JPH07183614A - Distorted multiple quantum well optical device - Google Patents

Distorted multiple quantum well optical device

Info

Publication number
JPH07183614A
JPH07183614A JP34735993A JP34735993A JPH07183614A JP H07183614 A JPH07183614 A JP H07183614A JP 34735993 A JP34735993 A JP 34735993A JP 34735993 A JP34735993 A JP 34735993A JP H07183614 A JPH07183614 A JP H07183614A
Authority
JP
Japan
Prior art keywords
layer
strain
well
mqw
well layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34735993A
Other languages
Japanese (ja)
Inventor
Shinzo Suzaki
慎三 須崎
Takuya Aizawa
卓也 相澤
Jii Rabikumaaru Kee
ケー・ジー・ラビクマール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP34735993A priority Critical patent/JPH07183614A/en
Publication of JPH07183614A publication Critical patent/JPH07183614A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide a distorted MQW optical device which enables the property improvement by the introduction of distortion without deteriorating light shut-in effect. CONSTITUTION:MQW laser is made by stacking an n-type InP buffer layer 2, an n-type InGaAsP lower shut-in layer 3, an i-type MQW layer 4, a p-type InGaAsP upper light shut-in layer 5, and a p-type InP clad layer 6 in order on an n-type InP substrate 1. The MQW layer 4 is composed basically of an InxGa1-xAs well layer 12, where pull distortion of --0.5-2.00/o is introduced, and In0.82Ga0.18As0.4P0.6 barrier layers 11 of nondistortion, and an InyGa1-yAs shut-in layer 13, which is of approximately the same size, in the range of 0.5-2.0%, as a well layer 12 and in which compressed distortion of reverse polarity is introduced, is interposed between each well layer 12 and the barrier layer 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、歪多重量子井戸構造を
用いた半導体レーザ等の光デバイスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical device such as a semiconductor laser using a strained multiple quantum well structure.

【0002】[0002]

【従来の技術】従来より、半導体レーザを始めとして、
様々な多重量子井戸光デバイスが研究されている。多重
量子井戸(Multi-Quantum-Well,MQW)構造は、井戸
層とバリア層とを電子波長(10nm)以下の薄層で交互
に積層したもので、半導体レーザの場合は数層程度、光
スイッチや光変調器の場合は30層程度繰り返し積層さ
れる。このMQW構造では、注入されたキャリアが井戸
層に閉じ込められて光導波路領域での吸収損失が少なく
なる。この結果例えば半導体レーザであれば、光出力の
増大、しきい値電流の低下、発振波長の安定化等の利点
が得られる。
2. Description of the Related Art Conventionally, starting with a semiconductor laser,
Various multi-quantum well optical devices have been studied. The multi-quantum-well (MQW) structure is a structure in which a well layer and a barrier layer are alternately laminated in thin layers with an electron wavelength (10 nm) or less. In the case of an optical modulator, about 30 layers are repeatedly laminated. In this MQW structure, the injected carriers are confined in the well layer and the absorption loss in the optical waveguide region is reduced. As a result, for example, in the case of a semiconductor laser, advantages such as an increase in optical output, a decrease in threshold current, and stabilization of oscillation wavelength can be obtained.

【0003】このようなMQW構造において最近は、歪
MQW構造が提案されて注目されている。これは、MQ
W層の井戸層をバリア層に対して故意に格子不整合させ
ることにより歪を導入したもので、これにより微分利得
の増大、非発光再結合による効率低下の抑制といった効
果が得られる。
In such an MQW structure, a strained MQW structure has recently been proposed and attracted attention. This is MQ
Strain is introduced by intentionally making the W layer of the well layer lattice-matched with the barrier layer, which has the effect of increasing the differential gain and suppressing the efficiency decrease due to non-radiative recombination.

【0004】その具体的な原理を図4を参照して説明す
ると、次の通りである。例えばInGaAs/InP系
のMQW構造では、無歪状態で、井戸層のバンド構造は
図4(b)の状態にある。重い正孔(HH)帯と軽い正
孔(LH)帯は、波数ベクトルk=0の点で縮退してい
る。このような井戸層の面方向に圧縮歪を導入すると、
重い正孔帯と軽い正孔帯のエネルギー準位が低エネルギ
ー側にシフトするが、重い正孔帯のシフト量が大きい。
この結果、図4(a)に示すように重い正孔帯と軽い正
孔帯が分離した状態、即ち部分的に縮退が解けた状態に
なる。
The specific principle will be described below with reference to FIG. For example, in the InGaAs / InP-based MQW structure, the band structure of the well layer is in the state of FIG. The heavy hole (HH) band and the light hole (LH) band degenerate at the wave vector k = 0. When compressive strain is introduced in the plane direction of such a well layer,
The energy levels of the heavy hole band and the light hole band shift to the low energy side, but the amount of shift of the heavy hole band is large.
As a result, as shown in FIG. 4A, the heavy hole band and the light hole band are separated, that is, the degeneracy is partially released.

【0005】このように井戸層に圧縮歪を導入した状態
では、面内方向の重い正孔帯の正孔の有効質量が小さく
なり、したがってレーザの発振しきい値が低くなり、発
振効率が向上する。伝導帯への遷移(オージェ非発光再
結合)による発光効率の低下も抑制される。また、バン
ドギャップ・エネルギーEgは小さくなるので、波長が
長波長側にシフトする。更に重い正孔が支配的なTEモ
ードでの選択的な発振が得られるようになる。
When compressive strain is introduced into the well layer as described above, the effective mass of holes in the heavy hole band in the in-plane direction becomes small, so that the oscillation threshold of the laser becomes low and the oscillation efficiency is improved. To do. The decrease in emission efficiency due to the transition to the conduction band (Auger non-radiative recombination) is also suppressed. Further, since the bandgap energy Eg becomes small, the wavelength shifts to the long wavelength side. Further, selective oscillation in TE mode in which heavier holes are dominant can be obtained.

【0006】逆に、井戸層に引っ張り歪を導入すると、
重い正孔帯と軽い正孔帯と高エネルギー側にシフトする
が、このときも重い正孔帯のシフト量が大きく、バンド
構造は図4(c)の状態になる。この状態では発振波長
は短波長側にシフトする。また軽い正孔帯が支配的なT
Mモードでの利得が増大するため、偏波無依存性になり
易い。最近、この引っ張り歪を導入した半導体レーザ、
光スイッチ、レーザアンプ等が提案されているが、引っ
張り歪のときは軽い正孔帯の正孔の有効質量が小さくな
るため、レーザの場合はやはりしきい値が低減し、発振
効率が向上するといった利点が得られる。また微分利得
の飽和が圧縮歪の場合に比べて起こりにくく、高出力レ
ーザや高増幅率レーザアンプ等に有利であると言われて
いる。
On the contrary, if tensile strain is introduced into the well layer,
Although the heavy hole band and the light hole band shift to the high energy side, the shift amount of the heavy hole band is large at this time as well, and the band structure becomes as shown in FIG. 4C. In this state, the oscillation wavelength shifts to the short wavelength side. In addition, T where light hole band is dominant
Since the gain in the M mode increases, polarization independence tends to occur. Recently, a semiconductor laser that has introduced this tensile strain,
Although optical switches, laser amplifiers, etc. have been proposed, the effective mass of holes in the light hole band becomes small in the case of tensile strain, so that in the case of lasers, the threshold value also decreases and the oscillation efficiency improves. Such an advantage can be obtained. Further, it is said that the saturation of the differential gain is less likely to occur as compared with the case of the compression distortion, and it is said to be advantageous for a high output laser, a high amplification factor laser amplifier and the like.

【0007】図3は、1.3〜1.55μm 帯の長波長
レーザであるInGaAs/InP系のMQWレーザの
構造を示している。n型InP基板1上にn型InPバ
ッファ層が形成され、この上に光閉じ込め層となるn型
InGaAsP層3、活性層となるアンドープ(i型)
MQW層4、光閉じ込め層となるp型InGaAsP層
5が順次形成され、更にこの上にp型InPクラッド層
6が形成される。MQW層4は、拡大して示したよう
に、i型のInGaAs井戸層41と同じくi型のIn
GaAsPバリア層41とが交互に3〜5対積層された
構造とする。
FIG. 3 shows the structure of an InGaAs / InP MQW laser which is a long wavelength laser in the 1.3 to 1.55 μm band. An n-type InP buffer layer is formed on the n-type InP substrate 1, on which an n-type InGaAsP layer 3 to be a light confining layer and undoped (i-type) to be an active layer are formed.
An MQW layer 4 and a p-type InGaAsP layer 5 to be a light confining layer are sequentially formed, and a p-type InP clad layer 6 is further formed thereon. As shown in the enlarged view, the MQW layer 4 has the same i-type In as the i-type InGaAs well layer 41.
The GaAsP barrier layer 41 and the GaAsP barrier layer 41 are alternately laminated in 3 to 5 pairs.

【0008】図3の構造において、MQW層4に歪を導
入して良好な特性を得るためには、圧縮歪の場合、歪が
0〜1.5%の範囲で特に1%前後が最適と言われてい
る。引っ張り歪の場合には−0.8〜−2%で効果が現
れ、−0.5%程度ではむしろ特性が劣化すると言われ
ている。なおこの明細書において、歪は、所望の組成波
長を得るための組成結晶、例えばInPの格子定数を
a、InGaAs井戸層の格子定数のaからのズレをΔ
aとして、Δa/aで定義している。Δa/aは、引っ
張り歪の場合負、圧縮歪の場合正である。
In the structure of FIG. 3, in order to introduce a strain into the MQW layer 4 and obtain good characteristics, in the case of compressive strain, the strain is preferably in the range of 0 to 1.5%, particularly around 1%. It is said. In the case of tensile strain, it is said that the effect appears at −0.8 to −2%, and the characteristics rather deteriorate at about −0.5%. In this specification, the strain is a deviation of Δ from the lattice constant a of a composition crystal, eg, InP, for obtaining a desired composition wavelength, and the lattice constant a of the InGaAs well layer from a.
It is defined as Δa / a. Δa / a is negative for tensile strain and positive for compressive strain.

【0009】InPに格子整合するのは、InGaAs
系ではIn0.53Ga0.47Asである。したがってInG
aAs/InP系のレーザで井戸層に引っ張り歪を導入
するには、InPの格子定数aよりも小さい格子定数を
持つ組成、例えばIn0.45Ga0.55AsといったGaリ
ッチの組成の井戸層を成長させればよい。原子半径が、
In>Gaだからである。理論的に、In0.53Ga0.47
Asバルク結晶の組成波長は1.65μm であり、これ
に対して、5〜20nmのIn0.45Ga0.55As井戸層を
用いて歪MQWレーザを構成すると、量子効果によって
発振波長は短波長側にシフトする。逆に、InGaAs
/InP系のレーザで井戸層に圧縮歪を導入するには、
例えばIn0.58Ga0.42AsといったInリッチの組成
の井戸層を成長させればよい。
InGaAs is lattice-matched to InP.
In the system, it is In 0.53 Ga 0.47 As. Therefore InG
In order to introduce tensile strain to the well layer with an aAs / InP laser, grow a well layer having a composition having a lattice constant smaller than the lattice constant a of InP, for example, a Ga-rich composition such as In 0.45 Ga 0.55 As. Good. Atomic radius is
This is because In> Ga. Theoretically, In 0.53 Ga 0.47
The composition wavelength of the As bulk crystal is 1.65 μm. On the other hand, when a strained MQW laser is constructed using an In 0.45 Ga 0.55 As well layer of 5 to 20 nm, the oscillation wavelength shifts to the short wavelength side due to the quantum effect. To do. Conversely, InGaAs
In order to introduce compressive strain into the well layer with a / InP-based laser,
For example, a well layer having an In-rich composition such as In 0.58 Ga 0.42 As may be grown.

【0010】[0010]

【発明が解決しようとする課題】以上のような歪MQW
レーザにおいて、井戸層の歪を井戸層内に充分に閉じ込
めるためには、バリア層の層厚として井戸層の2倍以上
必要であるということが実験的に明かなっている。しか
し、バリア層の層厚が大きいとそれだけMQW層全体の
層厚が大きくなり、光閉じ込め係数Γが小さくなるとい
う難点がある。光閉じ込め係数Γは光閉じ込め領域の層
厚、したがってMQW層の層厚に依存して、MQW層が
厚くなる程小さくなるからである。そして光閉じ込め係
数Γが小さくなれば、歪を導入したことによるしきい値
電流密度の低減効果や発振効率向上といった効果が充分
に得られなくなる。
DISCLOSURE OF THE INVENTION Distorted MQW as described above
It has been experimentally revealed that in a laser, in order to sufficiently confine strain of the well layer in the well layer, the barrier layer needs to have a thickness twice or more that of the well layer. However, when the barrier layer has a large thickness, the MQW layer as a whole has a large thickness, and the optical confinement coefficient Γ decreases. This is because the optical confinement coefficient Γ depends on the layer thickness of the optical confinement region, that is, the layer thickness of the MQW layer, and becomes smaller as the MQW layer becomes thicker. If the optical confinement coefficient Γ becomes smaller, the effect of reducing the threshold current density and improving the oscillation efficiency due to the introduction of strain cannot be sufficiently obtained.

【0011】実際にInGaAs/InP系MQWレー
ザにおいて、しきい値電流密度2000A/cm2 以下の
ものを実現しようとすると、光閉じ込め係数Γを0.1
以上とすることが望まれるが、これはMQW層の層厚を
0.2μm 以下、好ましくは0.1μm 以下にしないと
実現することが難しい。
In an actual InGaAs / InP MQW laser, if an attempt is made to achieve a threshold current density of 2000 A / cm 2 or less, the optical confinement coefficient Γ is 0.1.
Although it is desired to set the above, it is difficult to realize this unless the layer thickness of the MQW layer is 0.2 μm or less, preferably 0.1 μm or less.

【0012】本発明は上記した事情を考慮してなされた
もので、光閉じ込め効果を劣化せることなく歪導入によ
る特性向上を可能とした歪MQW光デバイスを提供する
ことを目的としている。
The present invention has been made in consideration of the above circumstances, and an object thereof is to provide a strained MQW optical device capable of improving the characteristics by introducing strain without deteriorating the optical confinement effect.

【0013】[0013]

【課題を解決するための手段】本発明は、第1に、井戸
層とバリア層が交互に積層され井戸層に歪が導入された
多重量子井戸層と、この多重量子井戸層を挟む光閉じ込
め層とを有する歪多重量子井戸光デバイスにおいて、前
記多重量子井戸層の各井戸層とバリア層の間に井戸層の
歪を閉じ込める歪閉じ込め層を介在させたことを特徴と
する。
According to the present invention, first, a multiple quantum well layer in which well layers and barrier layers are alternately laminated and strain is introduced into the well layer, and optical confinement sandwiching the multiple quantum well layer are provided. And a strain confinement layer for confining the strain of the well layer is interposed between each well layer and the barrier layer of the multi-quantum well layer.

【0014】本発明は、第2に、半導体基板上に下部光
閉じ込め層、井戸層とバリア層が交互に積層された多重
量子井戸層及び上部光閉じ込め層を積層して構成される
多重量子井戸レーザにおいて、前記多重量子井戸層は、
井戸層に−0.5〜−2.0%の引っ張り歪が導入さ
れ、且つ各井戸層とバリア層の間に0.5〜2.0%の
圧縮歪が導入された歪閉じ込め層を介在させていること
を特徴とする。
Secondly, the present invention relates to a multi-quantum well formed by stacking a lower optical confinement layer, a multiple quantum well layer in which well layers and barrier layers are alternately laminated, and an upper optical confinement layer on a semiconductor substrate. In the laser, the multiple quantum well layer is
A strain confinement layer in which a tensile strain of −0.5 to −2.0% is introduced into the well layer and a compressive strain of 0.5 to 2.0% is introduced between each well layer and the barrier layer is interposed. It is characterized by making it.

【0015】本発明は、第3に、半導体基板上に下部光
閉じ込め層、井戸層とバリア層が交互に積層された多重
量子井戸層及び上部光閉じ込め層を積層して構成される
多重量子井戸レーザにおいて、前記多重量子井戸層は、
井戸層に0.1〜1.0%の圧縮歪が導入され、且つ各
井戸層とバリア層の間に−0.1〜−1.0%の引っ張
り歪が導入された歪閉じ込め層を介在させていることを
特徴とする。
Thirdly, the present invention relates to a multi-quantum well formed by stacking a lower optical confinement layer, a multiple quantum well layer in which well layers and barrier layers are alternately laminated and an upper optical confinement layer on a semiconductor substrate. In the laser, the multiple quantum well layer is
Strain confinement layer with 0.1-1.0% compressive strain introduced into the well layer and -0.1-1.0% tensile strain introduced between each well layer and barrier layer It is characterized by making it.

【0016】[0016]

【作用】本発明によると、歪MQW層の井戸層に導入し
た歪を閉じ込めるように、井戸層とバリア層の間に歪閉
じ込め層を介在させている。具体的に、多重量子井戸レ
ーザの場合であれば、井戸層を−0.5〜−2.0%の
引っ張り歪層とし、歪閉じ込め層は井戸層と同等の大き
さの圧縮歪を導入した層とする。逆に井戸層を0.1〜
1.0%の圧縮歪層としたときは、歪閉じ込め層は井戸
層と同等の大きさの引っ張り歪を導入した層とする。こ
れにより、井戸層の歪は歪閉じ込め層の逆歪により相殺
される形で閉じ込められるから、バリア層を従来に比べ
て薄くすることができる。そしてその結果として、MQ
W層全体の層厚を充分小さくして、大きな光閉じ込め効
果を得ることができる。
According to the present invention, the strain confinement layer is interposed between the well layer and the barrier layer so as to confine the strain introduced into the well layer of the strained MQW layer. Specifically, in the case of a multiple quantum well laser, the well layer is a tensile strain layer of -0.5 to -2.0%, and the strain confinement layer has a compressive strain of the same magnitude as that of the well layer. Layer. On the contrary, the well layer is 0.1
When the compressive strain layer is 1.0%, the strain confinement layer is a layer to which tensile strain having the same magnitude as that of the well layer is introduced. As a result, the strain in the well layer is confined in a form of being offset by the reverse strain of the strain confinement layer, so that the barrier layer can be made thinner than before. And as a result, MQ
A large optical confinement effect can be obtained by making the layer thickness of the entire W layer sufficiently small.

【0017】また、井戸層と歪閉じ込め層とは逆の歪が
導入されるから、井戸層のみに歪を導入した場合と比較
すると、実効的に井戸層にはより大きな歪が導入された
と等価になる。これは言い換えれば、井戸層の層厚をそ
れほど小さくしなくても、効果的に歪が導入できること
を意味する。したがって井戸層の層厚の制御性、均一性
を向上させ、界面の急峻性も向上させることができ、優
れた量子効果特性を得ることができる。更に井戸層の層
厚をそれ程小さくしなくてもよければ、結晶性も良好に
なるから、素子の信頼性も向上する。
Further, since the strain opposite to that of the well layer and the strain confinement layer is introduced, it is equivalent to the fact that a larger strain is effectively introduced into the well layer as compared with the case where the strain is introduced into only the well layer. become. In other words, this means that strain can be effectively introduced without making the layer thickness of the well layer so small. Therefore, the controllability and uniformity of the layer thickness of the well layer can be improved, the steepness of the interface can be improved, and excellent quantum effect characteristics can be obtained. Further, if the layer thickness of the well layer does not have to be so small, the crystallinity will be good, and the reliability of the device will be improved.

【0018】[0018]

【実施例】以下、図面を参照して、本発明の実施例を説
明する。図1は、本発明の第1の実施例に係るInGa
As/InP系の歪MQWレーザである。n型InP基
板1上に、n型InPバッファ層2、n型InGaAs
P下部光閉じ込め層3、i型MQW層4、p型InGa
AsP上部光閉じ込め層5及びp型InPクラッド層6
を順次積層形成して得られる。この基本構造は従来と同
様である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows InGa according to the first embodiment of the present invention.
This is an As / InP strained MQW laser. On the n-type InP substrate 1, the n-type InP buffer layer 2 and the n-type InGaAs
P lower optical confinement layer 3, i-type MQW layer 4, p-type InGa
AsP upper optical confinement layer 5 and p-type InP clad layer 6
Are sequentially laminated and obtained. This basic structure is similar to the conventional one.

【0019】MQW層4は、バリア層11と井戸層12
の交互積層構造が基本であるが、井戸層12には、−
0.5〜−2.0%の引っ張り歪が導入されている。例
えば、バリア層11は1.15μm の組成波長を示すも
のとして、In0.82Ga0.18As0.4 0.6 を用い、井
戸層12はInx Ga1-x As(0.4≦x≦0.5)
とする。また、井戸層12に引っ張り歪を導入したこと
に伴って、各井戸層12とバリア層11の間には、井戸
層12に歪を閉じ込めるために、0.5〜2.0%の範
囲で井戸層12の同程度の大きさで逆極性の圧縮歪を導
入した歪閉じ込め層13を介在させている。具体的にこ
の歪閉じ込め層13は、Iny Ga1-y As(0.57
≦y≦0.83)とする。
The MQW layer 4 comprises a barrier layer 11 and a well layer 12.
The basic structure is an alternate laminated structure of
A tensile strain of 0.5 to -2.0% is introduced. For example, the barrier layer 11 is made of In 0.82 Ga 0.18 As 0.4 P 0.6 with a composition wavelength of 1.15 μm, and the well layer 12 is In x Ga 1-x As (0.4 ≦ x ≦ 0.5).
And In addition, in order to confine the strain in the well layer 12 between each well layer 12 and the barrier layer 11 due to the introduction of tensile strain in the well layer 12, the range of 0.5 to 2.0% is used. A strain confinement layer 13 having the same size as that of the well layer 12 and having a compressive strain of opposite polarity is introduced. Specifically, the strain confinement layer 13 is formed of In y Ga 1-y As (0.57).
≦ y ≦ 0.83).

【0020】MQW層4内に上述のように歪閉じ込め層
13を介在させることにより、この実施例ではバリア層
11の層厚は従来のように大きくする必要はなくなる。
具体的にこの実施例では、井戸層12とバリア層11と
を同じ程度の層厚とする。
By interposing the strain confinement layer 13 in the MQW layer 4 as described above, in this embodiment, it is not necessary to increase the layer thickness of the barrier layer 11 as in the conventional case.
Specifically, in this embodiment, the well layer 12 and the barrier layer 11 have the same layer thickness.

【0021】この実施例の構成とすれば、従来より薄い
MQW層で充分な量子効果が得られる。具体的に説明す
ると、歪閉じ込め層がない従来技術において、井戸層を
6nmとすると、バリア層は12nmが必要であり、このと
き5周期のMQW層の層厚は、5層の井戸層と6層のバ
リア層により、 6×5+12×6=102[nm] となる。
With the structure of this embodiment, a sufficient quantum effect can be obtained with an MQW layer thinner than before. More specifically, in the conventional technique having no strain confinement layer, assuming that the well layer has a thickness of 6 nm, the barrier layer needs to have a thickness of 12 nm. At this time, the MQW layer for 5 periods has a thickness of 5 well layers and 6 well layers. Due to the barrier layer, 6 × 5 + 12 × 6 = 102 [nm].

【0022】これに対してこの実施例の場合、井戸層、
バリア層共6nmとし、歪閉じ込め層として各井戸層に対
して両側に1nmずつ2nmとすると、5周期のMQW層の
層厚は、 (6+2)×5+6×6=76[nm] となる。
On the other hand, in the case of this embodiment, the well layer,
If the barrier layer has a thickness of 6 nm and the strain confinement layer has a thickness of 2 nm with 1 nm on each side of each well layer, the layer thickness of the MQW layer for 5 cycles is (6 + 2) × 5 + 6 × 6 = 76 [nm].

【0023】以上のように歪MQW層の厚みを従来より
26nmも薄くすることができる。これにより光閉じ込め
係数Γが0.1程度あるいはそれ以下の優れた光閉じ込
め効果が得られ、歪導入の効果と相まって、MQWレー
ザのしきい値電流の低減、発振効率の向上等が図られ
る。
As described above, the thickness of the strained MQW layer can be reduced by 26 nm as compared with the conventional one. As a result, an excellent optical confinement effect with an optical confinement coefficient Γ of about 0.1 or less can be obtained, and in combination with the effect of introducing strain, the threshold current of the MQW laser can be reduced and the oscillation efficiency can be improved.

【0024】また、この実施例において、例えば井戸層
12に−1%の引っ張り歪を導入したいときに、実際に
は井戸層12に−0.5%の引っ張り歪を導入し、歪閉
じ込め層13に+0.5%の圧縮歪を導入することよ
り、実効的に−1%の引っ張り歪が実現できる。これは
井戸層の厚みをそれ程小さくすることなく、井戸層に所
望の歪を導入できることを意味するから、層厚制御性、
均一性等が改善され、優れたレーザ特性と高い信頼性が
得られる。
Further, in this embodiment, for example, when it is desired to introduce a tensile strain of -1% into the well layer 12, a tensile strain of -0.5% is actually introduced into the well layer 12 and the strain confinement layer 13 is introduced. By introducing a compression strain of + 0.5% to, a tensile strain of -1% can be effectively realized. This means that desired strain can be introduced into the well layer without making the thickness of the well layer so small.
The uniformity and the like are improved, and excellent laser characteristics and high reliability are obtained.

【0025】図2は、本発明の第2の実施例に係るIn
GaAs/InP系の歪MQWレーザである。基本構造
は図1の実施例と同様であるので、詳細な説明は省く。
この実施例の場合MQW層4は、0.1〜1.0%の圧
縮歪が導入された井戸層22を有し、且つ各井戸層22
とバリア層21の間に−0.1〜−1.0%の引っ張り
歪が導入された歪閉じ込め層23を介在させている。
FIG. 2 shows In according to the second embodiment of the present invention.
It is a GaAs / InP strained MQW laser. Since the basic structure is the same as that of the embodiment shown in FIG. 1, detailed description will be omitted.
In the case of this embodiment, the MQW layer 4 has a well layer 22 into which a compressive strain of 0.1 to 1.0% is introduced, and each well layer 22.
A strain confinement layer 23 in which a tensile strain of −0.1 to −1.0% is introduced is interposed between the barrier layer 21 and the barrier layer 21.

【0026】具体的に例えば、バリア層21は上記実施
例と同様In0.82Ga0.18As0.40.6 であり、井戸
層22はInx Ga1-x As(0.55≦x≦0.6
8)とし、歪閉じ込め層23は、井戸層22と同程度の
大きさで逆極性の引っ張り歪を導入したIny Ga1-y
As(0.39≦y≦0.52)とする。
Specifically, for example, the barrier layer 21 is In 0.82 Ga 0.18 As 0.4 P 0.6 as in the above-described embodiment, and the well layer 22 is In x Ga 1-x As (0.55 ≦ x ≦ 0.6).
8), the strain confinement layer 23 has a size similar to that of the well layer 22 and is In y Ga 1-y in which tensile strain of opposite polarity is introduced.
As (0.39 ≦ y ≦ 0.52).

【0027】この実施例によっても先の実施例と同様
に、井戸層に歪を導入した効果を低減させることなく、
充分な光閉じ込め効果を得ることができ、従って優れた
MQWレーザが得られる。
Also in this embodiment, as in the previous embodiment, without reducing the effect of introducing strain into the well layer,
A sufficient optical confinement effect can be obtained, and thus an excellent MQW laser can be obtained.

【0028】以上の実施例ではレーザを説明したが、本
発明はレーザに限られるものではなく、同様のMQW構
造を用いる光スイッチや光変調器等の各種光デバイスに
適用することができる。レーザに比べてMQW層の繰り
返し数が多い光デバイスでは特に、バリア層の層厚を薄
くしたことによるMQW層全体の層厚低減の効果が大き
くなる。その具体的な数値例を挙げる。
Although lasers have been described in the above embodiments, the present invention is not limited to lasers and can be applied to various optical devices such as optical switches and optical modulators using the same MQW structure. Particularly in an optical device in which the number of repetitions of the MQW layer is larger than that of a laser, the effect of reducing the layer thickness of the entire MQW layer becomes large by reducing the layer thickness of the barrier layer. A specific numerical example will be given.

【0029】例えば、井戸層を8nm、バリア層を16nm
として、30周期のMQW構造を得る場合、MQW層の
全体の層厚は、 8×30+16×31=736[nm] となる。これに対して、井戸層、バリア層共8nmとし、
各井戸層の両側に1nmの歪閉じ込め層を設けたとする
と、MQW層の全体の層厚は、 (8+2)×30+8×31=548[nm] となる。以上により、MQW層全体として、およそ20
0nm、30%程度の層厚低減が図られる。これにより、
大きな光閉じ込め効果が得られる。
For example, the well layer is 8 nm and the barrier layer is 16 nm.
When obtaining an MQW structure with 30 cycles, the total layer thickness of the MQW layer is 8 × 30 + 16 × 31 = 736 [nm]. On the other hand, the well layer and the barrier layer both have a thickness of 8 nm,
Assuming that a strain confinement layer of 1 nm is provided on both sides of each well layer, the total layer thickness of the MQW layer is (8 + 2) × 30 + 8 × 31 = 548 [nm]. From the above, the MQW layer as a whole is approximately 20
A layer thickness reduction of about 0 nm and 30% can be achieved. This allows
A large light confinement effect can be obtained.

【0030】また実施例では、基板側がn型、MQW層
の上側がp型の場合を示したが、この導電型は逆であっ
てもよい。更にInGaAs/InP系に限らず、他の
化合物半導体を用いた場合にも本発明は有効である。
Further, in the embodiment, the case where the substrate side is n-type and the upper side of the MQW layer is p-type is shown, but this conductivity type may be reversed. Furthermore, the present invention is effective not only in the InGaAs / InP system but also in the case of using other compound semiconductors.

【0031】[0031]

【発明の効果】以上述べたように本発明によれば、MQ
W層の各井戸層とバリア層の間に井戸層の歪を閉じ込め
る歪閉じ込め層を介在させることにより、光閉じ込め効
果を劣化せることなく歪導入による特性向上を可能とし
た歪MQW光デバイスを提供することができる。
As described above, according to the present invention, MQ
Provided is a strained MQW optical device capable of improving characteristics by introducing strain without deteriorating the optical confinement effect by interposing a strain confinement layer for confining the strain of the well layer between each well layer of the W layer and the barrier layer. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施例の歪MQWレーザを示
す。
FIG. 1 shows a strained MQW laser according to a first embodiment of the present invention.

【図2】 本発明の第2の実施例の歪MQWレーザを示
す。
FIG. 2 shows a strained MQW laser according to a second embodiment of the present invention.

【図3】 従来の歪MQWレーザを示す。FIG. 3 shows a conventional strained MQW laser.

【図4】 歪MQWの効果を説明するための図である。FIG. 4 is a diagram for explaining an effect of distortion MQW.

【符号の説明】[Explanation of symbols]

1…n型InP基板、2…n型InPバッフア層、3…
n型InGaAsP下部光閉じ込め層、4…歪MQW
層、5…p型InGaAsP上部光閉じ込め層、6…p
型InPクラッド層、11…i型In0.82Ga0.18As
0.4 0.6 バリア層、12…i型Inx Ga1-x As井
戸層、13…i型Iny Ga1-y As歪閉じ込め層、2
1…i型In0.82Ga0.18As0.4 0.6 バリア層、2
2…i型Inx Ga1-x As井戸層、23…i型Iny
Ga1-y As歪閉じ込め層。
1 ... n-type InP substrate, 2 ... n-type InP buffer layer, 3 ...
n-type InGaAsP lower optical confinement layer, 4 ... Strained MQW
Layer, 5 ... p-type InGaAsP upper optical confinement layer, 6 ... p
Type InP clad layer, 11 ... i type In 0.82 Ga 0.18 As
0.4 P 0.6 barrier layer, 12 ... i-type In x Ga 1-x As well layer, 13 ... i-type In y Ga 1-y As strain confinement layer, 2
1 ... i-type In 0.82 Ga 0.18 As 0.4 P 0.6 barrier layer, 2
2 ... i-type In x Ga 1-x As well layer, 23 ... i-type In y
Ga 1-y As strain confinement layer.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 井戸層とバリア層が交互に積層され井戸
層に歪が導入された多重量子井戸層と、この多重量子井
戸層を挟む光閉じ込め層とを有する多重量子井戸光デバ
イスにおいて、 前記多重量子井戸層の各井戸層とバリア層の間に井戸層
の歪を閉じ込める歪閉じ込め層を介在させたことを特徴
とする歪多重量子井戸光デバイス。
1. A multi-quantum well optical device comprising: a multi-quantum well layer in which well layers and barrier layers are alternately laminated and strain is introduced into the well layer; and a light confinement layer sandwiching the multi-quantum well layer. A strained multiple quantum well optical device, characterized in that a strain confinement layer for confining strain of the well layer is interposed between each well layer and the barrier layer of the multiple quantum well layer.
【請求項2】 半導体基板上に下部光閉じ込め層、井戸
層とバリア層が交互に積層された多重量子井戸層及び上
部光閉じ込め層を積層して構成される多重量子井戸レー
ザにおいて、 前記多重量子井戸層は、井戸層に−0.5〜−2.0%
の引っ張り歪が導入され、且つ各井戸層とバリア層の間
に0.5〜2.0%の圧縮歪が導入された歪閉じ込め層
を介在させていることを特徴とする歪多重量子井戸レー
ザ。
2. A multi-quantum well laser configured by stacking a lower optical confinement layer, a multiple quantum well layer in which well layers and barrier layers are alternately laminated, and an upper optical confinement layer on a semiconductor substrate. The well layer is -0.5 to -2.0% in the well layer.
Strained multi-quantum well laser characterized in that a strain confinement layer having a tensile strain of 0.5 to 2.0% is interposed between each well layer and the barrier layer. .
【請求項3】 半導体基板上に下部光閉じ込め層、井戸
層とバリア層が交互に積層された多重量子井戸層及び上
部光閉じ込め層を積層して構成される多重量子井戸レー
ザにおいて、 前記多重量子井戸層は、井戸層に0.1〜1.0%の圧
縮歪が導入され、且つ各井戸層とバリア層の間に−0.
1〜−1.0%の引っ張り歪が導入された歪閉じ込め層
を介在させていることを特徴とする歪多重量子井戸レー
ザ。
3. A multi-quantum well laser configured by stacking a lower optical confinement layer, a multiple quantum well layer in which well layers and barrier layers are alternately laminated, and an upper optical confinement layer on a semiconductor substrate. The well layer has a compressive strain of 0.1 to 1.0% introduced into the well layer, and −0.
A strained multiple quantum well laser having a strain confinement layer having a tensile strain of 1 to −1.0% introduced therein.
JP34735993A 1993-12-24 1993-12-24 Distorted multiple quantum well optical device Pending JPH07183614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34735993A JPH07183614A (en) 1993-12-24 1993-12-24 Distorted multiple quantum well optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34735993A JPH07183614A (en) 1993-12-24 1993-12-24 Distorted multiple quantum well optical device

Publications (1)

Publication Number Publication Date
JPH07183614A true JPH07183614A (en) 1995-07-21

Family

ID=18389698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34735993A Pending JPH07183614A (en) 1993-12-24 1993-12-24 Distorted multiple quantum well optical device

Country Status (1)

Country Link
JP (1) JPH07183614A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139404A (en) * 1994-11-09 1996-05-31 Nec Corp Semiconductor laser
DE19651352A1 (en) * 1996-03-01 1997-09-04 Mitsubishi Electric Corp Mechanically strained multiquantum well semiconductor laser device
JP2007201040A (en) * 2006-01-25 2007-08-09 Anritsu Corp Semiconductor light emitting element
JP2009004555A (en) * 2007-06-21 2009-01-08 Dowa Electronics Materials Co Ltd Light emitting element
JP2010080757A (en) * 2008-09-26 2010-04-08 Rohm Co Ltd Semiconductor light emitting element
JP2011192833A (en) * 2010-03-15 2011-09-29 Furukawa Electric Co Ltd:The Optical semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139404A (en) * 1994-11-09 1996-05-31 Nec Corp Semiconductor laser
DE19651352A1 (en) * 1996-03-01 1997-09-04 Mitsubishi Electric Corp Mechanically strained multiquantum well semiconductor laser device
JP2007201040A (en) * 2006-01-25 2007-08-09 Anritsu Corp Semiconductor light emitting element
JP4554526B2 (en) * 2006-01-25 2010-09-29 アンリツ株式会社 Semiconductor light emitting device
JP2009004555A (en) * 2007-06-21 2009-01-08 Dowa Electronics Materials Co Ltd Light emitting element
JP2010080757A (en) * 2008-09-26 2010-04-08 Rohm Co Ltd Semiconductor light emitting element
JP2011192833A (en) * 2010-03-15 2011-09-29 Furukawa Electric Co Ltd:The Optical semiconductor device

Similar Documents

Publication Publication Date Title
EP0645858B1 (en) Strained quantum well structure having variable polarization dependence and optical device inducing the strained quantum well structure
JP3362356B2 (en) Optical semiconductor device
JP2724827B2 (en) Infrared light emitting device
JPH0878786A (en) Strained quantum well structure
JPH05145178A (en) Strained quantum well semiconductor laser element
JPH0661570A (en) Strain multiple quantum well semiconductor laser
JPH05283791A (en) Surface emission type semiconductor laser
JPH05243676A (en) Semiconductor laser device
JPH09106946A (en) Semiconductor device, semiconductor laser and high-electron mobility transistor device
JPH0774431A (en) Semiconductor optical element
US5644587A (en) Semiconductor laser device
JPH01257386A (en) Optical amplifier
JPH07183614A (en) Distorted multiple quantum well optical device
JP3145718B2 (en) Semiconductor laser
JP2833396B2 (en) Strained multiple quantum well semiconductor laser
JP3128788B2 (en) Semiconductor laser
JP2706411B2 (en) Strained quantum well semiconductor laser
JPH05175601A (en) Multiple quantum well semiconductor laser
JP3033333B2 (en) Semiconductor laser device
JPH09148682A (en) Semiconductor optical device
JPH1197790A (en) Semiconductor laser
JPH07111367A (en) Semiconductor laser device
JPH01251685A (en) Light amplifier
JPH07122811A (en) Semiconductor laser element
JP3219871B2 (en) Semiconductor laser device