JP2661563B2 - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JP2661563B2
JP2661563B2 JP6274124A JP27412494A JP2661563B2 JP 2661563 B2 JP2661563 B2 JP 2661563B2 JP 6274124 A JP6274124 A JP 6274124A JP 27412494 A JP27412494 A JP 27412494A JP 2661563 B2 JP2661563 B2 JP 2661563B2
Authority
JP
Japan
Prior art keywords
quantum well
layer
strain
semiconductor laser
well layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6274124A
Other languages
Japanese (ja)
Other versions
JPH08139404A (en
Inventor
繁男 菅生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6274124A priority Critical patent/JP2661563B2/en
Publication of JPH08139404A publication Critical patent/JPH08139404A/en
Application granted granted Critical
Publication of JP2661563B2 publication Critical patent/JP2661563B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3403Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation
    • H01S5/3406Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation including strain compensation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザに関し、特
に量子井戸型半導体レーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser, and more particularly to a quantum well semiconductor laser.

【0002】[0002]

【従来の技術】従来、量子井戸型半導体レーザにおいて
は、バリア層と量子井戸層とが順次積層してなる活性層
と、この活性層の禁制帯幅よりも大きい禁制帯幅を有し
かつ活性層を挟むように配設されたn形クラッド層及び
p形クラッド層とが半導体基板上に形成されている。
2. Description of the Related Art Conventionally, in a quantum well type semiconductor laser, an active layer in which a barrier layer and a quantum well layer are sequentially stacked, and an active layer having a forbidden band width larger than the forbidden band width of the active layer, is used. An n-type clad layer and a p-type clad layer disposed so as to sandwich the layers are formed on a semiconductor substrate.

【0003】この種の半導体レーザの特性を改善する方
法の一つとして、活性層に歪みを導入する方法がある。
この方法を用いた半導体レーザの例が、「Struct
ures for improved 1,5μm w
avelength lasers grown by
LP−OMVPE;InGaAs−InP stra
ined−layer quantum wells
a good candidate」(P.J.A.T
hijs,E.A.Montie and T.van
Dongen,Journal of Crysta
l Growth 107(1991),P.731〜
740)に報告されている。
One method of improving the characteristics of this type of semiconductor laser is to introduce distortion into the active layer.
An example of a semiconductor laser using this method is “Struct.
ures for improved 1,5μm w
average length growers by
LP-OMVPE; InGaAs-InP stra
ined-layer quantum wells
a good candidate "(PJAT
hijs, E .; A. Montie and T.M. van
Dongen, Journal of Crystal
l Growth 107 (1991); 731
740).

【0004】この半導体レーザでは量子井戸層に圧縮歪
み層が用いられている。この場合、半導体レーザの特性
をさらに改善するために量子井戸層の歪みを大きくとる
と、臨界膜厚の制限を越えてしまい、結晶に欠陥が導入
されることとなる。
In this semiconductor laser, a compression strain layer is used as a quantum well layer. In this case, if the strain of the quantum well layer is increased to further improve the characteristics of the semiconductor laser, the limit of the critical film thickness is exceeded, and defects are introduced into the crystal.

【0005】その問題を解決する方法の一つとして、量
子井戸層とバリア層とに夫々反対方向の歪みを導入し、
これら量子井戸層及びバリア層からなる活性層全体で歪
み量の平均を0にする歪み補償構造がある。
As one method for solving the problem, strains are introduced into the quantum well layer and the barrier layer in opposite directions, respectively.
There is a strain compensation structure that makes the average of the strain amount zero in the entire active layer including the quantum well layer and the barrier layer.

【0006】この歪み補償構造の半導体レーザの例が、
「Strain−compensated strai
ned−layer superlattices f
or1.5μm wavelength laser
s」(B.I.Miller,U.Koren,M.
G.Young,and M.D.Chien,App
l.Phys.Lett.58(18),6 May
1991,P.1952〜1954)に報告されてい
る。この半導体レーザでは臨界膜厚の制限を越えること
がないので、結晶に欠陥が導入されることがない。
An example of a semiconductor laser having this distortion compensation structure is as follows.
"Strain-compensated strain
ned-layer superlattics f
or1.5μm wavelength laser
s "(BI Miller, U. Koren, M.S.
G. FIG. Young, and M.S. D. Chien, App
l. Phys. Lett. 58 (18), 6 May
1991, p. 1952-1954). In this semiconductor laser, since the limit of the critical film thickness is not exceeded, no defect is introduced into the crystal.

【0007】[0007]

【発明が解決しようとする課題】上述した従来の量子井
戸型半導体レーザでは、活性層の量子井戸層に圧縮歪み
層を用いた半導体レーザの特性をさらに改善するため
に、量子井戸層とバリア層とに夫々反対方向の歪みを導
入して活性層全体で歪み量の平均を0にする歪み補償構
造を用い、量子井戸層の歪みを大きくとっている。
In the conventional quantum well type semiconductor laser described above, in order to further improve the characteristics of a semiconductor laser using a compression strained layer as a quantum well layer of an active layer, a quantum well layer and a barrier layer are required. The strain in the quantum well layer is increased by using a strain compensation structure in which strains in opposite directions are respectively introduced to make the average of the strain amount zero in the entire active layer.

【0008】しかしながら、この歪み補償構造では量子
井戸層とバリア層との歪み量の差が大きくなるので、多
重量子井戸構造等の複数の量子井戸層とバリア層とから
なる活性層のエピタキシャル成長時には積層が進行する
にしたがってバリア層が平坦性を失い、良好な歪み補償
構造が実現できない。
However, in this strain compensation structure, the difference in the amount of strain between the quantum well layer and the barrier layer is large. As the process proceeds, the barrier layer loses flatness, and a good strain compensation structure cannot be realized.

【0009】そこで、本発明の目的は上記の問題点を解
消し、活性層のエピタキシャル成長時にバリア層が平坦
性を失うことなく、良好な歪み補償構造を実現すること
ができる半導体レーザを提供することにある。
Accordingly, an object of the present invention is to provide a semiconductor laser which can solve the above-mentioned problems and realize a good strain compensation structure without losing flatness of a barrier layer during epitaxial growth of an active layer. It is in.

【0010】[0010]

【課題を解決するための手段】本発明による半導体レー
ザは、バリア層と量子井戸層とが順次積層してなる活性
層と、前記活性層の禁制帯幅よりも大きい禁制帯幅を有
しかつ前記活性層を挟むように配設されたn型クラッド
層及びp型クラッド層とが半導体基板上に形成された半
導体レーザであって、前記量子井戸層は、積層方向に歪
み量が連続的に変化しかつ平均が無歪みとなる分布を備
えるよう構成されている。
A semiconductor laser according to the present invention has an active layer in which a barrier layer and a quantum well layer are sequentially stacked, a forbidden band width larger than the forbidden band width of the active layer, and A semiconductor laser in which an n-type cladding layer and a p-type cladding layer disposed so as to sandwich the active layer are formed on a semiconductor substrate, wherein the quantum well layer has a strain in a stacking direction.
The distribution is such that the volume changes continuously and the average is undistorted.
It is configured to obtain .

【0011】[0011]

【0012】[0012]

【作用】本発明の半導体レーザでは活性層を構成するバ
リア層と量子井戸層とのうち、量子井戸層をその内部で
歪み補償し、量子井戸層自体を無歪みとしている。この
ため、バリア層には歪み補償のための歪みを導入する必
要がなく、無歪みの層を用いることができる。よって、
歪みを内包する多元混晶では原子レベルで平坦に積層す
ることが困難であるという問題を回避することができ、
良好な歪み量子井戸構造を実現できる。
In the semiconductor laser of the present invention, of the barrier layer and the quantum well layer constituting the active layer, the quantum well layer is internally strain-compensated, and the quantum well layer itself is strain-free. For this reason, it is not necessary to introduce distortion for distortion compensation into the barrier layer, and a layer without distortion can be used. Therefore,
It is possible to avoid the problem that it is difficult to stack flat at the atomic level with a multi-element mixed crystal containing distortion,
A good strain quantum well structure can be realized.

【0013】ここで、一般に、量子井戸構造においては
バリア層の禁制帯幅を量子井戸の禁制帯幅とクラッド層
の禁制帯幅との中間になるように設定する必要がある。
これは電子や正孔を量子井戸に閉じ込め、しかもクラッ
ド層に電子と正孔とが流失せず、活性層全体の屈折率を
クラッド層よりも大きくして光導波路を構成させるため
である。
In general, in a quantum well structure, it is necessary to set the forbidden band width of the barrier layer to be intermediate between the forbidden band width of the quantum well and the forbidden band width of the cladding layer.
This is because electrons and holes are confined in the quantum well, electrons and holes do not flow into the cladding layer, and the refractive index of the entire active layer is made larger than that of the cladding layer to form an optical waveguide.

【0014】このため、バリア層には量子井戸層よりも
調整の自由度の大きい多元混晶が用いられることにな
る。例えば、複数のV族からなるIII −V化合物半導体
の多元結晶等がバリア層に用いられる。
Therefore, a multi-element mixed crystal having a higher degree of freedom in adjustment than the quantum well layer is used for the barrier layer. For example, a multi-crystal of a III-V compound semiconductor composed of a plurality of V groups is used for the barrier layer.

【0015】量子井戸層をその内部で歪み補償するため
の歪み超薄膜をエピタキシャル成長させるには、非平衡
度の高いMOVPE(Metal−organics
Vapor Phase Epitaxy)法またはガ
スソースMBE(Molecular Beam Ep
itaxy)法が用いられているが、歪みを内包する多
元混晶では原子レベルで平坦に積層することが困難であ
るという問題があり、このため界面が平坦ではなく、良
好な歪み量子井戸構造を実現しがたい。
In order to epitaxially grow a strained ultrathin film for compensating strain in the quantum well layer, MOVPE (Metal-organics) having a high degree of non-equilibrium is required.
Vapor Phase Epitaxy method or gas source MBE (Molecular Beam Ep)
Although an itaxy) method is used, there is a problem that it is difficult to stack flat at the atomic level in a multi-element mixed crystal containing strain, so that the interface is not flat and a good strained quantum well structure is required. It is hard to realize.

【0016】これに対して、本発明では量子井戸層の内
部で歪み補償しているため、歪みによる発光特性の向上
が望め、かつバリア層が無歪みであるためにエピタキシ
ャル成長上の問題がなく、良好な歪み量子井戸構造を実
現することが可能となる。
On the other hand, in the present invention, since the strain is compensated inside the quantum well layer, an improvement in the light emission characteristics due to the strain can be expected, and there is no problem in epitaxial growth because the barrier layer has no strain. A good strain quantum well structure can be realized.

【0017】[0017]

【実施例】次に、本発明の一実施例について図面を参照
して説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.

【0018】図1は本発明の一実施例の断面図である。
図において、半導体レーザ結晶はn型InP基板1と、
n型InPクラッド層2と、層厚15nmでバンドギャ
ップ波長が1.15μm組成のInGaAsPのバリア
層3と、バリア層3に挟まれた量子井戸層4と、p型I
nPクラッド層7と、p型InGaAsコンタクト層8
とが順次積層されて形成されている。この半導体レーザ
結晶はバリア層3と量子井戸層4とを1周期とする多層
膜が4周期形成され、これらによって活性層が形成され
ている。
FIG. 1 is a sectional view of an embodiment of the present invention.
In the figure, a semiconductor laser crystal includes an n-type InP substrate 1,
an n-type InP cladding layer 2, a 15-nm-thick InGaAsP barrier layer 3 having a bandgap wavelength of 1.15 μm composition, a quantum well layer 4 interposed between the barrier layers 3, and a p-type I
nP cladding layer 7 and p-type InGaAs contact layer 8
Are sequentially laminated. In this semiconductor laser crystal, a multilayer film having one cycle of the barrier layer 3 and the quantum well layer 4 is formed in four cycles, and these form an active layer.

【0019】ここで、量子井戸層4は層厚2nmで1.
84%の圧縮歪みのIn0.8 Ga0.2 Asの主量子井戸
層5と、主量子井戸層5を挟み込みかつ層厚1.5nm
で1.22%の引張り歪みのIn0.35Ga0.65Asの副
量子井戸層6とが積層されて形成されている。
Here, the quantum well layer 4 has a thickness of 2 nm and is 1.
A main quantum well layer 5 of In 0.8 Ga 0.2 As having a compressive strain of 84%, a thickness of 1.5 nm sandwiching the main quantum well layer 5 and having a thickness of 1.5 nm;
And a sub quantum well layer 6 of In 0.35 Ga 0.65 As having a tensile strain of 1.22%.

【0020】よって、量子井戸層4では圧縮歪みの主量
子井戸層5と、その上下に配置された引張り歪みの副量
子井戸層6とが互いに歪みを相殺しあっているので、見
掛け上無歪みとなっている。したがって、バリア層3に
は無歪みのInGaAsP混晶を用いることができ、原
子層レベルで平坦な高品質の量子井戸構造を形成するこ
とができる。
Therefore, in the quantum well layer 4, since the main quantum well layer 5 having the compressive strain and the sub quantum well layer 6 having the tensile strain arranged above and below the compressive strain cancel each other out, the strain is apparently no strain. It has become. Therefore, a strain-free InGaAsP mixed crystal can be used for the barrier layer 3, and a flat, high-quality quantum well structure at the atomic layer level can be formed.

【0021】実際に、歪みを有するInGaAsP層を
用いて従来の歪み補償構造をガスソースMBE法で作製
した場合、成長層の3次元化(荒れ)に対応するパター
ンが高速電子線回折で観測される。これに対し、本発明
の一実施例による歪み補償構造を作製した場合、原子層
レベルで平坦な表面が形成されていることが高速電子線
回折で観測されているので、これによって本発明の有効
性を確認することができる。
Actually, when a conventional strain compensation structure is formed by a gas source MBE method using a strained InGaAsP layer, a pattern corresponding to three-dimensional growth (roughness) of a growth layer is observed by high-speed electron beam diffraction. You. On the other hand, when the strain compensating structure according to one embodiment of the present invention was manufactured, it was observed by high-speed electron diffraction that a flat surface was formed at the atomic layer level. Sex can be confirmed.

【0022】図2は本発明の一実施例による半導体レー
ザ結晶の量子井戸周辺のエネルギバンドの模式図であ
る。図においては上記構成の半導体レーザ結晶のバンド
構造を1つの量子井戸層4と、この量子井戸層4を挟む
2つのバリア層3とについて示している。
FIG. 2 is a schematic diagram of an energy band around a quantum well of a semiconductor laser crystal according to one embodiment of the present invention. In the figure, the band structure of the semiconductor laser crystal having the above configuration is shown for one quantum well layer 4 and two barrier layers 3 sandwiching the quantum well layer 4.

【0023】量子井戸層4と2つのバリア層3とにおい
て、伝導帯11と価電子帯(ヘビーホールバンド)12
及び価電子帯(ライトホールバンド)13とが互いに対
向するように夫々凸状に形成されている。
In the quantum well layer 4 and the two barrier layers 3, a conduction band 11 and a valence band (heavy hole band) 12
And a valence band (light hole band) 13 are formed in a convex shape so as to face each other.

【0024】量子井戸層4の主量子井戸層5では圧縮歪
みのために価電子帯端がヘビーホール端となり、副量子
井戸層6では引張り歪みのために価電子帯端がライトホ
ール端となる。
In the main quantum well layer 5 of the quantum well layer 4, the valence band edge becomes a heavy hole edge due to compressive strain, and in the sub quantum well layer 6, the valence band edge becomes a light hole edge due to tensile strain. .

【0025】この量子井戸層4付近のエネルギ分布(伝
導帯11及び価電子帯12,13)にしたがって、電子
分布14とヘビーホール分布15とライトホール分布1
6とが形成される。
According to the energy distribution near the quantum well layer 4 (conduction band 11 and valence bands 12, 13), electron distribution 14, heavy hole distribution 15, and light hole distribution 1
6 are formed.

【0026】図2中、電子分布14、ヘビーホール分布
15、ライトホール分布16は量子井戸層4から離れた
バリア層3においてゼロ分布となる位置で夫々サブバン
ドエネルギ準位を示すよう便宜的に記してある。
In FIG. 2, the electron distribution 14, the heavy hole distribution 15, and the light hole distribution 16 are conveniently shown so as to show sub-band energy levels at positions where the distribution is zero in the barrier layer 3 distant from the quantum well layer 4. It is written.

【0027】ヘビーホールとライトホールとのエネルギ
準位差は85meVと分離が十分とれ、また電子とヘビ
ーホールとの準位間遷移が最小エネルギで波長1560
nmに相当するエネルギを有し、これに対応した波長で
発振する。そのため、発振モードはTEモードである。
The energy level difference between the heavy hole and the light hole is 85 meV, which is sufficient for separation, and the transition between the level between the electron and the heavy hole is the minimum energy and the wavelength is 1560.
It has energy corresponding to nm and oscillates at a wavelength corresponding to this. Therefore, the oscillation mode is the TE mode.

【0028】ここで、副量子井戸層6には、伝導帯エネ
ルギ端がバリア層3の伝導帯エネルギ端より低エネルギ
に位置し、また価電子帯端(ヘビーホール)がバリア層
3の価電子帯端と主量子井戸層5の価電子帯端との中間
に位置し、さらに引張り歪みを有するという条件を満た
すInGaAsの組成から一例としてIn0.35Ga0.65
Asの組成を用いており、その他の組成であってもよ
い。
Here, in the sub quantum well layer 6, the conduction band energy edge is located at a lower energy than the conduction band energy edge of the barrier layer 3, and the valence band edge (heavy hole) is the valence electron energy of the barrier layer 3. The composition of InGaAs which is located between the band edge and the valence band edge of the main quantum well layer 5 and further satisfies the condition of having a tensile strain is, for example, In 0.35 Ga 0.65
The composition of As is used, and another composition may be used.

【0029】詳細には、レーザ発振に寄与する最小エネ
ルギ遷移に関与する電荷担体の存在するバンド構造が副
量子井戸層6において極大値、もしくは極小値を持たな
いことが条件である。この条件は電荷担体の主量子井戸
層5への注入を容易にし、半導体レーザの発振特性のた
めに必要である。
More specifically, the condition is that the band structure in which the charge carriers involved in the minimum energy transition contributing to the laser oscillation have no maximum value or minimum value in the sub quantum well layer 6. This condition facilitates the injection of charge carriers into the main quantum well layer 5 and is necessary for the oscillation characteristics of the semiconductor laser.

【0030】尚、本発明の一実施例では半導体レーザの
構造を特に示さなかったが、プレーナ型、SAS(Se
lf Aligned Stripe)型、BH(Bu
ried Hetero)型、DCPBH(Doubl
e Channel Planar Buried H
etero)型等の通常用いられる構造に適用すること
ができる。
Although the structure of the semiconductor laser is not particularly shown in the embodiment of the present invention, a planar type, SAS (Se
If Aligned Strip) type, BH (Bu
ride Hetero) type, DCPBH (Doubl)
e Channel Planar Burried H
The present invention can be applied to a commonly used structure such as an (etero) type.

【0031】図3は本発明の他の実施例の断面図であ
る。図において、半導体レーザ結晶はn型InP基板2
1と、n型InPクラッド層22と、層厚15nmでバ
ンドギャップ波長が1.15μm組成のInGaAsP
のバリア層23と、バリア層23に挟まれた量子井戸層
24と、p型InPクラッド層25と、p型InGaA
sコンタクト層26とが順次積層されて形成されてい
る。この半導体レーザ結晶はバリア層23と量子井戸層
24とを1周期とする多層膜が4周期形成され、これら
によって活性層が形成されている。
FIG. 3 is a sectional view of another embodiment of the present invention. In the figure, the semiconductor laser crystal is an n-type InP substrate 2
1, an n-type InP cladding layer 22, and InGaAsP having a layer thickness of 15 nm and a bandgap wavelength of 1.15 μm.
Barrier layer 23, a quantum well layer 24 interposed between the barrier layers 23, a p-type InP clad layer 25, and a p-type InGaAs
The s-contact layer 26 is sequentially laminated. In the semiconductor laser crystal, a multilayer film having one cycle of the barrier layer 23 and the quantum well layer 24 is formed four times, and these form an active layer.

【0032】ここで、量子井戸層24は中央部で2.5
%の圧縮歪みのIn0.9 Ga0.1 Asから、周辺部で
1.7%の引張り歪みのIn0.28Ga0.72Asへと組成
が連続的に変化しているInGaAsによって構成さ
れ、全体では圧縮歪みと引張り歪みとが互いに歪みを相
殺し、見掛け上無歪みとなっている。
Here, the quantum well layer 24 has a thickness of 2.5 at the center.
% Of In 0.9 Ga 0.1 As having a compressive strain of 1.7% and In 0.28 Ga 0.72 As having a tensile strain of 1.7% at the peripheral portion. The distortion and the distortion cancel each other, and the distortion is apparently no distortion.

【0033】図4は本発明の他の実施例による半導体レ
ーザ結晶の量子井戸周辺のエネルギバンドの模式図であ
る。図においては上記構成の半導体レーザ結晶のバンド
構造を1つの量子井戸層24と、この量子井戸層24を
挟む2つのバリア層23とについて示している。
FIG. 4 is a schematic diagram of an energy band around a quantum well of a semiconductor laser crystal according to another embodiment of the present invention. In the figure, the band structure of the semiconductor laser crystal having the above configuration is shown for one quantum well layer 24 and two barrier layers 23 sandwiching the quantum well layer 24.

【0034】量子井戸層24と2つのバリア層23とに
おいて、伝導帯31と価電子帯(ヘビーホールバンド)
32及び価電子帯(ライトホールバンド)33とが互い
に対向するように、夫々断面が三角形状の凸状に形成さ
れている。
In the quantum well layer 24 and the two barrier layers 23, the conduction band 31 and the valence band (heavy hole band) are formed.
The cross sections are each formed in a triangular convex shape so that the 32 and the valence band (light hole band) 33 face each other.

【0035】量子井戸層24の中央部では圧縮歪みのた
めに価電子帯端がヘビーホール端となり、周辺部では引
張り歪みのために価電子帯端がライトホール端となる。
At the center of the quantum well layer 24, the valence band edge becomes a heavy hole edge due to compressive strain, and at the peripheral portion, the valence band edge becomes a light hole edge due to tensile strain.

【0036】この量子井戸層24付近のエネルギ分布
(伝導帯31及び価電子帯32,33)にしたがって、
電子分布34とヘビーホール分布35とライトホール分
布36とが形成される。
According to the energy distribution near the quantum well layer 24 (conduction band 31 and valence bands 32 and 33),
An electron distribution 34, a heavy hole distribution 35, and a light hole distribution 36 are formed.

【0037】図4中、電子分布34、ヘビーホール分布
35、ライトホール分布36は量子井戸層24から離れ
たバリア層23においてゼロ分布となる位置で夫々サブ
バンドエネルギ準位を示すよう便宜的に記してある。
In FIG. 4, the electron distribution 34, the heavy hole distribution 35, and the light hole distribution 36 are conveniently shown so as to show the subband energy levels at positions where the distribution becomes zero in the barrier layer 23 remote from the quantum well layer 24. It is written.

【0038】ヘビーホールとライトホールとのエネルギ
準位差は十分とれ、また電子とヘビーホールとの準位間
遷移が最小エネルギ遷移で、そのためにTEモードで発
振する。
The energy level difference between the heavy hole and the light hole is sufficiently large, and the transition between the level between the electron and the heavy hole is the minimum energy transition, so that oscillation occurs in the TE mode.

【0039】ここで、量子井戸層24には、中央部で
2.5%の圧縮歪みのIn0.9 Ga0.1 Asから、周辺
部で1.7%の引張り歪みのIn0.28Ga0.72Asへと
組成が連続的に変化しているInGaAsを用いてい
る。
Here, the composition of the quantum well layer 24 is changed from In 0.9 Ga 0.1 As having a compressive strain of 2.5% at the center to In 0.28 Ga 0.72 As having a tensile strain of 1.7% at the periphery. Uses InGaAs that changes continuously.

【0040】つまり、周辺部の伝導帯エネルギ端がバリ
ア層23の伝導帯エネルギ端より低エネルギに位置し、
また価電子帯端(ヘビーホール)がバリア層23の価電
子帯端と中央部の価電子帯端との中間に位置し、さらに
引張り歪みを有するという条件を満たすInGaAsの
組成から一例としてIn0.9 Ga0.1 AsからIn0.28
Ga0.72Asの組成を用いており、その他の組成であっ
てもよい。
In other words, the conduction band energy edge of the peripheral portion is located at a lower energy than the conduction band energy edge of the barrier layer 23,
The In 0.9 As an example the composition of satisfying InGaAs called valence band edge (heavy holes) is positioned intermediate the valence band edge of the valence band edge and the central portion of the barrier layer 23, having a further tensile strain Ga 0.1 As to In 0.28
The composition of Ga 0.72 As is used, and another composition may be used.

【0041】詳細には、レーザ発振に寄与する最小エネ
ルギ遷移に関与する電荷担体の存在するバンド構造が量
子井戸層24の中央部において価電子帯で極大値、及び
伝導帯で極小値を持つことが条件である。この条件は電
荷担体の量子井戸層24への注入を容易にし、半導体レ
ーザの発振特性のために必要である。
More specifically, the band structure in which the charge carriers involved in the minimum energy transition contributing to the laser oscillation have a maximum value in the valence band and a minimum value in the conduction band in the center of the quantum well layer 24. Is a condition. This condition facilitates the injection of charge carriers into the quantum well layer 24 and is necessary for the oscillation characteristics of the semiconductor laser.

【0042】尚、本発明の一実施例では半導体レーザの
構造を特に示さなかったが、プレーナ型、SAS型、B
H型、DCPBH型等の通常用いられる構造に適用する
ことができる。
Although the structure of the semiconductor laser is not particularly shown in the embodiment of the present invention, a planar type, a SAS type,
The present invention can be applied to commonly used structures such as H type and DCPBH type.

【0043】本発明による半導体レーザは急峻な界面と
精密な組成制御とが可能なエピタキシャル成長方法なら
ば、どの方法を用いてもよい。ここではガスソースMB
E法でエピタキシャル成長させて作成する場合について
以下説明する。
For the semiconductor laser according to the present invention, any method may be used as long as it is an epitaxial growth method capable of steep interfaces and precise composition control. Here the gas source MB
The case of making the epitaxial growth by the E method will be described below.

【0044】まず、(100)面を有するn型InP基
板1,21を950℃で熱解離したホスフィンガスを照
射しながら500℃に加熱し、Kセルを用いてInとn
型ドーパントのSiとを照射してn型InPクラッド層
2,22を成長させる。
First, the n-type InP substrates 1 and 21 having the (100) plane are heated to 500 ° C. while irradiating phosphine gas thermally dissociated at 950 ° C.
The n-type InP cladding layers 2 and 22 are grown by irradiating with Si as a type dopant.

【0045】次に、アルシンとホスフィンとを同時に照
射しながらInとGaとを照射し、バリア層3,23を
成長させる。以後同様に、III 族元素であるIn,Ga
と、V族材料であるホスフィン及びアルシンとを成長さ
せる組成、つまり副量子井戸層6・主量子井戸層5・副
量子井戸層6の順に形成される組成または中央部のIn
0.9 Ga0.1 Asから周辺部のIn0.28Ga0.72Asへ
の組成にしたがって照射することで量子井戸層4,24
を形成させる。
Next, In and Ga are irradiated while simultaneously irradiating arsine and phosphine to grow the barrier layers 3 and 23. Thereafter, similarly, group III elements such as In and Ga
And a composition for growing phosphine and arsine, which are group V materials, that is, a composition formed in the order of the sub-quantum well layer 6, the main quantum well layer 5, and the sub-quantum well layer 6, or In at the center.
Irradiation in accordance with the composition from 0.9 Ga 0.1 As to peripheral In 0.28 Ga 0.72 As allows quantum well layers 4 and 24 to be irradiated.
Is formed.

【0046】電流の横方向閉じ込めには埋め込み成長に
よる閉じ込め構造を用いることができる。連続して組成
を変化させる場合にはIn及びGaのKセルの温度を制
御して分子線ビーム量を変化させて所望の組成変化を得
る。
For lateral confinement of current, a confinement structure by buried growth can be used. When the composition is continuously changed, the desired composition change is obtained by controlling the temperatures of the In and Ga K cells to change the amount of molecular beam.

【0047】上述した実施例では量子井戸層4,24と
して波長1.5μm付近で発振する組成を用いたが、I
nGaAs以外にもInAsPとInGaAsとの組合
せ、InAlAs等でもよく、量子井戸層4,24内で
歪みを補償できる構成であればよい。
In the above-described embodiment, the quantum well layers 4 and 24 have compositions that oscillate around a wavelength of 1.5 μm.
In addition to nGaAs, a combination of InAsP and InGaAs, InAlAs, or the like may be used as long as the structure can compensate for the strain in the quantum well layers 4 and 24.

【0048】また、上述した実施例ではInPに格子整
合した組成のIII-V族化合物半導体を用いたが、GaA
sに格子整合した組成のIII-V族化合物半導体からなる
短波もしくは可視半導体レーザにも適用できる。例え
ば、InGaPについて同様の組成変化を有する量子井
戸層を用いてもよい。
In the above-described embodiment, a group III-V compound semiconductor having a composition lattice-matched to InP is used.
The present invention is also applicable to a short-wave or visible semiconductor laser made of a III-V compound semiconductor having a composition lattice-matched to s. For example, a quantum well layer having a similar composition change for InGaP may be used.

【0049】さらに、上述した実施例ではすべての層を
InPに格子整合したものを用いたが、必要なバンド構
造を得るために格子整合条件を故意に外した組成のIII-
V族化合物半導体であっても臨界膜厚以内であればよ
い。例えば、バリア層3,23は完全に無歪みでなくと
も、結晶成長時に非平坦化等の問題がなければ臨界膜厚
以内で歪みを有していてもよい。
Further, in the above-described embodiment, all layers are lattice-matched to InP. However, in order to obtain a required band structure, a composition of III-
Any group V compound semiconductor may be used if it is within the critical film thickness. For example, the barrier layers 3 and 23 need not be completely strain-free, but may have strain within a critical film thickness if there is no problem such as non-planarization during crystal growth.

【0050】このように、量子井戸層4を、臨界膜厚以
内の歪みを有する主量子井戸層5と、主量子井戸層5を
挟むように配設されて主量子井戸層5の歪みを補償する
ための臨界膜厚以内の歪みを有する副量子井戸層6とで
形成し、量子井戸層4を無歪みにすることによって、エ
ピタキシャル成長時に歪みを有するバリア層を積層する
必要がなくなるので、結晶品質を低下させることなく、
見掛け上無歪みの量子井戸層4を形成することができ
る。
As described above, the quantum well layer 4 is provided so as to sandwich the main quantum well layer 5 having the strain within the critical thickness and the main quantum well layer 5 so as to compensate for the strain of the main quantum well layer 5. And the auxiliary quantum well layer 6 having a strain within a critical film thickness for making the quantum well layer 4 unstrained, which eliminates the necessity of stacking a strained barrier layer during epitaxial growth. Without lowering
The apparently strain-free quantum well layer 4 can be formed.

【0051】つまり、活性層のエピタキシャル成長時に
バリア層3が平坦性を失うことなく、良好な歪み補償構
造を実現することができるので、歪み量子井戸構造によ
る優れた高温度動作特性及び高速変調特性を持つ半導体
レーザを得ることができる。
In other words, a good strain compensation structure can be realized without losing the flatness of the barrier layer 3 at the time of epitaxial growth of the active layer. Therefore, excellent high-temperature operation characteristics and high-speed modulation characteristics of the strained quantum well structure can be obtained. A semiconductor laser having the same can be obtained.

【0052】また、量子井戸層24を、積層方向に歪み
量が連続的に変化する分布の中央部の歪みの方向と周辺
部の歪みの方向とが各々異なるようし、分布の平均が無
歪みとなる構成とすることによって、エピタキシャル成
長時に歪みを有するバリア層を積層する必要がなくなる
ので、結晶品質を低下させることなく、見掛け上無歪み
の量子井戸層4を形成することができる。
Further, the quantum well layer 24 is formed such that the direction of the strain in the central portion and the direction of the strain in the peripheral portion of the distribution in which the amount of strain changes continuously in the stacking direction are different from each other, so that the average of the distribution is unstrained. With such a configuration, it is not necessary to stack a barrier layer having strain during epitaxial growth, so that the apparently strain-free quantum well layer 4 can be formed without deteriorating the crystal quality.

【0053】つまり、活性層のエピタキシャル成長時に
バリア層3が平坦性を失うことなく、良好な歪み補償構
造を実現することができるので、歪み量子井戸構造によ
る優れた高温度動作特性及び高速変調特性を持つ半導体
レーザを得ることができる。
In other words, a good strain compensation structure can be realized without losing the flatness of the barrier layer 3 during the epitaxial growth of the active layer, so that the strained quantum well structure provides excellent high-temperature operation characteristics and high-speed modulation characteristics. A semiconductor laser having the same can be obtained.

【0054】[0054]

【発明の効果】以上説明したように本発明の半導体レー
ザによれば、バリア層と量子井戸層とが順次積層してな
る活性層において、量子井戸層を、臨界膜厚以内の歪み
を有する主量子井戸層と、この主量子井戸層を挟むよう
に配設されかつ主量子井戸層の歪みを補償するための臨
界膜厚以内の歪みを有する第1及び第2の副量子井戸層
とで形成することによって、活性層のエピタキシャル成
長時にバリア層が平坦性を失うことなく、良好な歪み補
償構造を実現することができるという効果がある。
As described above, according to the semiconductor laser of the present invention, in an active layer in which a barrier layer and a quantum well layer are sequentially laminated, the quantum well layer having a strain within a critical thickness is used. A quantum well layer and first and second sub-quantum well layers disposed so as to sandwich the main quantum well layer and having a strain within a critical thickness for compensating for the strain in the main quantum well layer are formed. By doing so, there is an effect that a good strain compensation structure can be realized without losing the flatness of the barrier layer during the epitaxial growth of the active layer.

【0055】また、本発明の他の半導体レーザによれ
ば、量子井戸層を、積層方向に歪み量が連続的に変化す
る歪み分布の中央部の歪みの方向と周辺部の歪みの方向
とが各々異なるようにして平均が無歪みとなる構成とす
ることによって、活性層のエピタキシャル成長時にバリ
ア層が平坦性を失うことなく、良好な歪み補償構造を実
現することができるという効果がある。
According to another semiconductor laser of the present invention, the direction of strain in the central portion and the direction of strain in the peripheral portion of the strain distribution in which the amount of strain continuously changes in the stacking direction is changed. By adopting a configuration in which the average is strain-free so as to be different from each other, there is an effect that a good strain compensation structure can be realized without losing the flatness of the barrier layer during the epitaxial growth of the active layer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の断面図である。FIG. 1 is a sectional view of one embodiment of the present invention.

【図2】本発明の一実施例による半導体レーザ結晶の量
子井戸周辺のエネルギバンドの模式図である。
FIG. 2 is a schematic diagram of an energy band around a quantum well of a semiconductor laser crystal according to one embodiment of the present invention.

【図3】本発明の他の実施例の断面図である。FIG. 3 is a sectional view of another embodiment of the present invention.

【図4】本発明の他の実施例による半導体レーザ結晶の
量子井戸周辺のエネルギバンドの模式図である。
FIG. 4 is a schematic diagram of an energy band around a quantum well of a semiconductor laser crystal according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,11 n型InP基板 2,22 n型InPクラッド層 3,23 バリア層 4,24 量子井戸層 5 主量子井戸層 6 副量子井戸層 7,25 p型InPクラッド層 8,26 p型InGaAsコンタクト層 Reference Signs List 1,11 n-type InP substrate 2,22 n-type InP cladding layer 3,23 barrier layer 4,24 quantum well layer 5 main quantum well layer 6 sub-quantum well layer 7,25 p-type InP cladding layer 8,26 p-type InGaAs Contact layer

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 バリア層と量子井戸層とが順次積層して
なる活性層と、前記活性層の禁制帯幅よりも大きい禁制
帯幅を有しかつ前記活性層を挟むように配設されたn型
クラッド層及びp型クラッド層とが半導体基板上に形成
された半導体レーザであって、前記量子井戸層は、積層
方向に歪み量が連続的に変化しかつ平均が無歪みとなる
分布を有するよう構成されたことを特徴とする半導体レ
ーザ。
1. An active layer having a barrier layer and a quantum well layer sequentially stacked, and an active layer having a forbidden band width larger than a forbidden band width of the active layer and disposed so as to sandwich the active layer. A semiconductor laser in which an n-type cladding layer and a p-type cladding layer are formed on a semiconductor substrate, wherein the quantum well layer has a distribution in which the amount of strain continuously changes in the stacking direction and the average has no strain. A semiconductor laser characterized by having.
【請求項2】 前記分布は、中央部の歪みの方向と周辺
部の歪みの方向とが各々異なるようしたことを特徴とす
る請求項記載の半導体レーザ。
Wherein said distribution is a semiconductor laser according to claim 1, wherein the direction of the distortion in the direction of the periphery of the distortion of the central portion, characterized in that respectively different.
【請求項3】 前記バリア層は、複数のV族からなるII
I −V化合物半導体の多元混晶であることを特徴とする
請求項または請求項記載の半導体レーザ。
3. The barrier layer according to claim 1, wherein the barrier layer comprises a plurality of V-groups.
Claim 1 or claim 2 The semiconductor laser according characterized in that it is a multiple mixed crystal of I -V compound semiconductor.
JP6274124A 1994-11-09 1994-11-09 Semiconductor laser Expired - Fee Related JP2661563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6274124A JP2661563B2 (en) 1994-11-09 1994-11-09 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6274124A JP2661563B2 (en) 1994-11-09 1994-11-09 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPH08139404A JPH08139404A (en) 1996-05-31
JP2661563B2 true JP2661563B2 (en) 1997-10-08

Family

ID=17537363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6274124A Expired - Fee Related JP2661563B2 (en) 1994-11-09 1994-11-09 Semiconductor laser

Country Status (1)

Country Link
JP (1) JP2661563B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3420087B2 (en) 1997-11-28 2003-06-23 Necエレクトロニクス株式会社 Semiconductor light emitting device
US6603784B1 (en) 1998-12-21 2003-08-05 Honeywell International Inc. Mechanical stabilization of lattice mismatched quantum wells
US6973109B2 (en) * 2000-02-28 2005-12-06 Fuji Photo Film Co., Ltd. Semiconductor laser device having strain buffer layer between compressive-strain quantum well layer and tensile-strain barrier layer
DE10057698A1 (en) * 2000-11-21 2002-06-06 Osram Opto Semiconductors Gmbh Semiconductor diode lasers stacked on top of each other
KR100657963B1 (en) 2005-06-28 2006-12-14 삼성전자주식회사 High power vertical external cavity surface emitting laser
JP2009004555A (en) * 2007-06-21 2009-01-08 Dowa Electronics Materials Co Ltd Light emitting element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183614A (en) * 1993-12-24 1995-07-21 Fujikura Ltd Distorted multiple quantum well optical device

Also Published As

Publication number Publication date
JPH08139404A (en) 1996-05-31

Similar Documents

Publication Publication Date Title
JPH03119761A (en) Method of making quantum well structure with highly mismatching lattice
JPH0249007B2 (en)
JPH0418476B2 (en)
JPH0821748B2 (en) Semiconductor laser device
US4207122A (en) Infra-red light emissive devices
JP2724827B2 (en) Infrared light emitting device
DE60212755T2 (en) Optical semiconductor device and manufacturing method
US8179585B2 (en) Coupled quantum well structure
JP2661563B2 (en) Semiconductor laser
JP4886634B2 (en) Quantum well structure, optical confinement quantum well structure, semiconductor laser, distributed feedback semiconductor laser, and method of manufacturing quantum well structure
JP5026115B2 (en) Quantum well structure, semiconductor laser, spectroscopic measurement apparatus, and method for manufacturing quantum well structure
JP3768790B2 (en) Quantum dot structure and semiconductor device apparatus having the same
EP1505699B1 (en) Semiconductor optical device on an indium phosphide substrate for long operating wavelengths
JPH06314657A (en) Manufacture of optical semiconductor element
JPH08274295A (en) Manufacture of optical semiconductor device
JPH0541560A (en) Semiconductor laser element
JP4086465B2 (en) Quantum dot structure and method for forming the same, and semiconductor device device having the quantum dot structure
JPH10242511A (en) Strained multiple quantum well structure
JP3027038B2 (en) Semiconductor distributed feedback laser device
JPH0555697A (en) Semiconductor laser
JPH10242571A (en) Strained multiple quantum well structure and its manufacture
JPH0563290A (en) Semiconductor laser
JPH1022564A (en) Semiconductor laser, and semiconductor light modulator, and manufacture of semiconductor laser
JPH1131811A (en) Method for growing strained multiple quantum well structure
JPH10223987A (en) Strained multiple quantum well structure and its growing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees