JP4052256B2 - Temperature control device - Google Patents

Temperature control device Download PDF

Info

Publication number
JP4052256B2
JP4052256B2 JP2004030409A JP2004030409A JP4052256B2 JP 4052256 B2 JP4052256 B2 JP 4052256B2 JP 2004030409 A JP2004030409 A JP 2004030409A JP 2004030409 A JP2004030409 A JP 2004030409A JP 4052256 B2 JP4052256 B2 JP 4052256B2
Authority
JP
Japan
Prior art keywords
temperature
electric
cooling medium
flow rate
circulation path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004030409A
Other languages
Japanese (ja)
Other versions
JP2005224042A (en
Inventor
和太 安保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004030409A priority Critical patent/JP4052256B2/en
Publication of JP2005224042A publication Critical patent/JP2005224042A/en
Application granted granted Critical
Publication of JP4052256B2 publication Critical patent/JP4052256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、温度調節装置に関し、詳しくは、電気自動車における電力の入出力を行なう電気駆動系の温度を調節する温度調節装置に関する。   The present invention relates to a temperature adjustment device, and more particularly to a temperature adjustment device that adjusts the temperature of an electric drive system that inputs and outputs power in an electric vehicle.

従来、この種の温度調節装置としては、モータを冷却する冷却水の温度に基づいて冷却水を循環させる電動ポンプをオンオフ制御するものが提案されている(例えば、特許文献1参照)。この装置では、冷却水の温度が所定温度未満のときには電動ポンプをオフしてモータへの冷却水の供給を停止し、冷却水の温度が所定温度以上のときには電動ポンプをオンしてモータに冷却水を供給することにより、モータの温度を調節している。
特開平11−22460号公報
2. Description of the Related Art Conventionally, as this type of temperature control apparatus, an apparatus that performs on / off control of an electric pump that circulates cooling water based on the temperature of cooling water that cools a motor has been proposed (see, for example, Patent Document 1). In this device, when the temperature of the cooling water is lower than the predetermined temperature, the electric pump is turned off to stop the supply of the cooling water to the motor. When the temperature of the cooling water is higher than the predetermined temperature, the electric pump is turned on to cool the motor. The temperature of the motor is adjusted by supplying water.
Japanese Patent Laid-Open No. 11-22460

上述の温度調節装置では、電動ポンプのオンオフ制御によりモータの温度を調節しているから、モータへの冷却水の供給が不足してその冷却が十分に行えない場合が生じたり、必要以上の流量の冷却水をモータに供給して電動ポンプの消費電力が過大となる場合が生じる。   In the above temperature control device, the temperature of the motor is adjusted by the on / off control of the electric pump. Therefore, the cooling water supply to the motor may be insufficient and the cooling may not be performed sufficiently, or the flow rate may be higher than necessary. If the cooling water is supplied to the motor, the power consumption of the electric pump may become excessive.

本発明の温度調節装置は、こうした問題を解決し、電気自動車における電力の入出力を行なう電気駆動系の冷却を十分に行ないながら冷却媒体を循環する電動ポンプの消費電力を抑えることを目的とする。   The temperature control device of the present invention is intended to solve such problems and suppress power consumption of an electric pump that circulates a cooling medium while sufficiently cooling an electric drive system that inputs and outputs electric power in an electric vehicle. .

本発明の温度調節装置は、上述の目的を達成するために以下の手段を採った。   The temperature control apparatus of the present invention employs the following means in order to achieve the above object.

本発明の温度調節装置は、
電気自動車における電力の入出力を行なう電気駆動系の温度を調節する温度調節装置であって、
前記電気駆動系に接続された循環路と、
前記循環路に冷却媒体を循環させる電動ポンプと、
前記循環路に設けられ、前記冷却媒体と熱交換を行なう熱交換器と、
前記冷却媒体の温度を検出する温度検出手段と、
該検出された冷却媒体の温度に基づいて少なくとも該冷却媒体が層流域の流量で前記熱交換器を流れる第1の流量と該冷却媒体が乱流域の流量で前記熱交換器を流れる第2の流量とが切り替えられるよう前記電動ポンプを駆動制御する駆動制御手段と
を備えることを要旨とする。
The temperature control device of the present invention comprises:
A temperature adjustment device for adjusting the temperature of an electric drive system that inputs and outputs electric power in an electric vehicle,
A circulation path connected to the electric drive system;
An electric pump for circulating a cooling medium in the circulation path;
A heat exchanger provided in the circulation path for exchanging heat with the cooling medium;
Temperature detecting means for detecting the temperature of the cooling medium;
Based on the detected temperature of the cooling medium, at least a first flow rate at which the cooling medium flows through the heat exchanger at a laminar flow rate and a second flow rate at which the cooling medium flows through the heat exchanger at a turbulent flow rate. And a drive control means for driving and controlling the electric pump so that the flow rate can be switched.

この本発明の温度調節装置では、循環路内の冷却媒体の温度に基づいて冷却媒体が層流域で熱交換器を流れる第1の流量と冷却媒体が乱流域で熱交換器を流れる第2の流量とが切り替えられるよう電動ポンプを駆動制御する。冷却媒体を乱流域の流量で循環させると熱交換器での熱交換効率が大きくなり層流域の流量で循環させると熱交換効率は小さくなるが熱交換器の流量抵抗が小さくなるから、冷却媒体の温度に基づいて乱流域の流量と層流域の流量とを切り替えることにより、電気駆動系の十分な冷却を確保しながら電動ポンプの消費電力を抑えることができる。   In the temperature control device of the present invention, the first flow rate of the cooling medium flowing through the heat exchanger in the laminar flow region and the second flow of the cooling medium flowing through the heat exchanger in the turbulent flow region based on the temperature of the cooling medium in the circulation path. The electric pump is driven and controlled so that the flow rate can be switched. When the cooling medium is circulated at a flow rate in the turbulent flow area, the heat exchange efficiency in the heat exchanger increases. By switching between the flow rate in the turbulent flow region and the flow rate in the laminar flow region based on the temperature, the power consumption of the electric pump can be suppressed while ensuring sufficient cooling of the electric drive system.

こうした本発明の温度調節装置において、前記駆動制御手段は、前記検出された冷却媒体の温度が第1所定温度を上回ったときに前記第2の流量に切り替えられるよう前記電動ポンプを駆動制御し、前記検出された冷却媒体の温度が第2所定温度を下回ったときに前記第1の流量に切り替えられるよう前記電動ポンプを駆動制御する手段であるものとすることもできる。この態様の本発明の温度調節装置において、前記第2所定温度は、前記第1所定温度と同一の温度または前記第2所定温度よりも低い温度であるものとすることもできる。   In such a temperature control apparatus of the present invention, the drive control means drives and controls the electric pump so that the second flow rate is switched when the detected temperature of the cooling medium exceeds a first predetermined temperature, The electric pump can be driven and controlled to be switched to the first flow rate when the detected temperature of the cooling medium falls below a second predetermined temperature. In this aspect of the temperature control apparatus of the present invention, the second predetermined temperature may be the same temperature as the first predetermined temperature or a temperature lower than the second predetermined temperature.

また、本発明の温度調節装置において、前記駆動制御手段は、前記検出された冷却媒体の温度が第3所定温度未満のときには前記電動ポンプの駆動を停止する手段であるものとすることもできる。こうすれば、電動ポンプの消費電力を更に抑えることができる。   In the temperature adjusting device of the present invention, the drive control means may be means for stopping the driving of the electric pump when the detected temperature of the cooling medium is lower than a third predetermined temperature. In this way, the power consumption of the electric pump can be further suppressed.

さらに、本発明の温度調節装置において、前記電気駆動系は、駆動輪に動力を出力可能な電動機と、該電動機を駆動する駆動回路とを含む系であるものとすることもできる。こうすれば、電動機と駆動回路とを冷却することができる。   Furthermore, in the temperature control apparatus of the present invention, the electric drive system may be a system including an electric motor that can output power to the drive wheels and a drive circuit that drives the electric motor. If it carries out like this, an electric motor and a drive circuit can be cooled.

あるいは、本発明の温度調節装置において、前記電気自動車は、内燃機関を備え、前記内燃機関に接続され、前記循環路とは異なる流路として形成された第2の循環路と、前記内燃機関の出力軸の回転力により機械的に駆動して前記第2の循環路に冷却媒体を循環させるポンプと、前記第2の循環路に設けられ、前記冷却媒体と熱交換を行なう第2の熱交換器とを備えるものとすることもできる。   Alternatively, in the temperature control device of the present invention, the electric vehicle includes an internal combustion engine, connected to the internal combustion engine, and formed as a flow path different from the circulation path, and the internal combustion engine A pump that is mechanically driven by the rotational force of the output shaft to circulate the cooling medium in the second circulation path, and a second heat exchange that is provided in the second circulation path and performs heat exchange with the cooling medium. It can also be provided with a vessel.

次に、本発明を実施するための最良の形態を実施例を用いて説明する。   Next, the best mode for carrying out the present invention will be described using examples.

図1は、本発明の一実施形態としての温度調節装置20を備える電気自動車10の構成の概略を示す構成図である。説明の都合上、まず、実施例の温度調節装置20を備える電気自動車10について簡単に説明して、その後に実施例の温度調節装置20について説明する。電気自動車10は、図示するように、エンジン12と、エンジン12のクランクシャフト13にキャリアが接続された遊星歯車機構14と、遊星歯車機構14のサンギヤに接続された発電可能なモータMG1と、遊星歯車機構14のリングギヤに接続されたモータMG2と、インバータ15,16を介してモータMG1,MG2と電力をやり取りするバッテリ17と、自動車全体を制御すると共に実施例の温度調節装置20の一部としても機能する電子制御ユニット40とを備えるハイブリッド自動車として構成されている。遊星歯車機構14のリングギヤには駆動軸18が接続されており、駆動軸18にはディファレンシャルギヤを介して駆動輪19a,19bが連結されている。したがって、駆動軸18に出力された動力は最終的に駆動輪19a,19bに出力される。   FIG. 1 is a configuration diagram showing an outline of a configuration of an electric vehicle 10 including a temperature control device 20 as an embodiment of the present invention. For convenience of explanation, first, the electric vehicle 10 including the temperature control device 20 of the embodiment will be briefly described, and then the temperature control device 20 of the embodiment will be described. As illustrated, the electric vehicle 10 includes an engine 12, a planetary gear mechanism 14 having a carrier connected to the crankshaft 13 of the engine 12, a motor MG1 capable of generating electricity connected to a sun gear of the planetary gear mechanism 14, and a planetary gear. The motor MG2 connected to the ring gear of the gear mechanism 14, the battery 17 that exchanges electric power with the motors MG1 and MG2 via the inverters 15 and 16, the entire automobile, and a part of the temperature control device 20 of the embodiment. It is comprised as a hybrid vehicle provided with the electronic control unit 40 which also functions. A drive shaft 18 is connected to the ring gear of the planetary gear mechanism 14, and drive wheels 19 a and 19 b are connected to the drive shaft 18 via a differential gear. Therefore, the power output to the drive shaft 18 is finally output to the drive wheels 19a and 19b.

実施例の温度調節装置20は、図示するように、モータMG1,MG2,インバータ15,16に形成されたモータ・インバータ冷却用の冷却媒体(冷却水)の流路(図示せず)と共に循環路を形成する循環管路22と、この循環管路22に冷却水を循環させる電動ウォーターポンプ24と、冷却水を外気により冷却するラジエータ26と、ラジエータ26に取り付けられた冷却ファン28と、循環管路22上に取り付けられた温度センサ29とからなるモータ・インバータ冷却用のシステムと、エンジン12に形成されたエンジン冷却用の冷却媒体(冷却水)の通路(図示せず)と共に循環路を形成する循環管路32と、エンジン22のクランクシャフト13に連結されクランクシャフト13の回転力により機械的に駆動して循環管路32に冷却水を循環させるウォータポンプ34と、冷却水を外気により冷却するラジエータ36と、ラジエータ36に取り付けられた冷却ファン38とからなるエンジン冷却用のシステムと、これらのシステムを制御する電子制御ユニット40とを備える。   As shown in the figure, the temperature control device 20 of the embodiment includes a circulation path (not shown) of a cooling medium (cooling water) for cooling the motor / inverter formed in the motors MG1, MG2, and inverters 15 and 16. A circulation pipe 22 that forms a coolant, an electric water pump 24 that circulates cooling water through the circulation pipe 22, a radiator 26 that cools the cooling water using outside air, a cooling fan 28 that is attached to the radiator 26, and a circulation pipe A motor / inverter cooling system comprising a temperature sensor 29 mounted on the path 22 and a circulation path (not shown) for a cooling medium (cooling water) for engine cooling formed in the engine 12 are formed. And the circulation line 32 connected to the crankshaft 13 of the engine 22 and mechanically driven by the rotational force of the crankshaft 13. An engine cooling system comprising a water pump 34 for circulating the cooling water, a radiator 36 for cooling the cooling water by outside air, and a cooling fan 38 attached to the radiator 36, and an electronic control unit 40 for controlling these systems. With.

電子制御ユニット40は、CPU42を中心としたマイクロプロセッサとして構成されており、CPU42の他に処理プログラムを記憶したROM44と、一時的にデータを記憶するRAM46と、図示しない入出力ポートとを備える。この電子制御ユニット40には、エンジン22やモータMG1,MG2を駆動制御するためのエンジン22やモータMG1,MG2の運転状態に関する信号や温度センサ29により検出されたモータ・インバータ冷却用の冷却水の温度(冷却水温)Twなどが入力ポートを介して入力されている。また、電子制御ユニット40からは、エンジン22を制御するための制御信号やモータMG1,MG2を制御するためのインバータ15,16のスイッチング素子のスイッチング制御信号、電動ウォータポンプ24を駆動するための駆動信号、冷却ファン28,38を駆動するための駆動信号などが出力ポートを介して出力されている。   The electronic control unit 40 is configured as a microprocessor centered on the CPU 42, and includes a ROM 44 that stores a processing program, a RAM 46 that temporarily stores data, and an input / output port (not shown), in addition to the CPU 42. The electronic control unit 40 includes a signal relating to the operating state of the engine 22 and the motors MG1 and MG2 for controlling the driving of the engine 22 and the motors MG1 and MG2, and cooling water for cooling the motor and inverter detected by the temperature sensor 29. The temperature (cooling water temperature) Tw and the like are input via the input port. Further, the electronic control unit 40 controls the engine 22, the control signals of the switching elements of the inverters 15 and 16 for controlling the motors MG 1 and MG 2, and the drive for driving the electric water pump 24. A signal, a drive signal for driving the cooling fans 28 and 38, and the like are output via the output port.

次に、こうして構成された実施例の温度調節装置20の動作について説明する。図2は、実施例の温度調節装置20の電子制御ユニット40により実行される温度調節処理ルーチンの一例を示すフローチャートである。このルーチンは、所定時間毎(例えば、20msec毎)に繰り返し実行される。   Next, the operation of the temperature control apparatus 20 of the embodiment configured in this way will be described. FIG. 2 is a flowchart illustrating an example of a temperature adjustment processing routine executed by the electronic control unit 40 of the temperature adjustment apparatus 20 according to the embodiment. This routine is repeatedly executed every predetermined time (for example, every 20 msec).

温度調節処理ルーチンが実行されると、電子制御ユニット40のCPU42は、まず、温度センサ29により検出されたモータ・インバータ冷却用の冷却水の温度(冷却水温)Twを読み込み(ステップS100)、読み込んだ冷却水温Twと閾値Twrefとを比較する(ステップS110)。ここで、閾値Twrefは、モータMG1,MG2やインバータ15,16を冷却するために電動ウォーターポンプ24の駆動が必要か否かを判定するための閾値であり、モータMG1,MG2やインバータ15,16などにより定められる。冷却水温Twが閾値Twref以下のときには、モータMG1,MG2やインバータ15,16の冷却は必要ないと判断して、電動ウォーターポンプ26をオフして(ステップS120)、本ルーチンを終了する。   When the temperature adjustment processing routine is executed, the CPU 42 of the electronic control unit 40 first reads the temperature (cooling water temperature) Tw for cooling the motor / inverter detected by the temperature sensor 29 (step S100). The cooling water temperature Tw is compared with the threshold value Twref (step S110). Here, the threshold value Twref is a threshold value for determining whether or not the electric water pump 24 needs to be driven to cool the motors MG1 and MG2 and the inverters 15 and 16, and the motors MG1 and MG2 and the inverters 15 and 16 are determined. It is determined by. When the cooling water temperature Tw is equal to or lower than the threshold value Twref, it is determined that cooling of the motors MG1, MG2 and the inverters 15, 16 is not necessary, the electric water pump 26 is turned off (step S120), and this routine is terminated.

冷却水温Twが閾値Twrefより大きいときには、この冷却水温Twに基づいて冷却水の目標流量Q*を設定すると共に(ステップS130)、設定した目標流量Q*で冷却水が循環するよう電動ウォーターポンプ24を駆動制御して(ステップS140)、本ルーチンを終了する。ここで、目標流量Q*の設定は、実施例では、冷却水温Twと目標流量Q*との関係を予め求めて目標流量設定用マップとしてROM44に記憶しておき、冷却水温Twが与えられると目標流量設定用マップから対応する目標流量Q*を導出して設定することにより行なうものとした。この目標流量設定用マップの一例を図3に示す。図示するように、目標流量Q*は、冷却水温Twが所定温度T0未満のときには冷却水が層流域で循環するよう設定され、冷却水温Twが所定温度T0以上のときに冷却水が乱流域で循環するよう設定される。図4に、ラジエータ26を流れる冷却水の流量とラジエータ26の冷却能力との関係を示す説明図を示す。図示するように、冷却水を乱流域の流量で循環させると、ラジエータ26での冷却水の熱交換効率が大幅に向上し、モータMG1,MG2やインバータ15,16の冷却が促進される。一方で、流量抵抗も大きくなり電動ウォーターポンプ24で消費される電力は比較的大きなものとなる。冷却水を層流域の流量で循環させると、ラジエータ26の熱交換効率は大きく落ちるものの、モータMG1,MG2やインバータ15,16をある程度冷却しながら電動ウォーターポンプ26の消費電力を抑えることができる。このように、冷却水温Twが所定温度T0未満のときに層流域の流量で冷却水が循環するよう目標流量Q*を設定することにより、モータMG1,MG2やインバータ15,16の過剰な冷却を抑制して装置のエネルギ効率を向上させているのである。   When the cooling water temperature Tw is larger than the threshold value Twref, the target flow rate Q * of the cooling water is set based on the cooling water temperature Tw (step S130), and the electric water pump 24 is configured so that the cooling water circulates at the set target flow rate Q *. Is controlled (step S140), and this routine is terminated. Here, in setting the target flow rate Q *, in the embodiment, when the relationship between the cooling water temperature Tw and the target flow rate Q * is obtained in advance and stored in the ROM 44 as a target flow rate setting map, the cooling water temperature Tw is given. This is done by deriving and setting the corresponding target flow rate Q * from the target flow rate setting map. An example of this target flow rate setting map is shown in FIG. As shown in the figure, the target flow rate Q * is set so that the cooling water circulates in the laminar flow region when the cooling water temperature Tw is lower than the predetermined temperature T0, and the cooling water is in the turbulent flow region when the cooling water temperature Tw is equal to or higher than the predetermined temperature T0. Set to circulate. FIG. 4 is an explanatory diagram showing the relationship between the flow rate of the cooling water flowing through the radiator 26 and the cooling capacity of the radiator 26. As shown in the figure, when the cooling water is circulated at a turbulent flow rate, the heat exchange efficiency of the cooling water in the radiator 26 is greatly improved, and the cooling of the motors MG1, MG2 and the inverters 15, 16 is promoted. On the other hand, the flow resistance increases and the power consumed by the electric water pump 24 becomes relatively large. When the cooling water is circulated at a laminar flow rate, the heat exchange efficiency of the radiator 26 is greatly reduced, but the power consumption of the electric water pump 26 can be suppressed while the motors MG1 and MG2 and the inverters 15 and 16 are cooled to some extent. Thus, by setting the target flow rate Q * so that the cooling water circulates at a laminar flow rate when the cooling water temperature Tw is lower than the predetermined temperature T0, the motors MG1, MG2 and the inverters 15, 16 are excessively cooled. It suppresses to improve the energy efficiency of the device.

以上説明した実施例の温度調節装置20によれば、モータ・インバータ冷却用の冷却水の温度(冷却水温Tw)に基づいてその目標流量Q*を層流域の流量か乱流域の流量かに切り替えるから、モータMG1,MG2やインバータ15,16の十分な冷却を確保しながら冷却水を循環させる電動ウォーターポンプ24の電力消費を抑えることができる。この結果、装置全体のエネルギ効率をより向上させることができる。   According to the temperature control device 20 of the embodiment described above, the target flow rate Q * is switched between a laminar flow region flow rate and a turbulent flow region flow rate based on the cooling water temperature (cooling water temperature Tw) for motor / inverter cooling. Therefore, it is possible to suppress power consumption of the electric water pump 24 that circulates the cooling water while ensuring sufficient cooling of the motors MG1 and MG2 and the inverters 15 and 16. As a result, the energy efficiency of the entire apparatus can be further improved.

実施例の温度調節装置20では、冷却水温Twが閾値Twref未満のときには電動ウォーターポンプ24をオフして冷却水の循環を停止するものとしたが、閾値Twref未満でも電動ウォーターポンプ24をオフせずに冷却水を層流域で循環させるものとしてもよい。   In the temperature control device 20 of the embodiment, when the cooling water temperature Tw is less than the threshold value Twref, the electric water pump 24 is turned off to stop the circulation of the cooling water, but the electric water pump 24 is not turned off even if the temperature is lower than the threshold value Twref. The cooling water may be circulated in the laminar flow area.

実施例の温度調節装置20では、所定温度T0をもって層流域の流量と乱流域の流量とを切り替えるものとしたが、冷却水温Twの上昇時と下降時に対してヒステリシスを持たせるものとしてもよい。また、実施例の温度調節装置20では、図3に示すように、層流域での目標流量Q*を所定温度以上では冷却水温Twに拘わらず一定とし、乱流域での目標流量Q*を冷却水温Twに拘わらず一定としたが、冷却水温Twに応じて階段状に変更したり比例的に変更するなど一定としないものとしてもよい。さらに、実施例の温度調節装置20では、遷移域での流量を目標流量Q*として使用しないものとしたが、使用するものとしても構わない。   In the temperature control device 20 of the embodiment, the flow rate in the laminar flow region and the flow rate in the turbulent flow region are switched at the predetermined temperature T0. However, hysteresis may be provided when the cooling water temperature Tw rises and falls. Further, in the temperature control device 20 of the embodiment, as shown in FIG. 3, the target flow rate Q * in the laminar flow region is constant regardless of the cooling water temperature Tw above the predetermined temperature, and the target flow rate Q * in the turbulent flow region is cooled. Although it is constant regardless of the water temperature Tw, it may be not constant such as changing in a stepped manner or changing proportionally according to the cooling water temperature Tw. Furthermore, in the temperature control apparatus 20 of the embodiment, the flow rate in the transition region is not used as the target flow rate Q *, but may be used.

実施例では、温度調節装置20をエンジン22やモータMG1,MG2を備える電気自動車10に適用して説明したが、走行用のモータのみを備える通常の電気自動車に適用するものとしてもよいことは勿論である。   In the embodiment, the temperature adjusting device 20 is described as applied to the electric vehicle 10 including the engine 22 and the motors MG1 and MG2. However, the temperature adjusting device 20 may be applied to a normal electric vehicle including only a traveling motor. It is.

以上、本発明を実施するための最良の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   The best mode for carrying out the present invention has been described with reference to the embodiments. However, the present invention is not limited to these embodiments, and various modifications can be made without departing from the gist of the present invention. Of course, it can be implemented in the form.

本発明の一実施形態としての温度調節装置20を備える電気自動車10の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the electric vehicle 10 provided with the temperature control apparatus 20 as one Embodiment of this invention. 実施例の温度調節装置20の電子制御ユニット40により実行される温度調節処理ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of the temperature control process routine performed by the electronic control unit 40 of the temperature control apparatus 20 of an Example. 目標流量設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the map for target flow volume setting. 冷却水の流量とラジエータ26の冷却効果との関係を示す説明図である。FIG. 5 is an explanatory diagram showing the relationship between the flow rate of cooling water and the cooling effect of the radiator 26.

符号の説明Explanation of symbols

10 電気自動車、12 エンジン、13 クランクシャフト、14 遊星歯車機構、15,16 インバータ、17 バッテリ、18 駆動軸、19a,19b 駆動輪、20 温度調節装置、22 循環管路、24 電動ウォーターポンプ、26 ラジエータ、28 冷却ファン、29 温度センサ、32 循環管路、34 ウォーターポンプ、36 ラジエータ、38 冷却ファン、40 電子制御ユニット、42 CPU、44 ROM、46 RAM、MG1,MG2 モータ。



DESCRIPTION OF SYMBOLS 10 Electric vehicle, 12 Engine, 13 Crankshaft, 14 Planetary gear mechanism, 15, 16 Inverter, 17 Battery, 18 Drive shaft, 19a, 19b Drive wheel, 20 Temperature control device, 22 Circulation line, 24 Electric water pump, 26 Radiator, 28 Cooling fan, 29 Temperature sensor, 32 Circulation line, 34 Water pump, 36 Radiator, 38 Cooling fan, 40 Electronic control unit, 42 CPU, 44 ROM, 46 RAM, MG1, MG2 Motor.



Claims (6)

電気自動車における電力の入出力を行なう電気駆動系の温度を調節する温度調節装置であって、
前記電気駆動系に接続された循環路と、
前記循環路に冷却媒体を循環させる電動ポンプと、
前記循環路に設けられ、前記冷却媒体と熱交換を行なう熱交換器と、
前記冷却媒体の温度を検出する温度検出手段と、
該検出された冷却媒体の温度に基づいて少なくとも該冷却媒体が層流域の流量で前記熱交換器を流れる第1の流量と該冷却媒体が乱流域の流量で前記熱交換器を流れる第2の流量とが切り替えられるよう前記電動ポンプを駆動制御する駆動制御手段と
を備える温度調節装置。
A temperature adjustment device for adjusting the temperature of an electric drive system that inputs and outputs electric power in an electric vehicle,
A circulation path connected to the electric drive system;
An electric pump for circulating a cooling medium in the circulation path;
A heat exchanger provided in the circulation path for exchanging heat with the cooling medium;
Temperature detecting means for detecting the temperature of the cooling medium;
Based on the detected temperature of the cooling medium, at least a first flow rate at which the cooling medium flows through the heat exchanger at a laminar flow rate and a second flow rate at which the cooling medium flows through the heat exchanger at a turbulent flow rate. And a drive control means for driving and controlling the electric pump so that the flow rate can be switched.
前記駆動制御手段は、前記検出された冷却媒体の温度が第1所定温度を上回ったときに前記第2の流量に切り替えられるよう前記電動ポンプを駆動制御し、前記検出された冷却媒体の温度が第2所定温度を下回ったときに前記第1の流量に切り替えられるよう前記電動ポンプを駆動制御する手段である請求項1記載の温度調節装置。   The drive control means drives and controls the electric pump so as to switch to the second flow rate when the detected temperature of the cooling medium exceeds a first predetermined temperature, and the detected temperature of the cooling medium is 2. The temperature adjusting device according to claim 1, which is means for driving and controlling the electric pump so that the electric flow is switched to the first flow rate when the temperature falls below a second predetermined temperature. 前記第2所定温度は、前記第1所定温度と同一の温度または前記第2所定温度よりも低い温度である請求項2記載の温度調節装置。   The temperature adjusting device according to claim 2, wherein the second predetermined temperature is the same temperature as the first predetermined temperature or a temperature lower than the second predetermined temperature. 前記駆動制御手段は、前記検出された冷却媒体の温度が第3所定温度未満のときには前記電動ポンプの駆動を停止する手段である請求項1ないし3いずれか記載の温度調節装置。   The temperature control device according to any one of claims 1 to 3, wherein the drive control means is means for stopping the drive of the electric pump when the detected temperature of the cooling medium is lower than a third predetermined temperature. 前記電気駆動系は、駆動輪に動力を出力可能な電動機と、該電動機を駆動する駆動回路とを含む系である請求項1ないし4いずれか記載の温度調節装置。   The temperature control device according to any one of claims 1 to 4, wherein the electric drive system is a system including an electric motor capable of outputting power to drive wheels and a drive circuit for driving the electric motor. 請求項1ないし5いずれか記載の温度調節装置であって、
前記電気自動車は、内燃機関を備え、
前記内燃機関に接続され、前記循環路とは異なる流路として形成された第2の循環路と、
前記内燃機関の出力軸の回転力により機械的に駆動して前記第2の循環路に冷却媒体を循環させるポンプと、
前記第2の循環路に設けられ、前記冷却媒体と熱交換を行なう第2の熱交換器と
を備える温度調節装置。



The temperature control device according to any one of claims 1 to 5,
The electric vehicle includes an internal combustion engine,
A second circulation path connected to the internal combustion engine and formed as a flow path different from the circulation path;
A pump that is mechanically driven by the rotational force of the output shaft of the internal combustion engine to circulate the cooling medium in the second circulation path;
A temperature control apparatus comprising: a second heat exchanger provided in the second circulation path and performing heat exchange with the cooling medium.



JP2004030409A 2004-02-06 2004-02-06 Temperature control device Expired - Fee Related JP4052256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004030409A JP4052256B2 (en) 2004-02-06 2004-02-06 Temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004030409A JP4052256B2 (en) 2004-02-06 2004-02-06 Temperature control device

Publications (2)

Publication Number Publication Date
JP2005224042A JP2005224042A (en) 2005-08-18
JP4052256B2 true JP4052256B2 (en) 2008-02-27

Family

ID=34999249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004030409A Expired - Fee Related JP4052256B2 (en) 2004-02-06 2004-02-06 Temperature control device

Country Status (1)

Country Link
JP (1) JP4052256B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014213609A1 (en) 2013-07-17 2015-01-22 Suzuki Motor Corporation System for controlling an electric pump for vehicles

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8746187B2 (en) 2009-12-01 2014-06-10 Toyota Jidosha Kabushiki Kaisha Engine cooling device
CN102470856B (en) * 2010-03-30 2014-03-12 丰田自动车株式会社 Vehicle control unit and vehicle control method
JP5895548B2 (en) * 2012-01-18 2016-03-30 三菱自動車工業株式会社 Vehicle cooling device
JP2013193511A (en) * 2012-03-16 2013-09-30 Toyota Motor Corp Vehicle control system
JP5553097B2 (en) * 2012-08-31 2014-07-16 トヨタ自動車株式会社 Rotating electrical machine system controller
JP2014173512A (en) * 2013-03-11 2014-09-22 Nissan Motor Co Ltd Heat-transfer system and power train cooling system using the same
JP6488994B2 (en) * 2015-11-26 2019-03-27 株式会社デンソー Vehicle heat transfer circuit
JP7111082B2 (en) * 2019-09-30 2022-08-02 トヨタ自動車株式会社 cooling system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014213609A1 (en) 2013-07-17 2015-01-22 Suzuki Motor Corporation System for controlling an electric pump for vehicles
DE102014213609B4 (en) 2013-07-17 2018-10-31 Suzuki Motor Corporation SYSTEM FOR CONTROLLING AN ELECTRIC PUMP THAT IS ESTABLISHED FOR COOLING COMPONENTS OF AN ELECTRIC DRIVE SYSTEM OF A VEHICLE

Also Published As

Publication number Publication date
JP2005224042A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
JP4631652B2 (en) COOLING SYSTEM, ITS CONTROL METHOD, AND AUTOMOBILE
JP7232638B2 (en) Temperature control system for electric vehicles
US10150347B2 (en) Vehicular air conditioning device
JP4337793B2 (en) Vehicle cooling device
US20130014911A1 (en) Cooling apparatus and cooling method for power-pack in hybrid vehicle
JP2007016718A (en) Engine cooling device
WO2017017867A1 (en) Cooling device
JP2005299407A (en) Cooling system, method for controlling the same, and automobile
JP2007022297A (en) Hybrid car and control method thereof
JP4052256B2 (en) Temperature control device
JP4055733B2 (en) Temperature control device and temperature control method
JP2011157035A (en) Cooling device for hybrid vehicle
JP5286743B2 (en) Output torque control device, vehicle drive system, and vehicle including vehicle drive system
JP2000274240A (en) Cooling device for hybrid vehicle
JP6037000B2 (en) Cooling water control device
JP2002213242A (en) Cooling controller for movable body
JP2006051852A (en) Heating system for hybrid vehicle
JP2008236955A (en) Cooling system, and control method and vehicle therefor
JP2005163545A (en) Engine control device for hybrid electric automobile
JP3894180B2 (en) Hybrid vehicle cooling system
JP2008260442A (en) Vehicular cooling system
JP6849502B2 (en) Vehicle cooling system
JP2007326432A (en) Engine cooling system for hybrid automobile
JPH08116605A (en) Cooling device for electric automobile
JPH0998553A (en) Cooler for motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees