発明の格子不整合度の絶対値と膜厚の関係を示す図(ABCで囲まれる斜線領域が、本発明範囲)。The figure which shows the relationship between the absolute value of the lattice mismatching degree of this invention, and a film thickness (the shaded area enclosed with ABC is this invention range). 本発明によるスポット拡大器集積レーザの構造図。1 is a structural diagram of a spot expander integrated laser according to the present invention. FIG.

符号の説明Explanation of symbols

101…n側電極、
102…n-InP基板、
103…InGaAsP導波路層、
104…InPスペーサ層、
105…InGaAsP回折格子層、
106…p-InPクラッド層、
107…p+-InGaAsコンタクト層、
108…p側電極、
109…InGaAsP多重量子井戸活性層、
201…n側電極、
202…n-InP基板、
203…InGaAlAs多重量子井戸活性層、
204…InPスペーサ層、
205…InGaAsP回折格子層、
206…p-InPクラッド層、
207…p+-InGaAsコンタクト層、
208…p側電極、
209…InGaAsP導波路層、
210…InGaAlAs量子井戸層、
301…n-InP基板、
302…InGaAsP多重量子井戸活性層、
303…絶縁体マスク、
304…InGaAsP導波路層、
305…p-InPスペーサ層、
306…InGaAsP回折格子層、
307…p-InPクラッド層、
308…p+-InGaAsコンタクト層、
701…n側電極、
702…n-InP基板、
703…n-InPクラッド層、
704…InGaAsP導波路層、
705…p-InPクラッド層、
706…p側電極、
707…p+-InGaAsコンタクト層、
708…InGaAlAs多重量子井戸活性層。
101 ... n-side electrode,
102… n-InP substrate,
103 ... InGaAsP waveguide layer,
104 ... InP spacer layer,
105 ... InGaAsP diffraction grating layer,
106… p-InP cladding layer,
107… p + -InGaAs contact layer,
108 ... p-side electrode,
109… InGaAsP multiple quantum well active layer,
201 ... n-side electrode,
202… n-InP substrate,
203… InGaAlAs multiple quantum well active layer,
204… InP spacer layer,
205 ... InGaAsP diffraction grating layer,
206… p-InP cladding layer,
207 ... p + -InGaAs contact layer,
208… p-side electrode,
209 ... InGaAsP waveguide layer,
210… InGaAlAs quantum well layer,
301… n-InP substrate,
302 ... InGaAsP multiple quantum well active layer,
303… Insulator mask,
304 ... InGaAsP waveguide layer,
305… p-InP spacer layer,
306 ... InGaAsP diffraction grating layer,
307 ... p-InP cladding layer,
308… p + -InGaAs contact layer,
701 ... n-side electrode,
702… n-InP substrate,
703 ... n-InP cladding layer,
704 ... InGaAsP waveguide layer,
705… p-InP cladding layer,
706 ... p-side electrode,
707… p + -InGaAs contact layer,
708 ... InGaAlAs multiple quantum well active layer.

Claims (4)

第1の領域と第2の領域とを備えたInP基板を備え、
前記InP基板上の第1の領域は光を発生する活性層を有し、
前記InP基板上の第2の領域は前記活性層からの光を伝搬する光導波路層を有し、
前記導波路層は、前記InP基板上に前記活性層と光軸を揃えて設けられたInGaAsP層を有し、
前記InGaAsP層は、組成波長が1.3μmから1.5μmの範囲にあり、
前記InGaAsP層は、前記InP基板に対する格子不整合度(ε)が+0.1%以上となるようにInGaAsPの各元素組成が調整され
記InGaAsP層の膜厚の上限値は、0.1%以上となる前記格子不整合度(ε)から算出される格子不整合転位が発生しない臨界膜厚範囲内にあり、
前記InGaAsP層の膜厚は、150nm以上であることを特徴とする光半導体素子。
An InP substrate having a first region and a second region;
The first region on the InP substrate has an active layer that generates light ;
The second region on the InP substrate has an optical waveguide layer that propagates light from the active layer ;
The waveguide layer has an InGaAsP layer provided on the InP substrate with the optical axis aligned with the active layer ,
The InGaAsP layer has a composition wavelength in the range of 1.3 μm to 1.5 μm,
In the InGaAsP layer, each elemental composition of InGaAsP is adjusted so that the lattice mismatch (ε) with respect to the InP substrate is + 0.1% or more ,
The upper limit of the film thickness before Symbol InGaAsP layer, Ri critical thickness range near the lattice misfit dislocations are not generated, which is calculated from the lattice mismatch to be less than 0.1% (epsilon),
An optical semiconductor element , wherein the InGaAsP layer has a thickness of 150 nm or more .
前記InGaAsP層の組成波長は、1.mであり
記InGaAsP層の前記InP基板に対する格子不整合度(ε)は、+0.1%以上で+0.4%以下の範囲内にあることを特徴とする請求項1記載の光半導体素子。
The composition wavelength of the InGaAsP layer is 1.4 μm ,
Before Symbol lattice mismatch with respect to the InP substrate InGaAsP layer (epsilon), the optical semiconductor device according to claim 1, wherein a is in the range of + 0.4% or less at + 0.1% or more.
InP基板上に第1の光導波路層を形成する工程と、
前記第1の光導波路層の一部に選択的に第1のマスクを形成する工程と、
前記第1のマスクが形成されていない第1の光導波路層の領域をエッチングにより除去し前記InP基板の表面を露出する工程と、
前記エッチングにより露出した前記InP基板上に、組成波長が1.3μmから1.5μmの範囲内のInGaAsPを結晶成長させ第2の光導波路層を形成する工程と、を有し
前記第2の導波路層の膜厚の上限値は、前記第2の導波路層の前記InP基板に対する格子不整合度(ε)を+0.1%以上に設定した場合、前記格子不整合度(ε)から算出される格子不整合転位が発生しない膜厚範囲内であり、
前記InGaAsP層の膜厚は、150nm以上であることを特徴とする光半導体素子の製造方法。
Forming a first optical waveguide layer on the InP substrate;
Selectively forming a first mask on a portion of the first optical waveguide layer;
Removing a region of the first optical waveguide layer where the first mask is not formed by etching to expose the surface of the InP substrate;
Forming a second optical waveguide layer by crystal growth of InGaAsP having a composition wavelength in the range of 1.3 μm to 1.5 μm on the InP substrate exposed by the etching ;
The upper limit value of the film thickness of the second waveguide layer is that the lattice mismatch degree (ε) when the lattice mismatch degree (ε) of the second waveguide layer with respect to the InP substrate is set to + 0.1% or more. Ri thickness range der lattice misfit dislocations are not generated, which is calculated from the epsilon),
The method of manufacturing an optical semiconductor element, wherein the InGaAsP layer has a thickness of 150 nm or more .
前記第2の光導波路層の組成波長は、1.mであり
記InP基板に対する格子不整合度(ε)は、+0.1%以上+0.4%以下の範囲内であることを特徴とする請求項3記載の光半導体素子の製造方法。
The composition wavelength of the second optical waveguide layer is 1.4 μm ,
Lattice mismatch (epsilon) is for the previous SL InP substrate, a manufacturing method of the optical semiconductor element according to claim 3, wherein a is in the range of + 0.1% to + 0.4% or less.
JP2007017693A 2007-01-29 2007-01-29 Optical semiconductor device and manufacturing method thereof Expired - Fee Related JP4629687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007017693A JP4629687B2 (en) 2007-01-29 2007-01-29 Optical semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007017693A JP4629687B2 (en) 2007-01-29 2007-01-29 Optical semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008186902A JP2008186902A (en) 2008-08-14
JP4629687B2 true JP4629687B2 (en) 2011-02-09

Family

ID=39729753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007017693A Expired - Fee Related JP4629687B2 (en) 2007-01-29 2007-01-29 Optical semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4629687B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5313730B2 (en) 2009-03-16 2013-10-09 日本オクラロ株式会社 Optical transmitter and optical transmission module
JP6785331B2 (en) 2018-03-30 2020-11-18 Dowaエレクトロニクス株式会社 Manufacturing method of semiconductor optical device and intermediate of semiconductor optical device
WO2019189514A1 (en) * 2018-03-30 2019-10-03 Dowaエレクトロニクス株式会社 Semiconductor optical device manufacturing method and semiconductor optical device intermediate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259568A (en) * 1992-03-13 1993-10-08 Nippon Telegr & Teleph Corp <Ntt> Abutting bond method of semiconductor guide layers
JPH07221390A (en) * 1994-02-07 1995-08-18 Hitachi Ltd Optical semiconductor integrated circuit and its manufacture
JPH10242511A (en) * 1997-02-28 1998-09-11 Nippon Telegr & Teleph Corp <Ntt> Strained multiple quantum well structure
JPH1187844A (en) * 1997-07-08 1999-03-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor optical coupling circuit and its manufacture
JP2003152281A (en) * 2001-11-15 2003-05-23 Sharp Corp Semiconductor laser device and optical disk device using the same
JP2006165375A (en) * 2004-12-09 2006-06-22 Nippon Telegr & Teleph Corp <Ntt> Semiconductor thin film structure and its manufacturing method
JP2006295103A (en) * 2005-03-17 2006-10-26 Fujitsu Ltd Tunable laser

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259568A (en) * 1992-03-13 1993-10-08 Nippon Telegr & Teleph Corp <Ntt> Abutting bond method of semiconductor guide layers
JPH07221390A (en) * 1994-02-07 1995-08-18 Hitachi Ltd Optical semiconductor integrated circuit and its manufacture
JPH10242511A (en) * 1997-02-28 1998-09-11 Nippon Telegr & Teleph Corp <Ntt> Strained multiple quantum well structure
JPH1187844A (en) * 1997-07-08 1999-03-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor optical coupling circuit and its manufacture
JP2003152281A (en) * 2001-11-15 2003-05-23 Sharp Corp Semiconductor laser device and optical disk device using the same
JP2006165375A (en) * 2004-12-09 2006-06-22 Nippon Telegr & Teleph Corp <Ntt> Semiconductor thin film structure and its manufacturing method
JP2006295103A (en) * 2005-03-17 2006-10-26 Fujitsu Ltd Tunable laser

Also Published As

Publication number Publication date
JP2008186902A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JP2842292B2 (en) Semiconductor optical integrated device and manufacturing method
JP5038746B2 (en) Method for manufacturing optical semiconductor element
JP2007019492A (en) Buried heterostructure device having incorporated waveguide grating produced by single step mocvd
EP0177221B1 (en) Semiconductor laser
JP4629687B2 (en) Optical semiconductor device and manufacturing method thereof
US20100034229A1 (en) Semiconductor laser and method of making semiconductor laser
JP2010212664A (en) Semiconductor laser, and method of manufacturing the same
JP6437869B2 (en) Semiconductor laser
JP2018078290A (en) Semiconductor laser element
JP5169534B2 (en) Integrated optical semiconductor device manufacturing method and integrated optical semiconductor device
JP4953392B2 (en) Optical semiconductor device
JP2010219102A (en) Semiconductor laser device
JP4575173B2 (en) Manufacturing method of quantum well structure
JP2008172210A (en) Embedded semiconductor laser and method for manufacturing the same
JP4944813B2 (en) Semiconductor optical amplifier
JP2546381B2 (en) Distributed feedback semiconductor laser and manufacturing method thereof
WO2021199297A1 (en) Optical waveguide, method for producing optical waveguide, and optical semiconductor element
JP2013187309A (en) Semiconductor device and manufacturing method of the same
JPS63150982A (en) Semiconductor light emitting device
JP7492082B2 (en) Laser manufacturing method
US20050169342A1 (en) DFB grating with dopant induced refractive index change
JP2000353861A (en) Manufacture of iii-v semiconductor light emitting device
US20030179803A1 (en) Vertical cavity surface emitting laser and laser beam transmitting module using the same
JPH04229679A (en) Semiconductor laser
JPH0697591A (en) Manufacture of semiconductor laser

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4629687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees