JPH10238345A - Cooling device for hybrid electric automobile - Google Patents

Cooling device for hybrid electric automobile

Info

Publication number
JPH10238345A
JPH10238345A JP4047297A JP4047297A JPH10238345A JP H10238345 A JPH10238345 A JP H10238345A JP 4047297 A JP4047297 A JP 4047297A JP 4047297 A JP4047297 A JP 4047297A JP H10238345 A JPH10238345 A JP H10238345A
Authority
JP
Japan
Prior art keywords
cooling
cooling system
cooling water
engine
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4047297A
Other languages
Japanese (ja)
Other versions
JP3292080B2 (en
Inventor
Ryuichi Idoguchi
隆一 井戸口
Shinichiro Kitada
眞一郎 北田
Toshio Kikuchi
俊雄 菊池
Hiroyuki Hirano
弘之 平野
Eiji Inada
英二 稲田
Takeshi Aso
剛 麻生
Yutaro Kaneko
雄太郎 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP04047297A priority Critical patent/JP3292080B2/en
Publication of JPH10238345A publication Critical patent/JPH10238345A/en
Application granted granted Critical
Publication of JP3292080B2 publication Critical patent/JP3292080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/142Emission reduction of noise acoustic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PROBLEM TO BE SOLVED: To prevent overheating of an engine after the stop of the engine as lowering of noise/vibration performance and power consumption of a battery are suppressed to a minimum limit. SOLUTION: When a key switch is turned off, cooling operation is respectively individually performed by a first cooling system 10 and a second cooling system until the water temperature of a second cooling system 15 is reduced to a value lower than a first given value. When the water temperature of the second cooling system is reduced to a value lower than the first given value, a second cooling system cooling water pump 18 is stopped, a cooling water passage is switched, and cooling water of the first cooling system is circulated amount a radiator 12, a second cooling system radiator 16, and a prime mover 2, and a second cooling system radiator and a cooling fan 19 are used for cooling of the first cooling system. Cooling capacity of the first cooling system to prevent the occurrence of the thermal damage of the engine, a generator 3, and an electric motor 7 after a key switch is turned OFF is improved, a first cooling system water temperature is reduced in a short time and noise/vibration performance due to operation noise and vibration of a pump and a fan is modified. Further, the operation times of the pump and the fan are shortened and power consumption of a battery is saved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、走行駆動源として
原動機、発電機、電動機および電池を搭載したハイブリ
ッド電気自動車の冷却装置に関し、特に原動機と電動機
の冷却方法を改善したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for a hybrid electric vehicle equipped with a prime mover, a generator, a motor and a battery as driving power sources, and more particularly to an improved method for cooling a prime mover and a motor.

【0002】[0002]

【従来の技術】原動機、発電機(以下、ジェネレーター
と呼ぶ)、電動機(以下、モーターと呼ぶ)および電池
(以下、バッテリーと呼ぶ)を搭載したハイブリッド電
気自動車が知られている。原動機には一般にガソリンエ
ンジンやディーゼルエンジンなどの内燃機関が用いられ
ており、この明細書では単にエンジンと呼ぶ。
2. Description of the Related Art A hybrid electric vehicle equipped with a motor, a generator (hereinafter, referred to as a generator), an electric motor (hereinafter, referred to as a motor), and a battery (hereinafter, referred to as a battery) is known. In general, an internal combustion engine such as a gasoline engine or a diesel engine is used as a prime mover, and is simply referred to as an engine in this specification.

【0003】ハイブリッド電気自動車には、パラレル・
ハイブリッド電気自動車とシリーズ・ハイブリッド電気
自動車がある。パラレル・ハイブリッド電気自動車は走
行駆動源にエンジンとモーターを用い、エンジンとモー
ターを同時に駆動して走行するのはもちろん、エンジン
とモーターのいずれか一方を単独に駆動して走行するこ
ともできる。シリーズ・ハイブリッド電気自動車は走行
駆動源にモーターのみを用い、エンジンによりジェネレ
ーターを駆動し、モーターに電力を供給するバッテリー
をジェネレーターの発電電力で充電する。
[0003] Hybrid electric vehicles include a parallel electric vehicle.
There are hybrid electric vehicles and series hybrid electric vehicles. A parallel hybrid electric vehicle uses an engine and a motor as a driving source for driving, and can drive not only by driving the engine and the motor at the same time, but also by driving one of the engine and the motor independently. Series hybrid electric vehicles use only a motor as a driving source, drive a generator by an engine, and charge a battery that supplies power to the motor with the power generated by the generator.

【0004】この種のハイブリッド電気自動車では、モ
ーターを冷却するためのモーター冷却系と、エンジンを
冷却するためのエンジン冷却系とが別個に設けられてい
る。
In this type of hybrid electric vehicle, a motor cooling system for cooling a motor and an engine cooling system for cooling an engine are separately provided.

【0005】図7は従来のハイブリッド電気自動車の冷
却装置を示す図である。エンジン冷却系は、冷却水をエ
ンジン101とラジエーター102との間で循環させ、
エンジン101で過熱された冷却水をラジエーター10
2で冷却ファン103により冷却する。一方、モーター
冷却系は、冷却水をパワーユニット104、モーター1
05、ジェネレーター106、ラジエーター107の間
で循環させ、パワーユニット104、モーター105お
よびジェネレーター106で過熱された冷却水をラジエ
ーター107で冷却ファン108により冷却する。な
お、従来のハイブリッド電気自動車では、エンジン冷却
系とモーター冷却系の冷却ファン103と108の回転
方向は矢印で示すように同一方向になっている。
FIG. 7 is a diagram showing a conventional cooling device for a hybrid electric vehicle. The engine cooling system circulates cooling water between the engine 101 and the radiator 102,
The cooling water superheated by the engine 101 is supplied to the radiator 10.
In step 2, cooling is performed by the cooling fan 103. On the other hand, the motor cooling system supplies cooling water to the power unit 104 and the motor 1.
05, circulate between the generator 106 and the radiator 107, and the cooling water superheated by the power unit 104, the motor 105 and the generator 106 is cooled by the cooling fan 108 by the radiator 107. In the conventional hybrid electric vehicle, the rotation directions of the cooling fans 103 and 108 of the engine cooling system and the motor cooling system are in the same direction as indicated by arrows.

【0006】また、エンジン停止後のエンジンの局部的
な過熱を防止するために、エンジン停止後もエンジンが
所定温度に低下するまで冷却水ポンプと冷却ファンを駆
動するようにしたエンジンの冷却装置が知られている
(例えば、特開昭60−119318号公報参照)。
Further, in order to prevent local overheating of the engine after the engine is stopped, there is provided an engine cooling device in which a cooling water pump and a cooling fan are driven even after the engine is stopped until the engine drops to a predetermined temperature. It is known (for example, see Japanese Patent Application Laid-Open No. 60-119318).

【0007】[0007]

【発明が解決しようとする課題】ところで、ハイブリッ
ド電気自動車においても、上述した後者のエンジン冷却
装置によりエンジンを冷却すること考えられる。しか
し、エンジン停止後も冷却水ポンプと冷却ファンを駆動
するため、それらの駆動音と振動が長時間続くことにな
り、音振性能が低下する。また、エンジン停止後はバッ
テリーの電力で冷却水ポンプと冷却ファンを駆動するの
で、バッテリーの充電量が低下するという問題がある。
Incidentally, in a hybrid electric vehicle, it is conceivable to cool the engine by the latter engine cooling device. However, since the cooling water pump and the cooling fan are driven even after the engine is stopped, their driving sounds and vibrations continue for a long time, and the sound and vibration performance deteriorates. Further, since the cooling water pump and the cooling fan are driven by the electric power of the battery after the engine is stopped, there is a problem that the charge amount of the battery is reduced.

【0008】本発明の目的は、音振性能の低下とバッテ
リーの電力消費を最小限に抑制しながら、原動機停止後
の原動機の過熱を防止するようにしたハイブリッド電気
自動車の冷却装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a cooling device for a hybrid electric vehicle which prevents overheating of a prime mover after stopping the prime mover while minimizing deterioration of sound vibration performance and power consumption of a battery. It is in.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

(1) 請求項1の発明は、原動機と第1のラジエータ
ーとの間で第1の冷却水ポンプにより冷却水を循環さ
せ、第1のラジエーターで第1の冷却ファンにより冷却
水を冷却する第1の冷却系と、発電機と電動機と第2の
ラジエーターとの間で第2の冷却水ポンプにより冷却水
を循環させ、第2のラジエーターで第2の冷却ファンに
より冷却水を冷却する第2の冷却系とを備えたハイブリ
ッド電気自動車の冷却装置に適用される。そして、第1
の冷却系の冷却水温度を検出する第1の温度検出手段
と、第2の冷却系の冷却水温度を検出する第2の温度検
出手段と、単独モードでは第1の冷却系と第2の冷却系
とでそれぞれ別個に冷却水を循環させ、連動モードでは
第1の冷却系の冷却水を第1のラジエーターと第2のラ
ジエーターと原動機との間で循環させる冷却水流路切換
手段と、自動車のキースイッチがオフされると、第2の
冷却系の冷却水温が第1の所定値以下に低下するまで第
1の冷却系と第2の冷却系とでそれぞれ単独に冷却動作
を行ない、第2の冷却系の冷却水温が第1の所定値以下
に低下したら第2の冷却水ポンプを停止するとともに、
冷却水流路切換手段により連動モードの流路に切り換え
る制御手段とを備える。 (2) 請求項2ののハイブリッド電気自動車の冷却装
置は、制御手段によって、連動モードの冷却水流路に切
り換えた後、第1の冷却系の冷却水温が第2の所定値以
下に低下したら第1の冷却水ポンプ、第1の冷却ファン
および第2の冷却ファンを停止するようにしたものであ
る。 (3) 請求項3のハイブリッド電気自動車の冷却装置
は、第1の所定値に第2の冷却系の冷却動作を停止した
後で第2の冷却系に熱害を発生させない温度を設定し、
第2の所定値に第1の冷却系の冷却動作を停止した後で
第1の冷却系に熱害を発生させない温度を設定したもの
である。 (4) 請求項4のハイブリッド電気自動車の冷却装置
は、第1の冷却ファンと第2の冷却ファンの回転方向を
互いに逆方向としたものである。
(1) According to the first aspect of the present invention, the cooling water is circulated between the prime mover and the first radiator by the first cooling water pump, and the first radiator cools the cooling water by the first cooling fan. A second cooling system in which cooling water is circulated by a second cooling water pump between a cooling system, a generator, an electric motor, and a second radiator, and the second radiator cools the cooling water by a second cooling fan. And a cooling system for a hybrid electric vehicle having the above cooling system. And the first
First temperature detecting means for detecting the temperature of the cooling water of the cooling system, second temperature detecting means for detecting the temperature of the cooling water of the second cooling system, and the first cooling system and the second Cooling water flow switching means for circulating cooling water separately with the cooling system, and circulating the cooling water of the first cooling system between the first radiator, the second radiator and the prime mover in the interlocking mode; Is turned off, the first cooling system and the second cooling system perform cooling operations independently until the cooling water temperature of the second cooling system falls below the first predetermined value. When the cooling water temperature of the cooling system 2 drops below the first predetermined value, the second cooling water pump is stopped,
Control means for switching to the interlock mode flow path by the cooling water flow path switching means. (2) In the cooling device for a hybrid electric vehicle according to the second aspect, after the control means switches to the cooling water flow path in the interlocking mode, if the cooling water temperature of the first cooling system falls below the second predetermined value, The first cooling water pump, the first cooling fan, and the second cooling fan are stopped. (3) The cooling device for a hybrid electric vehicle according to claim 3, wherein after the cooling operation of the second cooling system is stopped to a first predetermined value, a temperature that does not cause heat damage to the second cooling system is set;
After the cooling operation of the first cooling system is stopped, a temperature at which the first cooling system does not cause heat damage is set to a second predetermined value. (4) In the cooling device for a hybrid electric vehicle according to claim 4, the rotation directions of the first cooling fan and the second cooling fan are opposite to each other.

【0010】[0010]

【発明の効果】【The invention's effect】

(1) 請求項1の発明によれば、キースイッチがオフ
されると、第2の冷却系の冷却水温が第1の所定値以下
に低下するまで第1の冷却系と第2の冷却系とでそれぞ
れ単独に冷却動作を行ない、第2の冷却系の冷却水温が
第1の所定値以下に低下したら第2の冷却系の第2の冷
却水ポンプを停止するとともに、冷却水流路を切り換え
て第1の冷却系の冷却水を第1の冷却系のラジエーター
と第2の冷却系のラジエーターと原動機との間で循環さ
せ、第2の冷却系のラジエーターと冷却ファンを第1の
冷却系の冷却水を冷却するために用いるようにしたの
で、キースイッチオフ後の原動機、発電機および電動機
の熱害を防止できるとともに、第1の冷却系の冷却能力
が上がり、短時間で第1の冷却系の冷却水温度を下げる
ことができ、冷却水ポンプと冷却ファンの運転音と振動
による音振性能を向上させることができる。また、キー
スイッチオフ後の冷却水ポンプと冷却ファンの運転時間
が短縮されるので、電池の電力消費が節約される。 (2) 請求項2の発明によれば、連動モードの冷却水
流路に切り換えた後、第1の冷却系の冷却水温が第2の
所定値以下に低下したら第1の冷却系の冷却水ポンプと
冷却ファン、および第2の冷却系の冷却ファンを停止す
るようにしたので、キースイッチオフ後の原動機の熱害
を防止できる上に、冷却水ポンプと冷却ファンの運転時
間の短縮により音振性能を向上でき、電池の電力消費を
低減できる。 (3) 請求項3の発明によれば、第1の所定値に第2
の冷却系の冷却動作を停止した後で第2の冷却系に熱害
を発生させない温度を設定し、第2の所定値に第1の冷
却系の冷却動作を停止した後で第1の冷却系に熱害を発
生させない温度を設定したので、キースイッチオフ後の
第1の冷却系と第2の冷却系における熱害を確実に防止
することができる。 (4) 請求項4の発明によれば、第1の冷却ファンと
第2の冷却ファンの回転方向を互いに逆方向としたの
で、第1の冷却ファンによる冷却風と第2の冷却ファン
による冷却風とがぶつかり合い、2つの冷却風の間に壁
が形成される。この結果、原動機の排気ポート付近で過
熱された冷却風が第2の冷却系に流れて温度の低い第2
の冷却系を過熱するようなことがなく、単独モードの冷
却動作時間を短縮でき、音振性能の向上とバッテリーの
消費電力の節減が図られる。
(1) According to the first aspect of the present invention, when the key switch is turned off, the first cooling system and the second cooling system are operated until the cooling water temperature of the second cooling system falls below the first predetermined value. When the cooling water temperature of the second cooling system falls below the first predetermined value, the second cooling water pump of the second cooling system is stopped and the cooling water flow path is switched. Circulating the cooling water of the first cooling system between the radiator of the first cooling system, the radiator of the second cooling system, and the prime mover, and connecting the radiator of the second cooling system and the cooling fan to the first cooling system. Is used to cool the cooling water of the engine, so that the heat damage to the prime mover, the generator and the motor after the key switch is turned off can be prevented, and the cooling capacity of the first cooling system increases, and the first cooling system can be cooled in a short time. The cooling water temperature of the cooling system can be lowered, It is possible to improve the sound and vibration performance due to the operation sound and vibration of the pump and the cooling fan. Further, since the operation time of the cooling water pump and the cooling fan after the key switch is turned off is shortened, the power consumption of the battery is saved. (2) According to the invention of claim 2, after switching to the cooling water flow path in the interlocking mode, when the cooling water temperature of the first cooling system falls below the second predetermined value, the cooling water pump of the first cooling system. The cooling fan and the cooling fan of the second cooling system are stopped to prevent heat damage to the prime mover after the key switch is turned off. In addition, the noise reduction is achieved by shortening the operation time of the cooling water pump and the cooling fan. Performance can be improved and battery power consumption can be reduced. (3) According to the invention of claim 3, the second predetermined value is set to the second predetermined value.
After the cooling operation of the cooling system is stopped, a temperature that does not cause heat damage to the second cooling system is set, and after the cooling operation of the first cooling system is stopped at the second predetermined value, the first cooling is performed. Since the temperature that does not cause heat damage to the system is set, it is possible to reliably prevent heat damage in the first cooling system and the second cooling system after the key switch is turned off. (4) According to the invention of claim 4, since the rotation directions of the first cooling fan and the second cooling fan are opposite to each other, the cooling air from the first cooling fan and the cooling air from the second cooling fan. The wind collides with and forms a wall between the two cooling winds. As a result, the cooling air superheated in the vicinity of the exhaust port of the prime mover flows into the second cooling system and the second cooling system having a low temperature
Thus, the cooling operation time in the single mode can be reduced without overheating the cooling system, and the sound vibration performance can be improved and the power consumption of the battery can be reduced.

【0011】[0011]

【発明の実施の形態】本発明をシリーズ・ハイブリッド
電気自動車に適用した一実施の形態を説明する。図1は
一実施の形態のシリーズ・ハイブリッド電気自動車の構
成を示す。コントローラー1はマイクロコンピュータと
その周辺部品から構成され、エンジン2、ジェネレータ
ー3、コンバーター4、インバーター6およびモーター
7を制御する。エンジン2はジェネレーター3を駆動す
るための原動機であり、ガソリンエンジンやディーゼル
エンジンなどの内燃機関を用いることができる。ジェネ
レーター3は3相交流発電機であり、3相交流電力を発
生する。コンバーター4は、ジェネレーター3により発
電された3相交流電力を直流電力に変換する。なお、ジ
ェネレーター3には直流発電機を用いることも可能であ
り、その場合はコンバーター4が不要となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a series hybrid electric vehicle will be described. FIG. 1 shows a configuration of a series hybrid electric vehicle according to an embodiment. The controller 1 includes a microcomputer and its peripheral components, and controls the engine 2, the generator 3, the converter 4, the inverter 6, and the motor 7. The engine 2 is a prime mover for driving the generator 3, and an internal combustion engine such as a gasoline engine or a diesel engine can be used. Generator 3 is a three-phase AC generator, and generates three-phase AC power. Converter 4 converts the three-phase AC power generated by generator 3 into DC power. Note that a DC generator can be used as the generator 3, and in that case, the converter 4 is not required.

【0012】バッテリー5は、エンジン2およびジェネ
レーター3による発電電力をコンバーター4を介して充
電するとともに、インバーター6を介してモーター7へ
走行用電力として放電する。バッテリー6には、リチウ
ム・イオン電池、ニッケル・水素電池、鉛・酸電池など
を用いることができる。インバーター6は、直流電力を
交流電力に変換して交流モーター7に印加する。モータ
ー7は駆動系8を介して車輪9を駆動する。このモータ
ー7には誘導電動機、同期電動機、直流電動機などを用
いることができる。なお、モーター7に直流電動機を用
いた場合にはインバーター6の代りにDC・DCコンバ
ーターを用いる。
The battery 5 charges the electric power generated by the engine 2 and the generator 3 through the converter 4 and discharges the electric power to the motor 7 through the inverter 6 as running power. As the battery 6, a lithium ion battery, a nickel hydrogen battery, a lead acid battery, or the like can be used. The inverter 6 converts DC power into AC power and applies it to the AC motor 7. The motor 7 drives the wheels 9 via a drive system 8. As the motor 7, an induction motor, a synchronous motor, a DC motor, or the like can be used. When a DC motor is used for the motor 7, a DC / DC converter is used instead of the inverter 6.

【0013】図2は一実施の形態の冷却装置の構成を示
す図である。エンジン冷却系10は、ポンプ11により
冷却水をエンジン2とラジエーター12との間で循環さ
せ、エンジン2で過熱された冷却水をラジエーター12
で冷却ファン13により冷却する。また、このエンジン
冷却系10のラジエーター12の冷却水流出側に流路切
換バルブ14が設けられ、冷却水をエンジン冷却系10
内だけで循環させるか、モーター冷却系15のラジエー
ター16を介して循環させるかを切り換える。なお、エ
ンジン冷却系10の配管内には水温センサー17が設け
られ、エンジン冷却水温Teを検出する。
FIG. 2 is a diagram showing a configuration of a cooling device according to one embodiment. The engine cooling system 10 circulates cooling water between the engine 2 and the radiator 12 by the pump 11, and transfers the cooling water superheated by the engine 2 to the radiator 12.
And is cooled by the cooling fan 13. A flow switching valve 14 is provided on the cooling water outflow side of the radiator 12 of the engine cooling system 10 so that the cooling water is supplied to the engine cooling system 10.
It is switched between circulating only inside and circulating through the radiator 16 of the motor cooling system 15. Note that a water temperature sensor 17 is provided in the pipe of the engine cooling system 10 to detect the engine cooling water temperature Te.

【0014】モーター冷却系15は、ポンプ18により
冷却水をコンバーター4、インバーター6、モーター
7、ジェネレーター3、ラジエーター16の間で循環さ
せ、コンバーター4、インバーター6、モーター7およ
びジェネレーター3で過熱された冷却水をラジエーター
16で冷却ファン19により冷却する。また、このモー
ター冷却系15にはラジエーター16の冷却水流入側に
流路切換バルブ20が、ラジエーター16の冷却水流出
側に流路切換バルブ21がそれぞれ設けられ、冷却水を
モーター冷却系15内だけで循環させるか、またはラジ
エーター16にエンジン冷却系10の冷却水を循環させ
るかを切り換える。なお、モーター冷却系15の配管内
には水温センサー22が設けられ、モーター冷却水温T
mを検出する。
The motor cooling system 15 circulates cooling water between the converter 4, the inverter 6, the motor 7, the generator 3 and the radiator 16 by the pump 18, and is superheated by the converter 4, the inverter 6, the motor 7 and the generator 3. The cooling water is cooled by a radiator 16 by a cooling fan 19. The motor cooling system 15 is provided with a flow path switching valve 20 on the cooling water inflow side of the radiator 16 and a flow path switching valve 21 on the cooling water outflow side of the radiator 16. It is switched whether to circulate the cooling water alone or to circulate the cooling water of the engine cooling system 10 to the radiator 16. A water temperature sensor 22 is provided in the pipe of the motor cooling system 15, and the motor cooling water temperature T
m is detected.

【0015】この実施の形態の冷却装置には、エンジン
冷却系10とモーター冷却系15がそれぞれ別個に冷却
動作を行なう単独モードと、モーター冷却系15の冷却
動作の終了後にモーター冷却系15のラジエーター16
と冷却ファン19をエンジン冷却系10の冷却動作のた
めに使用する連動モードとがある。単独モードでは、実
線矢印で示すように、流路切換バルブ14、20、21
によりエンジン冷却系10とモーター冷却系15とでそ
れぞれ別個の冷却水の循環流路が形成される。エンジン
冷却系10では、冷却水ポンプ11により冷却水がエン
ジン2とラジエーター12との間で循環され、エンジン
2で過熱された冷却水がラジエーター12で冷却ファン
13により冷却される。また、モーター冷却系15で
は、冷却水ポンプ18により冷却水がコンバーター4、
インバーター6、モーター7、ジェネレーター3、ラジ
エーター16の間で循環され、コンバーター4、インバ
ーター6、モーター7およびジェネレーター3で過熱さ
れた冷却水がラジエーター16で冷却ファン19により
冷却される。
The cooling device of this embodiment has a single mode in which the engine cooling system 10 and the motor cooling system 15 perform cooling operations separately, and a radiator for the motor cooling system 15 after the cooling operation of the motor cooling system 15 is completed. 16
And an interlocking mode in which the cooling fan 19 is used for cooling the engine cooling system 10. In the single mode, as indicated by solid arrows, the flow path switching valves 14, 20, 21
Thus, separate cooling water circulation channels are formed in the engine cooling system 10 and the motor cooling system 15. In the engine cooling system 10, the cooling water is circulated between the engine 2 and the radiator 12 by the cooling water pump 11, and the cooling water superheated by the engine 2 is cooled by the cooling fan 13 by the radiator 12. Further, in the motor cooling system 15, cooling water is converted by the cooling water pump 18 into the converter 4,
Cooling water circulated between the inverter 6, the motor 7, the generator 3, and the radiator 16 and superheated by the converter 4, the inverter 6, the motor 7, and the generator 3 is cooled by the cooling fan 19 at the radiator 16.

【0016】連動モードでは、破線矢印で示すように、
バルブ14、20、21によりこの冷却水流路が切り換
えられ、エンジン冷却系10の冷却水がエンジン2、ポ
ンプ11、ラジエーター12、バルブ14、バルブ2
0、ラジエーター16、バルブ21、エンジン2の流路
で循環する流路が形成され、モーター冷却系15のラジ
エーター16と冷却ファン19がエンジン冷却系10の
冷却水を冷却するために用いられる。また、モーター冷
却系15の冷却水ポンプ18は停止され、コンバーター
4、インバーター6、モーター7、ジェネレーター3を
通る流路の冷却水の流れが止められる。そして、ポンプ
11によりエンジン冷却系10の冷却水が、ラジエータ
ー12、ラジエーター16、エンジン2の流路で循環さ
れ、エンジン2で過熱された冷却水が2個のラジエータ
ー12と16でそれぞれファン13と19により冷却さ
れる。
In the interlocking mode, as indicated by the dashed arrow,
The cooling water flow path is switched by valves 14, 20, and 21, and the cooling water of engine cooling system 10 is supplied to engine 2, pump 11, radiator 12, valve 14, valve 2
0, a radiator 16, a valve 21, and a flow path circulating in the flow path of the engine 2 are formed. The radiator 16 of the motor cooling system 15 and the cooling fan 19 are used for cooling the cooling water of the engine cooling system 10. Further, the cooling water pump 18 of the motor cooling system 15 is stopped, and the flow of the cooling water in the flow path passing through the converter 4, the inverter 6, the motor 7, and the generator 3 is stopped. The cooling water of the engine cooling system 10 is circulated by the pump 11 in the flow paths of the radiator 12, the radiator 16, and the engine 2, and the cooling water superheated by the engine 2 is supplied to the fan 13 by the two radiators 12 and 16, respectively. Cooled by 19.

【0017】図3は一実施の形態の電気回路図である。
なお、図1および図2においてすでに説明した機器に対
しては同一の符号を付して説明を省略する。コントロー
ラー1には、エンジン2の駆動制御回路2a、ジェネレ
ーター3の駆動回路3a、コンバーター4、インバータ
ー6、キースイッチ23、モーター冷却水温センサ1
7、エンジン冷却水温センサ22が接続される。なお、
キースイッチ23は従来の内燃機関を搭載した自動車の
イグニッションキースイッチに相当するもので、キース
イッチ23をON位置に設定すると不図示のメインリレ
ーとインバーターリレーが投入されて車両が走行可能な
状態になる。
FIG. 3 is an electric circuit diagram of one embodiment.
1 and 2 are denoted by the same reference numerals, and description thereof is omitted. The controller 1 includes a drive control circuit 2a for the engine 2, a drive circuit 3a for the generator 3, a converter 4, an inverter 6, a key switch 23, a motor coolant temperature sensor 1
7. The engine coolant temperature sensor 22 is connected. In addition,
The key switch 23 is equivalent to an ignition key switch of a conventional vehicle equipped with an internal combustion engine. When the key switch 23 is set to the ON position, a main relay and an inverter relay (not shown) are turned on to enable the vehicle to travel. Become.

【0018】コントローラー1にはまた、冷却水ポンプ
11を駆動するためのモーター11aとドライバー11
b、冷却水ポンプ18を駆動するためのモーター18a
とドライバー18b、冷却ファン13を駆動するための
モーター13aとドライバー13b、冷却ファン19を
駆動するためのモーター19aとドライバー19b、流
路切換バルブ14を駆動するためのソレノイド14aと
ドライバー14b、流路切換バルブ20を駆動するため
のソレノイド20aとドライバー20b、流路切換バル
ブ21を駆動するためのソレノイド21aとドライバー
21bが接続される。
The controller 1 also includes a motor 11a for driving the cooling water pump 11 and a driver 11
b, a motor 18a for driving the cooling water pump 18
And a driver 18b, a motor 13a and a driver 13b for driving the cooling fan 13, a motor 19a and a driver 19b for driving the cooling fan 19, a solenoid 14a and a driver 14b for driving the flow path switching valve 14, and a flow path. A solenoid 20a and a driver 20b for driving the switching valve 20 and a solenoid 21a and a driver 21b for driving the flow path switching valve 21 are connected.

【0019】図4は一実施の形態の冷却動作による冷却
水温度の変化を示す図である。キースイッチ23がオン
され、車両が運転されている時には、上述したエンジン
冷却系10とモーター冷却系15においてそれぞれ上述
した単独モードで冷却動作が行なわれる。時刻t=0で
キースイッチ23がオフされると、エンジン冷却系10
とモーター冷却系15では引き続き単独モードで冷却動
作が行なわれ、エンジン冷却水温とモーター冷却水温が
それぞれ実線で示す特性TeとTmに沿って低下する。
FIG. 4 is a diagram showing a change in cooling water temperature due to a cooling operation according to one embodiment. When the key switch 23 is turned on and the vehicle is operating, the cooling operation is performed in the above-described single mode in the engine cooling system 10 and the motor cooling system 15 respectively. When the key switch 23 is turned off at time t = 0, the engine cooling system 10
And the motor cooling system 15 continue to perform the cooling operation in the single mode, and the engine cooling water temperature and the motor cooling water temperature decrease along the characteristics Te and Tm indicated by solid lines, respectively.

【0020】キースイッチ23のオフ後、直ちにエンジ
ン冷却系10の冷却動作を停止すると、特性Te”に沿
ってエンジン冷却水温度がいったん急激に上昇し、エン
ジン2などに熱害を発生させる。また、このような現象
はモーター冷却系15においても同様である。そこで、
この実施の形態では、キースイッチ23のオフ後に直ち
に冷却水ポンプ11、18、冷却ファン13、19を停
止せず、単独モードで冷却動作を続ける。
When the cooling operation of the engine cooling system 10 is stopped immediately after the key switch 23 is turned off, the temperature of the engine cooling water rapidly rises once along the characteristic Te ", causing heat damage to the engine 2 and the like. Such a phenomenon is the same in the motor cooling system 15. Therefore,
In this embodiment, the cooling operation is continued in the single mode without stopping the cooling water pumps 11, 18 and the cooling fans 13, 19 immediately after the key switch 23 is turned off.

【0021】モーター冷却水温Tmが所定値Tm1まで
低下したt1時間後において、モーター冷却水ポンプ1
8が停止されてモーター冷却系15の冷却動作が終了す
る。ここで、所定値Tm1は、モーター冷却系15の冷
却動作を停止してもコンバーター4、インバーター6、
モーター7およびジェネレーター3で熱害を発生しない
温度である。また、この時同時に流路切換バルブ14、
20、21が切り換えられて上述した連動モードの流路
が設定される。これにより、エンジン冷却系10の冷却
水はモーター冷却用ラジエーター16を介して循環さ
れ、エンジン冷却用ラジエーター12でファン13によ
り冷却された後、さらにモーター冷却用ラジエーター1
6でファン19により冷却される。その結果、エンジン
冷却水の冷却能力が上がり、エンジン冷却水温Teが破
線で示す特性Te’に沿って急激に低下する。なお、冷
却動作が停止されたモーター冷却系15では、時刻t1
以後、モーター冷却水温Tmが自然放熱によって徐々に
低下する。
At time t1 after the motor cooling water temperature Tm has decreased to the predetermined value Tm1, the motor cooling water pump 1
8 is stopped, and the cooling operation of the motor cooling system 15 ends. Here, the predetermined value Tm1 is the value of the converter 4, inverter 6,
This is a temperature at which heat damage does not occur in the motor 7 and the generator 3. At this time, the flow path switching valve 14,
20 and 21 are switched to set the flow path in the interlocking mode described above. Thereby, the cooling water of the engine cooling system 10 is circulated through the motor cooling radiator 16 and is cooled by the fan 13 by the engine cooling radiator 12 and then further cooled by the motor cooling radiator 1.
At 6, it is cooled by the fan 19. As a result, the cooling capacity of the engine cooling water increases, and the engine cooling water temperature Te sharply decreases along the characteristic Te ′ indicated by the broken line. In the motor cooling system 15 in which the cooling operation has been stopped, at the time t1
Thereafter, the motor cooling water temperature Tm gradually decreases due to natural heat radiation.

【0022】エンジン冷却水温Teが所定値Te1まで
低下したt3時間後において、エンジン冷却水ポンプ1
1、エンジン冷却ファン13およびモーター冷却ファン
19を停止してエンジン冷却系10の冷却動作を停止す
る。ここで、所定値Te1は、エンジン冷却系10の冷
却動作を停止してもエンジン2で熱害を発生しない温度
である。
At time t3 after the engine cooling water temperature Te has decreased to the predetermined value Te1, the engine cooling water pump 1
1. The cooling operation of the engine cooling system 10 is stopped by stopping the engine cooling fan 13 and the motor cooling fan 19. Here, the predetermined value Te1 is a temperature at which heat damage does not occur in the engine 2 even when the cooling operation of the engine cooling system 10 is stopped.

【0023】キースイッチオフ後、単独モードだけで冷
却動作を行なうと、エンジン冷却水温Teは実線で示す
特性に沿って低下し、t2時間後に所定温度Te1に達
する。上述したように、エンジン冷却系10における単
独モードでの冷却能力は連動モードでの冷却能力よりも
低いので、単独モードのみによる冷却動作時間t2は単
独モードから連動モードに切り換えて冷却を行なう場合
の冷却動作時間3より長い。つまり、単独モードから連
動モードに切り換えて冷却動作を行なうこの実施の形態
では、エンジン冷却系10の冷却動作時間をt2時間か
らt3時間へ短縮することができる。
If the cooling operation is performed only in the single mode after the key switch is turned off, the engine cooling water temperature Te decreases along the characteristic shown by the solid line, and reaches the predetermined temperature Te1 after time t2. As described above, since the cooling capacity in the single mode of the engine cooling system 10 is lower than the cooling capacity in the interlock mode, the cooling operation time t2 only in the single mode is the time when cooling is performed by switching from the single mode to the interlock mode. Cooling operation time longer than 3. That is, in this embodiment in which the cooling operation is performed by switching from the single mode to the interlocking mode, the cooling operation time of the engine cooling system 10 can be reduced from the time t2 to the time t3.

【0024】キースイッチオフ後に単独モードのみによ
り冷却動作を行なう場合には、t1時間後にモーター冷
却水ポンプ18とモーター冷却ファン19が停止され、
t2時間後にエンジン冷却水ポンプ11とエンジン冷却
ファン13が停止される。これに対しこの実施の形態で
は、t1時間後にモーター冷却水ポンプ18が停止さ
れ、t3時間後にモーター冷却ファン19、エンジン冷
却水ポンプ11およびエンジン冷却ファン13が停止さ
れる。したがって、キースイッチオフ後に単独モードの
みにより冷却動作を行なう場合と、この実施の形態のよ
うにキースイッチオフ後に単独モードから連動モードに
切り換えて冷却動作を行なう場合とを比較すると、この
実施の形態ではモーター冷却ファン19の運転時間が
(t3−t1)時間だけ延長される代りに、エンジン冷
却水ポンプ11とエンジン冷却ファン13の運転時間が
(t2−t3)時間だけ短縮される。
When the cooling operation is performed only in the single mode after the key switch is turned off, the motor cooling water pump 18 and the motor cooling fan 19 are stopped after time t1.
After a time t2, the engine cooling water pump 11 and the engine cooling fan 13 are stopped. On the other hand, in this embodiment, the motor cooling water pump 18 is stopped after the time t1, and the motor cooling fan 19, the engine cooling water pump 11, and the engine cooling fan 13 are stopped after the time t3. Therefore, a comparison between the case where the cooling operation is performed only in the single mode after the key switch is turned off and the case where the cooling operation is performed by switching from the single mode to the interlocking mode after the key switch is turned off as in the present embodiment is compared with the embodiment. In this case, instead of extending the operation time of the motor cooling fan 19 by (t3−t1) time, the operation time of the engine cooling water pump 11 and the engine cooling fan 13 is reduced by (t2−t3) time.

【0025】モーター冷却ファン19の運転延長時間
(t3−t1)分のバッテリー5の電力消費量は、エン
ジン冷却水ポンプ11とエンジン冷却ファン13の運転
短縮時間(t2−t3)分のバッテリー5の電力消費量
よりも小さいから、差し引きこの実施の形態では単独モ
ードのみによる冷却動作よりもバッテリー5の電力消費
が低減されることになる。また、この実施の形態では、
単独モードのみによる冷却動作よりも(t2−t3)時
間だけ早くエンジン冷却水ポンプ11とエンジン冷却フ
ァン13が停止されるので、冷却水ポンプおよびファン
運転時の騒音と振動がなくなり、音振性能が向上する。
The power consumption of the battery 5 for the extended operation time (t3-t1) of the motor cooling fan 19 is the same as that of the battery 5 for the reduced operation time (t2-t3) of the engine cooling water pump 11 and the engine cooling fan 13. Since the power consumption is smaller than the power consumption, in this embodiment, the power consumption of the battery 5 is reduced as compared with the cooling operation only in the single mode. Also, in this embodiment,
Since the engine cooling water pump 11 and the engine cooling fan 13 are stopped earlier than the cooling operation only in the single mode by (t2−t3) time, noise and vibration during operation of the cooling water pump and the fan are eliminated, and the sound vibration performance is reduced. improves.

【0026】図5はキースイッチオフ後の冷却動作を示
すフローチャートである。図5により、一実施の形態の
動作を説明する。キースイッチ23がオフされると、コ
ントローラー1はこのフローチャートに示す冷却動作を
実行する。ステップ1において、タイマーによるキース
イッチオフ後の経過時間の測定を開始する。続くステッ
プ2で、水温センサー17と22によりエンジン冷却水
温Teとモーター冷却水温Tmを検出する。ステップ3
では、検出したエンジン冷却水温Teに基づいてキース
イッチオフ後の所要動作時間t4を予測する。
FIG. 5 is a flowchart showing the cooling operation after the key switch is turned off. The operation of the embodiment will be described with reference to FIG. When the key switch 23 is turned off, the controller 1 executes the cooling operation shown in this flowchart. In step 1, measurement of the elapsed time after the key switch is turned off by the timer is started. In the following step 2, the engine cooling water temperature Te and the motor cooling water temperature Tm are detected by the water temperature sensors 17 and 22. Step 3
Then, the required operation time t4 after the key switch is turned off is predicted based on the detected engine coolant temperature Te.

【0027】ステップ4で、水温センサー22によりモ
ーター冷却水温Tmを検出し、モーター冷却水温Tmが
上記所定値Tm1以下に低下したかどうかを確認する。
モーター冷却水温Tmが所定値Tm1以下に低下したら
ステップ5へ進み、そうでなければふたたびモーター冷
却水温Tmを検出して所定値Tm1と比較する。モータ
ー冷却水温Tmが所定値Tm1以下に低下したら、ステ
ップ5でモーター冷却水ポンプ18を停止し、モーター
冷却系15の冷却動作を停止する。さらにステップ6
で、流路切換バルブ14、20、21により冷却水流路
を連動モードの流路に切り換える。ステップ7で、エン
ジン冷却水温Teが上記所定値Te1以下に低下したか
どうかを確認し、所定値Te1以下に低下したらステッ
プ8へ進み、モーター冷却ファン19、エンジン冷却水
ポンプ11およびエンジン冷却ファン13を停止し、エ
ンジン冷却系10の冷却動作を停止する。
In step 4, the motor cooling water temperature Tm is detected by the water temperature sensor 22, and it is confirmed whether the motor cooling water temperature Tm has fallen below the predetermined value Tm1.
If the motor cooling water temperature Tm falls below the predetermined value Tm1, the process proceeds to step 5, otherwise, the motor cooling water temperature Tm is detected again and compared with the predetermined value Tm1. When the motor cooling water temperature Tm falls below the predetermined value Tm1, the motor cooling water pump 18 is stopped in step 5, and the cooling operation of the motor cooling system 15 is stopped. Step 6
Then, the cooling water flow path is switched to the flow path in the interlock mode by the flow path switching valves 14, 20, 21. In step 7, it is checked whether the engine cooling water temperature Te has dropped below the predetermined value Te1, and if it has fallen below the predetermined value Te1, the routine proceeds to step 8, where the motor cooling fan 19, the engine cooling water pump 11 and the engine cooling fan 13 Is stopped, and the cooling operation of the engine cooling system 10 is stopped.

【0028】ステップ7でエンジン冷却水温Teが所定
値Te1以下に低下していない場合はステップ9へ進
み、タイマーによる計測時間が上記予測時間を超えたか
どうかを確認する。キースイッチをオフしてからの経過
時間が所要冷却動作時間の予測時間を超えた場合にはス
テップ10へ進み、そうでなければステップ7へ戻る。
キースイッチオフ後の経過時間が予測時間を超えた場合
は冷却装置に異常があると判断し、ステップ10で異常
発生を不揮発性メモリ(不図示)に記憶し、ステップ7
へ戻る。次にキースイッチ23がオンされた時に、メモ
リに異常発生の履歴が記憶されている場合には、車両の
走行を禁止して警告を行なう。
If it is determined in step 7 that the engine cooling water temperature Te has not fallen below the predetermined value Te1, the flow advances to step 9 to check whether or not the time measured by the timer has exceeded the predicted time. If the elapsed time from turning off the key switch exceeds the predicted cooling operation time, the process proceeds to step 10; otherwise, the process returns to step 7.
If the elapsed time after the key switch is turned off exceeds the predicted time, it is determined that there is an abnormality in the cooling device, and the occurrence of the abnormality is stored in a non-volatile memory (not shown) in step 10 and step 7
Return to Next, when the key switch 23 is turned on and the history of the occurrence of the abnormality is stored in the memory, the traveling of the vehicle is prohibited and a warning is issued.

【0029】このように、キースイッチ23がオフされ
ると、モーター冷却系15の冷却水温Tmが所定値Tm
1以下に低下するまでエンジン冷却系10とモーター冷
却系15とでそれぞれ単独に冷却動作を行ない、モータ
ー冷却系15の冷却水温Tmが所定値Tm1以下に低下
したらモーター冷却系15の冷却水ポンプ18を停止す
るとともに、冷却水流路を切り換えてエンジン冷却系1
0の冷却水をエンジン冷却用ラジエーター12とモータ
ー冷却用ラジエーター16とエンジン2との間で循環さ
せ、モーター冷却系15のラジエーター16と冷却ファ
ン19をエンジン冷却系10の冷却水を冷却するために
用いるようにしたので、キースイッチオフ後のエンジン
2、ジェネレーター3、コンバーター4、インバーター
6、モーター7の熱害を防止できるとともに、エンジン
冷却系15の冷却能力が上がり、短時間でエンジン冷却
系15の冷却水温度を下げることができ、冷却水ポンプ
と冷却ファンの運転音と振動による音振性能を向上させ
ることができる。また、キースイッチオフ後の冷却水ポ
ンプと冷却ファンの運転時間が短縮されるので、バッテ
リー5の電力消費が節約される。また、連動モードの冷
却水流路に切り換えた後、エンジン冷却系10の冷却水
温Teが所定値Te1以下に低下したらエンジン冷却系
10の冷却水ポンプ11と冷却ファン13、およびモー
ター冷却系15の冷却ファン19を停止するようにした
ので、キースイッチオフ後のエンジン2の熱害を防止で
きる上に、冷却水ポンプと冷却ファンの運転時間の短縮
により音振性能を向上でき、バッテリーの電力消費を低
減できる。さらに、モーター冷却水温所定値Tm1にモ
ーター冷却系15の冷却動作を停止した後でモーター冷
却系15の機器に熱害を発生させない温度を設定し、エ
ンジン冷却水温所定値Te1にエンジン冷却系10の冷
却動作を停止した後でエンジン2に熱害を発生させない
温度を設定したので、キースイッチオフ後のエンジン冷
却系10とモーター冷却系15における熱害を確実に防
止することができる。
As described above, when the key switch 23 is turned off, the cooling water temperature Tm of the motor cooling system 15 becomes the predetermined value Tm.
The cooling operation is independently performed by the engine cooling system 10 and the motor cooling system 15 until the cooling water temperature Tm drops below a predetermined value Tm1. Of the engine cooling system 1
0 is circulated between the engine cooling radiator 12, the motor cooling radiator 16 and the engine 2, and the radiator 16 of the motor cooling system 15 and the cooling fan 19 are cooled to cool the cooling water of the engine cooling system 10. Since it is used, it is possible to prevent heat damage to the engine 2, the generator 3, the converter 4, the inverter 6, and the motor 7 after the key switch is turned off, and the cooling capacity of the engine cooling system 15 is increased. The cooling water temperature of the cooling water pump and the cooling fan can be improved. In addition, since the operation time of the cooling water pump and the cooling fan after the key switch is turned off is shortened, the power consumption of the battery 5 is saved. After switching to the cooling water flow path in the interlocking mode, if the cooling water temperature Te of the engine cooling system 10 falls below the predetermined value Te1, the cooling water pump 11 and the cooling fan 13 of the engine cooling system 10 and the cooling of the motor cooling system 15 are performed. Since the fan 19 is stopped, heat damage to the engine 2 after the key switch is turned off can be prevented, and the sound vibration performance can be improved by shortening the operation time of the cooling water pump and the cooling fan, and the power consumption of the battery can be reduced. Can be reduced. Further, after the cooling operation of the motor cooling system 15 is stopped at the motor cooling water temperature predetermined value Tm1, a temperature that does not cause heat damage to the equipment of the motor cooling system 15 is set, and the engine cooling water temperature of the engine cooling system 10 is set at the predetermined engine cooling water temperature Te1. Since the temperature that does not cause heat damage to the engine 2 after the cooling operation is stopped, heat damage to the engine cooling system 10 and the motor cooling system 15 after the key switch is turned off can be reliably prevented.

【0030】−発明の実施の形態の変形例− 上述した実施の形態では、エンジン冷却ファン13とモ
ーター冷却ファン19を同一方向に回転させる例を示し
たが、2つの冷却ファン13と19の回転方向を互いに
逆方向としてもよい。エンジン冷却ファン13とモータ
ー冷却ファン19の回転方向を逆方向とすることによっ
て、エンジン冷却ファン13による冷却風とモーター冷
却ファン19による冷却風とがぶつかり合い、2つの冷
却風の間に壁25が形成される。この結果、エンジン2
の排気ポート(不図示)付近で過熱された冷却風がモー
ター冷却系15に流れて温度の低いモーター冷却系15
の機器を過熱するようなことがなく、単独モードの冷却
動作時間t1を短縮でき、音振性能の向上とバッテリー
の消費電力の節減が図られる。
Modification of Embodiment of the Invention In the above-described embodiment, an example in which the engine cooling fan 13 and the motor cooling fan 19 are rotated in the same direction has been described, but the rotation of the two cooling fans 13 and 19 is described. The directions may be opposite to each other. By setting the rotation directions of the engine cooling fan 13 and the motor cooling fan 19 in opposite directions, the cooling air from the engine cooling fan 13 and the cooling air from the motor cooling fan 19 collide, and a wall 25 is formed between the two cooling air. It is formed. As a result, engine 2
The cooling air superheated in the vicinity of the exhaust port (not shown) of the motor cooling system 15
Thus, the cooling operation time t1 in the single mode can be shortened without overheating the device, the sound vibration performance can be improved, and the power consumption of the battery can be reduced.

【0031】以上の一実施の形態の構成において、エン
ジン2が原動機を、エンジン冷却用ラジエーター12が
第1の冷却系のラジエーターを、エンジン冷却水ポンプ
11が第1の冷却水ポンプを、エンジン冷却系10が第
1の冷却系を、ジェネレーター3が発電機を、モーター
7が電動機を、モーター冷却用ラジエーター16が第2
の冷却系のラジエーターを、モーター冷却水ポンプ18
が第2の冷却水ポンプを、モーター冷却ファン19が第
2の冷却ファンを、エンジン冷却水温センサー17が第
1の温度検出手段を、モーター冷却水温センサー22が
第2の温度検出手段を、冷却水流路切換バルブ14、2
0および21が冷却水流路切換手段を、コントローラー
1が制御手段をそれぞれ構成する。
In the configuration of the above embodiment, the engine 2 serves as the prime mover, the engine cooling radiator 12 serves as the radiator of the first cooling system, the engine cooling water pump 11 serves as the first cooling water pump, and the engine cooling system. The system 10 is a first cooling system, the generator 3 is a generator, the motor 7 is an electric motor, and the motor cooling radiator 16 is a second cooling system.
Cooling system radiator, motor cooling water pump 18
Is the second cooling water pump, the motor cooling fan 19 is the second cooling fan, the engine cooling water temperature sensor 17 is the first temperature detecting means, and the motor cooling water temperature sensor 22 is the second cooling temperature detecting means. Water flow switching valve 14, 2
0 and 21 constitute the cooling water passage switching means, and the controller 1 constitutes the control means.

【0032】なお、上述した各実施の形態ではシリーズ
・ハイブリッド電気自動車を例に上げて説明したが、本
発明はシリーズ・ハイブリッド電気自動車に限定され
ず、パラレル・ハイブリッド電気自動車にも応用するこ
とができる。
In each of the embodiments described above, a series hybrid electric vehicle has been described as an example. However, the present invention is not limited to a series hybrid electric vehicle, and may be applied to a parallel hybrid electric vehicle. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 一実施の形態のシリーズ・ハイブリッド電気
自動車の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a series hybrid electric vehicle according to an embodiment.

【図2】 一実施の形態のハイブリッド電気自動車の冷
却装置の構成を示す図である。
FIG. 2 is a diagram showing a configuration of a cooling device for a hybrid electric vehicle according to one embodiment.

【図3】 一実施の形態の電気回路図である。FIG. 3 is an electric circuit diagram of one embodiment.

【図4】 一実施の形態の冷却動作による冷却水温度の
変化を示す図である。
FIG. 4 is a diagram illustrating a change in cooling water temperature due to a cooling operation according to one embodiment.

【図5】 一実施の形態のキースイッチオフ後の冷却動
作を示すフローチャートである。
FIG. 5 is a flowchart illustrating a cooling operation after a key switch is turned off according to the embodiment;

【図6】 一実施の形態の変形例の冷却装置の構成を示
す図である。
FIG. 6 is a diagram illustrating a configuration of a cooling device according to a modification of the embodiment.

【図7】 従来のハイブリッド電気自動車の冷却装置の
構成を示す図である。
FIG. 7 is a diagram showing a configuration of a conventional cooling device for a hybrid electric vehicle.

【符号の説明】[Explanation of symbols]

1 コントローラー 2 エンジン 2a エンジン駆動制御回路 3 ジェネレーター 3a ジェネレーター駆動回路 4 コンバーター 5 バッテリー 6 インバーター 7 モーター 8 駆動系 9 車輪 10 エンジン冷却系 11 エンジン冷却水ポンプ 11a モーター 11b ドライバー 12 エンジン冷却用ラジエーター 13 エンジン冷却ファン 13a モーター 13b ドライバー 14,20,21 冷却水流路切換バルブ 14a,20a,21a ソレノイド 14b,20b,21b ドライバー 15 モーター冷却系 16 モーター冷却用ラジエーター 17 エンジン冷却水温センサー 18 モーター冷却水ポンプ 18a モーター 18b ドライバー 19 モーター冷却ファン 19a モーター 19b ドライバー 22 モーター冷却水温センサー 23 キースイッチ 25 壁 Reference Signs List 1 controller 2 engine 2a engine drive control circuit 3 generator 3a generator drive circuit 4 converter 5 battery 6 inverter 7 motor 8 drive system 9 wheels 10 engine cooling system 11 engine cooling water pump 11a motor 11b driver 12 engine cooling radiator 13 engine cooling fan 13a Motor 13b Driver 14, 20, 21 Cooling water flow path switching valve 14a, 20a, 21a Solenoid 14b, 20b, 21b Driver 15 Motor cooling system 16 Motor cooling radiator 17 Engine cooling water temperature sensor 18 Motor cooling water pump 18a Motor 18b driver 19 Motor cooling fan 19a Motor 19b Driver 22 Motor cooling water temperature sensor 23 Key switch 25 wall

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平野 弘之 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 稲田 英二 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 麻生 剛 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 金子 雄太郎 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hiroyuki Hirano 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Prefecture Nissan Motor Co., Ltd. (72) Inventor Eiji Inada 2 Takaracho, Kanagawa-ku, Yokohama City, Kanagawa Nissan Motor Co. 72) Inventor Tsuyoshi Aso, 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Prefecture, Nissan Motor Co., Ltd. (72) Inventor Yutaro Kaneko, 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Prefecture, Nissan Motor Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 原動機と第1のラジエーターとの間で第
1の冷却水ポンプにより冷却水を循環させ、前記第1の
ラジエーターで第1の冷却ファンにより冷却水を冷却す
る第1の冷却系と、 発電機と電動機と第2のラジエーターとの間で第2の冷
却水ポンプにより冷却水を循環させ、前記第2のラジエ
ーターで第2の冷却ファンにより冷却水を冷却する第2
の冷却系とを備えたハイブリッド電気自動車の冷却装置
において、 前記第1の冷却系の冷却水温度を検出する第1の温度検
出手段と、 前記第2の冷却系の冷却水温度を検出する第2の温度検
出手段と、 単独モードでは前記第1の冷却系と前記第2の冷却系と
でそれぞれ別個に冷却水を循環させ、連動モードでは前
記第1の冷却系の冷却水を前記第1のラジエーターと前
記第2のラジエーターと前記原動機との間で循環させる
冷却水流路切換手段と、 前記自動車のキースイッチがオフされると、前記第2の
冷却系の冷却水温が第1の所定値以下に低下するまで前
記第1の冷却系と前記第2の冷却系とでそれぞれ単独に
冷却動作を行ない、前記第2の冷却系の冷却水温が前記
第1の所定値以下に低下したら前記第2の冷却水ポンプ
を停止するとともに、前記冷却水流路切換手段により前
記連動モードの流路に切り換える制御手段とを備えるこ
とを特徴とするハイブリッド電気自動車の冷却装置。
1. A first cooling system in which cooling water is circulated between a prime mover and a first radiator by a first cooling water pump, and the first radiator cools cooling water by a first cooling fan. A second cooling water pump circulates cooling water between the generator, the electric motor, and the second radiator, and cools the cooling water with a second cooling fan by the second radiator.
A cooling system for a hybrid electric vehicle, comprising: a first temperature detecting means for detecting a cooling water temperature of the first cooling system; and a second temperature detecting means for detecting a cooling water temperature of the second cooling system. Temperature circulating means, and circulating cooling water separately in the first cooling system and the second cooling system in the single mode, and circulating the cooling water in the first cooling system in the interlocking mode. Cooling water flow path switching means for circulating between the radiator, the second radiator, and the prime mover; and, when a key switch of the vehicle is turned off, a cooling water temperature of the second cooling system becomes a first predetermined value. The first cooling system and the second cooling system perform the cooling operation independently until the cooling water temperature drops below the first cooling system, and the cooling water temperature of the second cooling system falls below the first predetermined value. When the cooling water pump 2 is stopped A cooling device for a hybrid electric vehicle, further comprising control means for switching to the interlocking mode flow path by the cooling water flow path switching means.
【請求項2】 請求項1に記載のハイブリッド電気自動
車の冷却装置において、 前記制御手段は、前記連動モードの流路に切り換えた
後、第1の冷却系の冷却水温が第2の所定値以下に低下
したら前記第1の冷却水ポンプ、前記第1の冷却ファン
および前記第2の冷却ファンを停止することを特徴とす
るハイブリッド電気自動車の冷却装置。
2. The cooling device for a hybrid electric vehicle according to claim 1, wherein the control unit switches a cooling water temperature of the first cooling system to a second predetermined value or less after switching to the flow path in the interlocking mode. The first cooling water pump, the first cooling fan, and the second cooling fan are stopped when the temperature of the cooling water is lowered to a lower value.
【請求項3】 請求項1または請求項2に記載のハイブ
リッド電気自動車の冷却装置において、 前記第1の所定値に前記第2の冷却系の冷却動作を停止
した後で前記第2の冷却系に熱害を発生させない温度を
設定し、前記第2の所定値に前記第1の冷却系の冷却動
作を停止した後で前記第1の冷却系に熱害を発生させな
い温度を設定したことを特徴とするハイブリッド電気自
動車の冷却装置。
3. The cooling device for a hybrid electric vehicle according to claim 1, wherein the second cooling system is stopped after the cooling operation of the second cooling system is stopped at the first predetermined value. A temperature that does not cause heat damage to the first cooling system after the cooling operation of the first cooling system is stopped at the second predetermined value. A cooling device for a hybrid electric vehicle.
【請求項4】 請求項1〜3のいずれかの項に記載のハ
イブリッド電気自動車の冷却装置において、 前記第1の冷却ファンと前記第2の冷却ファンの回転方
向を互いに逆方向としたことを特徴とするハイブリッド
電気自動車の冷却装置。
4. The cooling device for a hybrid electric vehicle according to claim 1, wherein rotation directions of the first cooling fan and the second cooling fan are opposite to each other. A cooling device for a hybrid electric vehicle.
JP04047297A 1997-02-25 1997-02-25 Hybrid electric vehicle cooling system Expired - Fee Related JP3292080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04047297A JP3292080B2 (en) 1997-02-25 1997-02-25 Hybrid electric vehicle cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04047297A JP3292080B2 (en) 1997-02-25 1997-02-25 Hybrid electric vehicle cooling system

Publications (2)

Publication Number Publication Date
JPH10238345A true JPH10238345A (en) 1998-09-08
JP3292080B2 JP3292080B2 (en) 2002-06-17

Family

ID=12581579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04047297A Expired - Fee Related JP3292080B2 (en) 1997-02-25 1997-02-25 Hybrid electric vehicle cooling system

Country Status (1)

Country Link
JP (1) JP3292080B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017994A1 (en) * 1998-09-18 2000-03-30 Hitachi, Ltd. Motor driving device for automobiles
US6357541B1 (en) * 1999-06-07 2002-03-19 Mitsubishi Heavy Industries, Ltd. Circulation apparatus for coolant in vehicle
JP2002158321A (en) * 2000-11-17 2002-05-31 Toyota Motor Corp Cooling device for on-vehicle electrical component
GB2370106A (en) * 2000-11-02 2002-06-19 Ford Motor Co Electric coolant pump control for a hybrid electric vehicle
JP2002276364A (en) * 2001-03-14 2002-09-25 Denso Corp Cooling system for hybrid electric vehicle
US6593717B2 (en) 2000-07-28 2003-07-15 Denso Corporation Apparatus and method for controlling cooling fan for vehicle
JP2004112855A (en) * 2002-09-13 2004-04-08 Nissan Motor Co Ltd Controller for vehicle
KR100444064B1 (en) * 2002-05-20 2004-08-12 현대자동차주식회사 Cooling system of electric vehicles
JP2004346831A (en) * 2003-05-22 2004-12-09 Denso Corp Cooling system for vehicle
KR100488687B1 (en) * 2001-09-26 2005-05-11 현대자동차주식회사 Cooling system of a series hybrid electric motor vehicle
JP2006125375A (en) * 2004-11-01 2006-05-18 Toyota Motor Corp Cooling device for vehicle
JP2006168600A (en) * 2004-12-17 2006-06-29 Nissan Motor Co Ltd Hybrid vehicle
US7082905B2 (en) 2003-02-24 2006-08-01 Honda Motor Co., Ltd. Cooling apparatus for hybrid vehicle
WO2007049516A1 (en) 2005-10-25 2007-05-03 Toyota Jidosha Kabushiki Kaisha Cooling system. method of controlling the cooling system, and automobile
JP2007245946A (en) * 2006-03-16 2007-09-27 Toyota Motor Corp Hybrid vehicle
JP2008169613A (en) * 2007-01-11 2008-07-24 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Cooling device of construction equipment
JP2011068188A (en) * 2009-09-24 2011-04-07 Suzuki Motor Corp Cooling apparatus for hybrid vehicle
CN102139630A (en) * 2011-03-02 2011-08-03 上海交通大学 Heat management device of electric vehicle
JP4846875B1 (en) * 2010-06-24 2011-12-28 三菱電機株式会社 Diesel hybrid vehicle system
KR20120057558A (en) * 2009-04-09 2012-06-05 르노 에스.아.에스. Cooling device for a motor vehicle
JP2012523542A (en) * 2009-04-09 2012-10-04 ルノー・エス・アー・エス Automotive cooling system
CN102926856A (en) * 2012-11-09 2013-02-13 袁春 Dual cycle cooling method of silent type diesel generator set
DE102011052754A1 (en) * 2011-08-16 2013-02-21 Avl Software And Functions Gmbh Drive unit with two coupled cooling circuits for preheating an internal combustion engine and method
JP2013074642A (en) * 2011-09-26 2013-04-22 Toyota Motor Corp Electric vehicle
JP2013515195A (en) * 2009-12-22 2013-05-02 ルノー エス.ア.エス. Automotive cooling system
JP2014020239A (en) * 2012-07-16 2014-02-03 Denso Corp Heat managing system for vehicle
FR2995014A1 (en) * 2012-09-06 2014-03-07 Peugeot Citroen Automobiles Sa Device for thermal management of drive train of hybrid car, has three solenoid valves connecting heat exchanger with high-temperature circuit and low-temperature circuit, where coolant circulates in circuits
JP2014529985A (en) * 2011-08-17 2014-11-13 ルノー エス.ア.エス. Cooling system for electric vehicles
JP2015081089A (en) * 2013-10-24 2015-04-27 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Cooling system of electric motorcar and cooling system driving method
CN105121215A (en) * 2013-04-11 2015-12-02 三菱电机株式会社 Cooling control device and cooling control method for electric-vehicle motor
CN105774528A (en) * 2014-12-19 2016-07-20 北汽福田汽车股份有限公司 Cooling device for hybrid electric vehicle and control method and system of cooling device
JP2018096241A (en) * 2016-12-09 2018-06-21 株式会社デンソー Control system and air blower with control system
JP2018095127A (en) * 2016-12-14 2018-06-21 本田技研工業株式会社 Cooling device of vehicle
JP2019119242A (en) * 2017-12-28 2019-07-22 ダイハツ工業株式会社 Hybrid vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3090501B1 (en) * 2018-12-21 2021-04-09 Renault Sas Thermal management device of a heat transfer fluid circuit of a hybrid vehicle
FR3116765A1 (en) * 2020-12-02 2022-06-03 Valeo Systemes Thermiques Heat treatment device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569328U (en) * 1992-02-28 1993-09-21 富士重工業株式会社 Hybrid engine cooling system
JPH0681648A (en) * 1992-07-13 1994-03-22 Nippondenso Co Ltd Cooling system for vehicle
JPH0693855A (en) * 1992-09-16 1994-04-05 Mazda Motor Corp Cooling/lubricating system device for multiple engine
JPH07253020A (en) * 1994-03-15 1995-10-03 Mitsubishi Motors Corp Engine cooling device for hybrid vehicle
JPH07310637A (en) * 1994-05-18 1995-11-28 Mitsubishi Motors Corp Internal combustion engine warming-up device for hybrid electric vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569328U (en) * 1992-02-28 1993-09-21 富士重工業株式会社 Hybrid engine cooling system
JPH0681648A (en) * 1992-07-13 1994-03-22 Nippondenso Co Ltd Cooling system for vehicle
JPH0693855A (en) * 1992-09-16 1994-04-05 Mazda Motor Corp Cooling/lubricating system device for multiple engine
JPH07253020A (en) * 1994-03-15 1995-10-03 Mitsubishi Motors Corp Engine cooling device for hybrid vehicle
JPH07310637A (en) * 1994-05-18 1995-11-28 Mitsubishi Motors Corp Internal combustion engine warming-up device for hybrid electric vehicle

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017994A1 (en) * 1998-09-18 2000-03-30 Hitachi, Ltd. Motor driving device for automobiles
US6357541B1 (en) * 1999-06-07 2002-03-19 Mitsubishi Heavy Industries, Ltd. Circulation apparatus for coolant in vehicle
EP1059426A3 (en) * 1999-06-07 2002-11-20 Mitsubishi Heavy Industries, Ltd. Circulation apparatus for coolant in vehicule
US6593717B2 (en) 2000-07-28 2003-07-15 Denso Corporation Apparatus and method for controlling cooling fan for vehicle
GB2370106B (en) * 2000-11-02 2004-09-15 Ford Motor Co A coolant pump control for a hybrid electric vehicle
GB2370106A (en) * 2000-11-02 2002-06-19 Ford Motor Co Electric coolant pump control for a hybrid electric vehicle
JP2002158321A (en) * 2000-11-17 2002-05-31 Toyota Motor Corp Cooling device for on-vehicle electrical component
JP2002276364A (en) * 2001-03-14 2002-09-25 Denso Corp Cooling system for hybrid electric vehicle
KR100488687B1 (en) * 2001-09-26 2005-05-11 현대자동차주식회사 Cooling system of a series hybrid electric motor vehicle
KR100444064B1 (en) * 2002-05-20 2004-08-12 현대자동차주식회사 Cooling system of electric vehicles
JP2004112855A (en) * 2002-09-13 2004-04-08 Nissan Motor Co Ltd Controller for vehicle
US7082905B2 (en) 2003-02-24 2006-08-01 Honda Motor Co., Ltd. Cooling apparatus for hybrid vehicle
JP2004346831A (en) * 2003-05-22 2004-12-09 Denso Corp Cooling system for vehicle
JP2006125375A (en) * 2004-11-01 2006-05-18 Toyota Motor Corp Cooling device for vehicle
JP2006168600A (en) * 2004-12-17 2006-06-29 Nissan Motor Co Ltd Hybrid vehicle
EP1942038A4 (en) * 2005-10-25 2011-05-11 Toyota Motor Co Ltd Cooling system. method of controlling the cooling system, and automobile
WO2007049516A1 (en) 2005-10-25 2007-05-03 Toyota Jidosha Kabushiki Kaisha Cooling system. method of controlling the cooling system, and automobile
US8151917B2 (en) 2005-10-25 2012-04-10 Toyota Jidosha Kabushiki Kaisha Cooling system, control method of cooling system, and vehicle equipped with cooling system
EP1942038A1 (en) * 2005-10-25 2008-07-09 Toyota Jidosha Kabushiki Kaisha Cooling system. method of controlling the cooling system, and automobile
JP2007245946A (en) * 2006-03-16 2007-09-27 Toyota Motor Corp Hybrid vehicle
WO2007108166A1 (en) * 2006-03-16 2007-09-27 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
US7823669B2 (en) 2006-03-16 2010-11-02 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
JP4497113B2 (en) * 2006-03-16 2010-07-07 トヨタ自動車株式会社 Hybrid vehicle
JP2008169613A (en) * 2007-01-11 2008-07-24 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Cooling device of construction equipment
JP2012523520A (en) * 2009-04-09 2012-10-04 ルノー・エス・アー・エス Automotive cooling system
KR20120057558A (en) * 2009-04-09 2012-06-05 르노 에스.아.에스. Cooling device for a motor vehicle
JP2012523542A (en) * 2009-04-09 2012-10-04 ルノー・エス・アー・エス Automotive cooling system
CN102029892A (en) * 2009-09-24 2011-04-27 铃木株式会社 Cooling apparatus for a hybrid vehicle
DE102010044769B4 (en) * 2009-09-24 2016-10-06 Suzuki Motor Corporation Cooling device for a hybrid vehicle
DE102010044769A1 (en) 2009-09-24 2011-04-28 Suzuki Motor Corporation, Hamamatsu-Shi Cooling device for a hybrid vehicle
US8261861B2 (en) 2009-09-24 2012-09-11 Suzuki Motor Corporation Cooling apparatus for a hybrid vehicle
JP2011068188A (en) * 2009-09-24 2011-04-07 Suzuki Motor Corp Cooling apparatus for hybrid vehicle
JP2013515195A (en) * 2009-12-22 2013-05-02 ルノー エス.ア.エス. Automotive cooling system
JP4846875B1 (en) * 2010-06-24 2011-12-28 三菱電機株式会社 Diesel hybrid vehicle system
US8884451B2 (en) 2010-06-24 2014-11-11 Mitsubishi Electric Corporation Diesel hybrid vehicle system
KR101476558B1 (en) * 2010-06-24 2014-12-24 미쓰비시덴키 가부시키가이샤 Diesel hybrid vehicle system
WO2011161794A1 (en) * 2010-06-24 2011-12-29 三菱電機株式会社 Diesel hybrid vehicle system
CN102139630A (en) * 2011-03-02 2011-08-03 上海交通大学 Heat management device of electric vehicle
DE102011052754B4 (en) * 2011-08-16 2015-05-21 Avl Software And Functions Gmbh Drive unit with two coupled cooling circuits and method
EP2559879B1 (en) * 2011-08-16 2016-07-06 AVL Software And Functions GmbH Drive unit with two couple-able cooling circuits to preheat a combustion engine and method
DE102011052754A1 (en) * 2011-08-16 2013-02-21 Avl Software And Functions Gmbh Drive unit with two coupled cooling circuits for preheating an internal combustion engine and method
JP2014529985A (en) * 2011-08-17 2014-11-13 ルノー エス.ア.エス. Cooling system for electric vehicles
JP2013074642A (en) * 2011-09-26 2013-04-22 Toyota Motor Corp Electric vehicle
US9242560B2 (en) 2011-09-26 2016-01-26 Toyota Jidosha Kabushiki Kaisha Electric vehicle
JP2014020239A (en) * 2012-07-16 2014-02-03 Denso Corp Heat managing system for vehicle
FR2995014A1 (en) * 2012-09-06 2014-03-07 Peugeot Citroen Automobiles Sa Device for thermal management of drive train of hybrid car, has three solenoid valves connecting heat exchanger with high-temperature circuit and low-temperature circuit, where coolant circulates in circuits
CN102926856A (en) * 2012-11-09 2013-02-13 袁春 Dual cycle cooling method of silent type diesel generator set
CN105121215A (en) * 2013-04-11 2015-12-02 三菱电机株式会社 Cooling control device and cooling control method for electric-vehicle motor
US9623753B2 (en) 2013-04-11 2017-04-18 Mitsubishi Electric Corporation Cooling control apparatus and cooling control method for an electric vehicle motor
JP2015081089A (en) * 2013-10-24 2015-04-27 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Cooling system of electric motorcar and cooling system driving method
CN105774528A (en) * 2014-12-19 2016-07-20 北汽福田汽车股份有限公司 Cooling device for hybrid electric vehicle and control method and system of cooling device
JP2018096241A (en) * 2016-12-09 2018-06-21 株式会社デンソー Control system and air blower with control system
JP2018095127A (en) * 2016-12-14 2018-06-21 本田技研工業株式会社 Cooling device of vehicle
JP2019119242A (en) * 2017-12-28 2019-07-22 ダイハツ工業株式会社 Hybrid vehicle

Also Published As

Publication number Publication date
JP3292080B2 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
JP3292080B2 (en) Hybrid electric vehicle cooling system
US6467286B2 (en) Cooling apparatus of hybrid vehicle, including serially-connected cooling systems for electric devices which have different heat resisting allowable temperatures
JP4920337B2 (en) Radiator fan control device for hybrid vehicle
JP5077162B2 (en) DRIVE DEVICE, ITS CONTROL METHOD, AND VEHICLE
JP2013095409A (en) Battery warm-up apparatus and battery warm-up method
JP2011130642A (en) Cooling system for electric vehicle
JP2010111277A (en) Automobile and control method of the same
JP2010284045A (en) Heat supply device
JP2016098650A (en) Cooling system control device
US20100087979A1 (en) Method for cooling components of a motor vehicle
JP2010173445A (en) Cooling system for hybrid vehicle
JPH1127806A (en) Controller for hybrid vehicle
JP5929678B2 (en) Control device for hybrid vehicle
JP2006051852A (en) Heating system for hybrid vehicle
JP4052256B2 (en) Temperature control device
US11084481B2 (en) Travel control apparatus
JP3894180B2 (en) Hybrid vehicle cooling system
JP6973934B2 (en) Vehicle heating system
JP2020093775A (en) Control device of on-vehicle cooling system and on-vehicle cooling system
JP3455145B2 (en) Hybrid vehicle fan control device
JP3016335B2 (en) Internal combustion engine warm-up system for hybrid electric vehicles
JP2007326432A (en) Engine cooling system for hybrid automobile
US11536339B2 (en) Cooling system and method for auxiliary brake device of hydrogen fuel cell truck
JPH08116605A (en) Cooling device for electric automobile
JP7431630B2 (en) Electric motor cooling control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees