JP2008236955A - Cooling system, and control method and vehicle therefor - Google Patents

Cooling system, and control method and vehicle therefor Download PDF

Info

Publication number
JP2008236955A
JP2008236955A JP2007075346A JP2007075346A JP2008236955A JP 2008236955 A JP2008236955 A JP 2008236955A JP 2007075346 A JP2007075346 A JP 2007075346A JP 2007075346 A JP2007075346 A JP 2007075346A JP 2008236955 A JP2008236955 A JP 2008236955A
Authority
JP
Japan
Prior art keywords
cooling
electrical machine
rotating electrical
temperature
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007075346A
Other languages
Japanese (ja)
Inventor
Noribumi Furuta
紀文 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007075346A priority Critical patent/JP2008236955A/en
Priority to PCT/JP2008/053967 priority patent/WO2008114612A1/en
Publication of JP2008236955A publication Critical patent/JP2008236955A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress temperature rise of a motor by controlling cooling of the motor. <P>SOLUTION: When the absolute value of the rotational speed Nm of a motor, which outputs power to the driving wheels, is below a threshold value Nref and the cooling-water temperature Tw of the cooling water for cooling the motor is above the threshold Twref, the target rotational speed Nw* of a water pump, which forcedly sends the cooling water to the circulation current, wherein the cooling water for cooling the motor circulates, is set so as to attain the rotational speed higher than that, based on the relation between the cooling-water temperature Tw and the rotational speed of the water pump (S110, S120, S140), thereby drive controlling the water pump so as to drive the water pump at the set target rotational speed Nw* (S150). Then, since the motor can be cooled by an increased cooling force, prior to the rotation stop of the motor, temperature rise of the motor can be suppressed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、冷却システムおよびその制御方法並びに車両に関する。   The present invention relates to a cooling system, a control method thereof, and a vehicle.

従来、この種の冷却システムとしては、車両に搭載された電動機を冷却水を用いて冷却するものが提案されている(例えば、特許文献1参照)。この冷却システムでは、電動機の回転数に基づいて冷却水の流量を制御することにより、電動機の回転数が比較的高いときにおける電動機の温度上昇を抑制している。
特開2006−174562号公報
Conventionally, as this type of cooling system, one that cools an electric motor mounted on a vehicle using cooling water has been proposed (for example, see Patent Document 1). In this cooling system, by controlling the flow rate of the cooling water based on the rotation speed of the motor, the temperature rise of the motor when the rotation speed of the motor is relatively high is suppressed.
JP 2006-174562 A

しかしながら、上述の冷却システムでは、電動機の回転数が値0近傍で滞留しているときに電動機の温度が上昇することについては何ら考慮されていない。電動機の回転数が値0近傍に滞留しているときには、電動機の各相コイルのうちの特定の一相にだけ電流が集中して流れて電動機の発熱が促進され電動機の温度が上昇することがある。電動機の温度が上昇すると熱による損傷が生じることがあるため、こうした温度上昇を抑制することが望ましい。   However, in the above-described cooling system, no consideration is given to the increase in the temperature of the electric motor when the rotation speed of the electric motor stays in the vicinity of the value 0. When the rotational speed of the electric motor stays in the vicinity of the value 0, the current concentrates and flows only in one specific phase of each phase coil of the electric motor, so that the heat generation of the electric motor is promoted and the temperature of the electric motor rises. is there. As the temperature of the motor rises, heat damage may occur, so it is desirable to suppress such temperature rise.

本発明の冷却システムおよびその制御方法並びに車両は、回転電機の温度上昇を抑制することを目的とする。   An object of the cooling system, the control method thereof, and the vehicle of the present invention is to suppress the temperature rise of the rotating electrical machine.

本発明の冷却システムおよびその制御方法並びに車両は、上述の目的を達成するために以下の手段を採った。   The cooling system, the control method thereof, and the vehicle of the present invention employ the following means in order to achieve the above-described object.

本発明の冷却システムは、
回転電機を冷却する冷却システムであって、
調整可能な冷却力をもって少なくとも前記回転電機を冷却する冷却手段と、
前記回転電機の回転数を検出する回転数検出手段と、
前記回転電機の温度を反映する物理量である温度反映物理量を検出する温度反映物理量検出手段と、
前記回転電機の回転数の絶対値が所定値より大きいときには前記検出された温度反映物理量と所定の関係とに基づく冷却力で前記回転電機が冷却されるよう前記冷却手段を制御し、前記回転電機の回転数の絶対値が前記所定値以下であるときには前記検出された温度反映物理量と前記所定の関係とに基づく冷却力より大きな冷却力で前記回転電機が冷却されるよう前記冷却手段を制御する制御手段と、
を備えることを要旨とする。
The cooling system of the present invention comprises:
A cooling system for cooling a rotating electrical machine,
Cooling means for cooling at least the rotating electrical machine with adjustable cooling power;
A rotational speed detection means for detecting the rotational speed of the rotating electrical machine;
Temperature reflected physical quantity detecting means for detecting a temperature reflected physical quantity that is a physical quantity reflecting the temperature of the rotating electrical machine;
When the absolute value of the rotational speed of the rotating electrical machine is greater than a predetermined value, the cooling means is controlled to cool the rotating electrical machine with a cooling power based on the detected temperature-reflecting physical quantity and a predetermined relationship; When the absolute value of the number of rotations is less than or equal to the predetermined value, the cooling means is controlled so that the rotating electrical machine is cooled with a cooling power larger than the cooling power based on the detected temperature reflected physical quantity and the predetermined relationship. Control means;
It is a summary to provide.

この本発明の冷却システムでは、回転電機の回転数の絶対値が所定値より大きいときには回転電機の温度を反映する温度反映物理量と所定の関係とに基づく冷却力で回転電機が冷却されるよう冷却手段を制御し、回転電機の回転数の絶対値が所定値以下であるときには温度反映物理量と所定の関係とに基づく冷却力より大きな冷却力で回転電機が冷却されるよう冷却手段を制御する。回転電機の回転数の絶対値が所定値以下であるときに回転電機の冷却が促進されるから、回転電機の温度上昇を抑制することができる。ここで、「温度反映物理量」には回転電機の温度や回転電機から出力されるトルクが含まれ、「所定値」には値0が含まれる。ここで、「回転電機」には、電動機や発電機が含まれる。   In the cooling system of the present invention, when the absolute value of the rotational speed of the rotating electrical machine is larger than a predetermined value, the cooling electrical machine is cooled so that the rotating electrical machine is cooled by a cooling force based on a temperature reflection physical quantity reflecting the temperature of the rotating electrical machine and a predetermined relationship. When the absolute value of the rotational speed of the rotating electrical machine is equal to or less than a predetermined value, the cooling means is controlled so that the rotating electrical machine is cooled with a cooling power larger than the cooling power based on the temperature reflected physical quantity and the predetermined relationship. Since the cooling of the rotating electrical machine is promoted when the absolute value of the rotational speed of the rotating electrical machine is equal to or less than a predetermined value, an increase in the temperature of the rotating electrical machine can be suppressed. Here, the “temperature reflecting physical quantity” includes the temperature of the rotating electrical machine and the torque output from the rotating electrical machine, and the “predetermined value” includes the value 0. Here, the “rotary electric machine” includes an electric motor and a generator.

こうした本発明の冷却システムにおいて、前記所定の関係は、前記検出された温度反映物理量により反映される前記回転電機の温度が高くなるほど前記冷却手段の冷却力が大きくなる関係であるものとすることもできる。こうすれば、回転電機が高温に至るのを抑制することができる。   In such a cooling system of the present invention, the predetermined relationship may be a relationship in which the cooling power of the cooling means increases as the temperature of the rotating electrical machine reflected by the detected temperature reflecting physical quantity increases. it can. If it carries out like this, it can suppress that a rotary electric machine reaches high temperature.

また、本発明の冷却システムにおいて、前記制御手段は、前記回転電機の回転数の絶対値が前記所定値以下であるときに前記温度反映物理量により反映される前記回転電機の温度が所定温度以下であるときには前記温度反映物理量と前記所定の関係とに基づく冷却力で前記回転電機が冷却されるよう前記冷却手段を制御する手段であるものとすることもできる。こうすれば、回転電機が過剰に冷却されるのを抑制することができる。   In the cooling system of the present invention, the control means may be configured such that when the absolute value of the rotational speed of the rotating electrical machine is equal to or less than the predetermined value, the temperature of the rotating electrical machine reflected by the temperature reflecting physical quantity is equal to or lower than the predetermined temperature. In some cases, the cooling means may be controlled so that the rotating electrical machine is cooled by a cooling force based on the temperature-reflecting physical quantity and the predetermined relationship. In this way, it is possible to prevent the rotating electrical machine from being excessively cooled.

さらに、本発明の冷却システムにおいて、前記冷却手段は、前記回転電機に冷却媒体を循環させる循環流路に前記冷却媒体を圧送する圧送手段と、前記冷却媒体を外気との熱交換により冷却するラジエータとを有し、前記圧送手段により圧送される冷却媒体の流量を調整することにより冷却力を調整可能な手段であるものとすることもできる。こうすれば、冷却媒体の流量を調整することにより冷却手段の冷却力を調整することができる。この場合において、前記冷却手段は、前記ラジエータへ外気を供給する送風手段を有し、該送風手段により前記ラジエータへ供給される外気の量を調整することにより冷却力を調整可能な手段であるものとすることもできる。こうすれば、ラジエータへ供給される外気の量を調整することにより冷却手段の冷却力を調整することができる。   Further, in the cooling system of the present invention, the cooling means includes a pressure feeding means for pumping the cooling medium to a circulation flow path for circulating the cooling medium to the rotating electrical machine, and a radiator for cooling the cooling medium by heat exchange with outside air. The cooling power can be adjusted by adjusting the flow rate of the cooling medium pumped by the pumping means. In this way, the cooling power of the cooling means can be adjusted by adjusting the flow rate of the cooling medium. In this case, the cooling means has air blowing means for supplying the outside air to the radiator, and the cooling power can be adjusted by adjusting the amount of the outside air supplied to the radiator by the air blowing means. It can also be. If it carries out like this, the cooling power of a cooling means can be adjusted by adjusting the quantity of the external air supplied to a radiator.

本発明の車両は、回転電機と、該回転電機を冷却する上述したいずれかの態様の本発明の冷却システム、すなわち、基本的には、回転電機を冷却する冷却システムであって、調整可能な冷却力をもって少なくとも前記回転電機を冷却する冷却手段と、前記回転電機の回転数を検出する回転数検出手段と、前記回転電機の温度を反映する物理量である温度反映物理量を検出する温度反映物理量検出手段と、前記回転電機の回転数の絶対値が所定値より大きいときには前記検出された温度反映物理量と所定の関係とに基づく冷却力で前記回転電機が冷却されるよう前記冷却手段を制御し、前記回転電機の回転数の絶対値が前記所定値以下であるときには前記検出された温度反映物理量と前記所定の関係とに基づく冷却力より大きな冷却力で前記回転電機が冷却されるよう前記冷却手段を制御する制御手段と、を備える冷却システムと、を備えることを要旨とする。   The vehicle of the present invention is a rotating electrical machine and the cooling system of the present invention according to any one of the above-described embodiments that cools the rotating electrical machine, that is, a cooling system that basically cools the rotating electrical machine, and is adjustable. Cooling means for cooling at least the rotating electrical machine with cooling power, rotational speed detecting means for detecting the rotational speed of the rotating electrical machine, and temperature reflecting physical quantity detection for detecting a temperature reflecting physical quantity that is a physical quantity reflecting the temperature of the rotating electrical machine And when the absolute value of the rotational speed of the rotating electrical machine is greater than a predetermined value, the cooling means is controlled so that the rotating electrical machine is cooled with a cooling power based on the detected temperature reflected physical quantity and a predetermined relationship, When the absolute value of the rotation speed of the rotating electrical machine is equal to or less than the predetermined value, the rotation power is larger than the cooling power based on the detected temperature-reflecting physical quantity and the predetermined relationship. Electric is summarized in that comprising, a cooling system and a control means for controlling the cooling means to be cooled.

この本発明の車両では、上述したいずれかの態様の本発明の冷却システムを備えるから、本発明の冷却システムの奏する効果、例えば、回転電機の冷却が促進されて回転電機の温度上昇を抑制することができる効果と同様の効果を奏することができる。   Since the vehicle of the present invention includes the cooling system of the present invention according to any one of the aspects described above, the effects of the cooling system of the present invention, for example, cooling of the rotating electrical machine is promoted to suppress the temperature rise of the rotating electrical machine. The same effects as those that can be achieved can be achieved.

こうした本発明の車両において、前記回転電機は、走行用の駆動源の一つとして用いられてなるものとすることもできる。この場合において、車軸に接続された駆動軸に動力を出力する内燃機関と、前記駆動軸に接続されると共に該駆動軸とは独立に回転可能に前記内燃機関の出力軸に接続され電力と動力の入出力を伴って前記内燃機関からの動力の少なくとも一部を前記駆動軸に出力可能な電力動力入出力手段と、を備え、前記回転電機は、前記駆動軸に動力を出力可能に接続されてなり、前記冷却システムは、前記回転電機と前記回転調整手段とを冷却する手段であるものとすることもできる。   In the vehicle according to the present invention, the rotating electrical machine may be used as one of driving sources for traveling. In this case, an internal combustion engine that outputs power to a drive shaft connected to an axle, and an electric power and power connected to the output shaft of the internal combustion engine that is connected to the drive shaft and is rotatable independently of the drive shaft. Power input / output means capable of outputting at least part of the power from the internal combustion engine to the drive shaft with the input / output of the rotating electrical machine, and the rotating electrical machine is connected to the drive shaft so as to be able to output power. Thus, the cooling system may be a means for cooling the rotating electrical machine and the rotation adjusting means.

本発明の冷却システムの制御方法は、
調整可能な冷却力をもって少なくとも回転電機を冷却する冷却手段を備える冷却システムの制御方法であって、
前記回転電機の回転数を検出する回転数検出手段と、
前記回転電機の温度を反映する物理量である温度反映物理量を検出する温度反映物理量検出手段と、
前記回転電機の回転数の絶対値が所定値より大きいときには前記回転電機の温度を反映する物理量である温度反映物理量と所定の関係とに基づく冷却力で前記回転電機が冷却されるよう前記冷却手段を制御し、前記回転電機の回転数の絶対値が前記所定値以下であるときには前記温度反映物理量と前記所定の関係とに基づく冷却力より大きな冷却力で前記回転電機が冷却されるよう前記冷却手段を制御する
ことを特徴とする。
The cooling system control method of the present invention includes:
A control method of a cooling system comprising cooling means for cooling at least a rotating electrical machine with an adjustable cooling power,
A rotational speed detection means for detecting the rotational speed of the rotating electrical machine;
Temperature reflected physical quantity detecting means for detecting a temperature reflected physical quantity that is a physical quantity reflecting the temperature of the rotating electrical machine;
When the absolute value of the rotational speed of the rotating electrical machine is greater than a predetermined value, the cooling means is configured to cool the rotating electrical machine with a cooling force based on a temperature reflecting physical quantity that is a physical quantity reflecting the temperature of the rotating electrical machine and a predetermined relationship. And when the absolute value of the rotational speed of the rotating electrical machine is equal to or less than the predetermined value, the cooling electrical machine is cooled with a cooling power larger than the cooling power based on the temperature reflected physical quantity and the predetermined relationship. It is characterized by controlling the means.

この本発明の冷却システムの制御方法では、回転電機の回転数の絶対値が所定値より大きいときには回転電機の温度を反映する温度反映物理量と所定の関係とに基づく冷却力で回転電機が冷却されるよう冷却手段を制御し、回転電機の回転数の絶対値が所定値以下であるときには温度反映物理量と所定の関係とに基づく冷却力より大きな冷却力で回転電機が冷却されるよう冷却手段を制御する。回転電機の回転数の絶対値が所定値以下であるときに回転電機の冷却が促進されるから、回転電機の温度上昇を抑制することができる。ここで、「回転電機」には、電動機や発電機が含まれる。   In this cooling system control method of the present invention, when the absolute value of the rotational speed of the rotating electrical machine is greater than a predetermined value, the rotating electrical machine is cooled with a cooling force based on a temperature-reflecting physical quantity that reflects the temperature of the rotating electrical machine and a predetermined relationship. The cooling means is controlled so that when the absolute value of the rotational speed of the rotating electrical machine is equal to or less than a predetermined value, the rotating electrical machine is cooled with a cooling power larger than the cooling power based on the temperature reflected physical quantity and the predetermined relationship. Control. Since the cooling of the rotating electrical machine is promoted when the absolute value of the rotational speed of the rotating electrical machine is equal to or less than a predetermined value, an increase in the temperature of the rotating electrical machine can be suppressed. Here, the “rotary electric machine” includes an electric motor and a generator.

次に、本発明を実施するための最良の形態を実施例を用いて説明する。   Next, the best mode for carrying out the present invention will be described using examples.

図1は、本発明の一実施例としての冷却システムを搭載した電気自動車20の構成の概略を示す構成図である。電気自動車20は、図1に示すように、駆動輪21a,21bに動力を出力可能なモータ22とバッテリ26から供給された電力を用いてモータ22を駆動するインバータ24とを有する駆動装置27と、冷却媒体として冷却水を用いてモータ22およびインバータ24を冷却する冷却装置28と、自動車全体を制御すると共に冷却装置28の一部としても機能する電子制御ユニット40とを備える。   FIG. 1 is a configuration diagram showing an outline of a configuration of an electric vehicle 20 equipped with a cooling system as an embodiment of the present invention. As shown in FIG. 1, the electric vehicle 20 includes a drive device 27 having a motor 22 that can output power to the drive wheels 21 a and 21 b and an inverter 24 that drives the motor 22 using electric power supplied from the battery 26. A cooling device 28 that cools the motor 22 and the inverter 24 using cooling water as a cooling medium, and an electronic control unit 40 that controls the entire automobile and also functions as a part of the cooling device 28 are provided.

冷却装置28は、冷却水を外気との熱交換により冷却するラジエータ30と、ラジエータ30に外気を供給する電動の冷却ファン32と、モータ22およびインバータ24に冷却水を循環させる循環流路34と、循環流路34に冷却水を圧送する電動のウォーターポンプ36とを備え、冷却ファン32から供給される外気との熱交換によりラジエータ30内で冷却される冷却水をウォーターポンプ36によって循環流路34内で循環させることにより、モータ22やインバータ24を冷却する。   The cooling device 28 includes a radiator 30 that cools the cooling water by heat exchange with the outside air, an electric cooling fan 32 that supplies the outside air to the radiator 30, and a circulation passage 34 that circulates the cooling water to the motor 22 and the inverter 24. An electric water pump 36 that pumps the cooling water to the circulation flow path 34, and the cooling water cooled in the radiator 30 by heat exchange with the outside air supplied from the cooling fan 32 is circulated by the water pump 36. By circulating in 34, the motor 22 and the inverter 24 are cooled.

電子制御ユニット40は、CPU42を中心とするマイクロプロセッサとして構成されており、CPU42の他に処理プログラムを記憶するROM44と、データを一時的に記憶するRAM46と、図示しない入出力ポートと通信ポートとを備える。電子制御ユニット40には、モータ22の回転位置を検出する回転位置検出センサ23からの回転位置θmやインバータ24の冷却水の流路の上流側に取り付けられ冷却水の温度を検出する冷却水温度センサ39からの冷却水温度Twなどが入力ポートを介して入力されている。また、電子制御ユニット40からはモータ22を制御するためのインバータ24のスイッチング素子へのスイッチング信号やウォーターポンプ36を駆動制御するための駆動制御信号,冷却ファン32を駆動制御するための駆動制御信号などが出力ポートを介して出力されている。   The electronic control unit 40 is configured as a microprocessor centered on the CPU 42. In addition to the CPU 42, a ROM 44 for storing processing programs, a RAM 46 for temporarily storing data, an input / output port and a communication port (not shown), Is provided. The electronic control unit 40 is provided with a rotational temperature θm from a rotational position detection sensor 23 that detects the rotational position of the motor 22 and a cooling water temperature that is attached upstream of the cooling water flow path of the inverter 24 and detects the temperature of the cooling water. The coolant temperature Tw from the sensor 39 is input via the input port. In addition, the electronic control unit 40 controls a switching signal to the switching element of the inverter 24 for controlling the motor 22, a driving control signal for driving and controlling the water pump 36, and a driving control signal for driving and controlling the cooling fan 32. Etc. are output via the output port.

こうして構成された実施例の冷却装置28では、ウォーターポンプ36により圧送される冷却水の流量や冷却ファン32からラジエータ30に供給される外気の量を調整することによりモータ22やインバータ24を冷却する冷却力が調整される。   In the cooling device 28 of the embodiment thus configured, the motor 22 and the inverter 24 are cooled by adjusting the flow rate of the cooling water pumped by the water pump 36 and the amount of outside air supplied from the cooling fan 32 to the radiator 30. Cooling power is adjusted.

次に、こうして構成された実施例の冷却装置28の動作、特に、ウォーターポンプ36を駆動する際の動作について説明する。図3は、電子制御ユニット40により実行されるウォーターポンプ駆動制御ルーチンの一例を示すフローチャートである。このルーチンは、所定時間毎(例えば数msec毎)に繰り返し実行される。   Next, the operation of the cooling device 28 of the embodiment thus configured, particularly the operation when driving the water pump 36 will be described. FIG. 3 is a flowchart showing an example of a water pump drive control routine executed by the electronic control unit 40. This routine is repeatedly executed every predetermined time (for example, every several msec).

ウォーターポンプ駆動制御ルーチンが実行されると、電子制御ユニット40は、まず、回転位置検出センサ23からの回転位置θmや冷却水温度センサ39からの冷却水温度Twなど制御に必要なデータを入力する処理を実行し(ステップS100)、入力した回転位置θmに基づいて計算されるモータ22の回転数Nmの絶対値と閾値Nrefとを比較する(ステップS110)。ここで、閾値Nrefは、モータ22の停止が予測される回転数の閾値として設定され、値0を含む比較的低い回転数(例えば、50rpm)に設定されるものとする。モータ22の回転数Nmの絶対値と閾値Nrefとを比較するのは、モータ22の回転が停止すると、モータ22の各相コイルの特定の一相に電流が集中する電流集中状態になってモータ22やインバータ24の温度が上昇することがあるため、既にこうした電流集中状態に至っているかや電流集中状態に至る可能性があるか否を判定するためである。   When the water pump drive control routine is executed, the electronic control unit 40 first inputs data necessary for control such as the rotational position θm from the rotational position detection sensor 23 and the coolant temperature Tw from the coolant temperature sensor 39. The process is executed (step S100), and the absolute value of the rotational speed Nm of the motor 22 calculated based on the input rotational position θm is compared with the threshold value Nref (step S110). Here, the threshold value Nref is set as a threshold value for the rotational speed at which the motor 22 is predicted to stop, and is set to a relatively low rotational speed (for example, 50 rpm) including the value 0. The absolute value of the rotation speed Nm of the motor 22 is compared with the threshold value Nref because when the rotation of the motor 22 stops, the motor 22 enters a current concentration state in which current concentrates on a specific phase of each phase coil of the motor 22. This is because the temperature of the inverter 22 or the inverter 24 may rise, so that it is determined whether or not there is a possibility of reaching such a current concentration state or a current concentration state.

モータ22の回転数Nmの絶対値が閾値Nrefより大きいときには、電流集中状態に至る可能性がないため、通常の冷却力でモータ22やインバータ24が冷却されるよう冷却水温Twに基づいてウォーターポンプ36の目標回転数Nw*を設定する(ステップS130)。ここで、目標回転数Nw*は、モータ22やインバータ24を冷却するのに充分な流量の冷却水を循環流路34に圧送可能な回転数として設定され、実施例では、冷却水温Twとウォーターポンプ36の回転数Nwとの関係を予め定めて回転数設定用マップとしてROM74に記憶しておき、冷却水温Twが与えられるとマップから対応する回転数として導出されたものを目標回転数Nw*として設定するものとする。図3に回転数設定用マップの一例を示す。図示するように、ウォーターポンプ36の回転数は、冷却水温Twの上昇に比例して高くなるよう設定されるものとした。このように設定するのは、冷却水温Twはモータ22やインバータ24の温度を反映していて冷却水温Twが上昇するほどモータ22やインバータ24の温度が上昇していると考えられ、冷却水温Twの上昇に比例してウォーターポンプ36の回転数を高くすることにより冷却装置28の冷却力を大きくするためである。   When the absolute value of the rotational speed Nm of the motor 22 is larger than the threshold value Nref, there is no possibility of reaching a current concentration state, so that the water pump is based on the cooling water temperature Tw so that the motor 22 and the inverter 24 are cooled with normal cooling power. A target rotational speed Nw * of 36 is set (step S130). Here, the target rotational speed Nw * is set as the rotational speed at which cooling water having a flow rate sufficient to cool the motor 22 and the inverter 24 can be pumped to the circulation flow path 34. In the embodiment, the cooling water temperature Tw and water The relationship with the rotational speed Nw of the pump 36 is determined in advance and stored in the ROM 74 as a rotational speed setting map, and when the cooling water temperature Tw is given, the value derived from the map as the corresponding rotational speed is the target rotational speed Nw *. Shall be set as FIG. 3 shows an example of the rotation speed setting map. As shown in the figure, the rotational speed of the water pump 36 is set to increase in proportion to the increase in the cooling water temperature Tw. The reason for setting in this way is that the cooling water temperature Tw reflects the temperature of the motor 22 and the inverter 24, and it is considered that the temperature of the motor 22 and the inverter 24 increases as the cooling water temperature Tw increases. This is because the cooling power of the cooling device 28 is increased by increasing the number of rotations of the water pump 36 in proportion to the increase in the temperature.

こうしてウォーターポンプ36の目標回転数Nw*を設定したら、ウォーターポンプ36が設定した目標回転数Nw*で駆動するようウォーターポンプ36を駆動制御して(ステップS150)、本ルーチンを終了する。こうして、モータ22の回転数Nmの絶対値が閾値Nrefより大きいときには、通常の冷却力でモータ22やインバータ24が冷却されるようウォーターポンプ36を駆動制御することにより、モータ22やインバータ24を適正に冷却することができる。   When the target rotational speed Nw * of the water pump 36 is thus set, the water pump 36 is driven and controlled to drive at the target rotational speed Nw * set by the water pump 36 (step S150), and this routine is terminated. Thus, when the absolute value of the rotational speed Nm of the motor 22 is larger than the threshold value Nref, the motor 22 and the inverter 24 are appropriately controlled by driving and controlling the water pump 36 so that the motor 22 and the inverter 24 are cooled with normal cooling power. Can be cooled to.

モータ22の回転数Nmの絶対値が閾値Nref以下であるときには(ステップS110)、続いて、冷却水温Twと閾値Twrefとを比較する(ステップS120)。ここで、閾値Twrefは、通常の冷却力でモータ22やインバータ24を冷却しながらモータ22の回転数Nmが値0近傍で滞留したときにモータ22やインバータ24が高温に至ることがないと判断可能なモータ22やインバータ24の温度の上限値を反映する冷却水温として設定されるものとする。冷却水温Twが閾値Twref以下であるときには、モータ22やインバータ24の温度が充分低いため、通常の冷却力で冷却することが可能であると判断にして、ステップS130,S150の処理を終了して、本ルーチンを終了する。   When the absolute value of the rotational speed Nm of the motor 22 is equal to or less than the threshold value Nref (step S110), the coolant temperature Tw and the threshold value Twref are subsequently compared (step S120). Here, the threshold value Twref is determined that the motor 22 or the inverter 24 does not reach a high temperature when the rotation speed Nm of the motor 22 stays near 0 while cooling the motor 22 or the inverter 24 with a normal cooling power. It is assumed that the cooling water temperature is set to reflect the upper limit value of the possible motor 22 or inverter 24 temperature. When the cooling water temperature Tw is equal to or lower than the threshold value Twref, it is determined that the motor 22 and the inverter 24 are sufficiently low in temperature and can be cooled with normal cooling power, and the processing of steps S130 and S150 is completed. This routine is terminated.

一方、冷却水温Twが閾値Twrefより高いときには(ステップS110)、通常の冷却力でモータ22やインバータ24を冷却するとモータ22やインバータ24が高温に至る可能性があると判断して、冷却水温Twと図3に例示した回転数設定用マップとを用いて設定した回転数に所定の加算回転数Nw1を加えた回転数をモータ22の目標回転数Nw*として設定し(ステップS140)、設定した目標回転数Nw*でウォーターポンプ36が駆動するようウォーターポンプ36の駆動制御して(ステップS150)、本ルーチンを終了する。ステップS140の処理で、加算回転数Nw1は、モータ22の回転数が値0近傍に滞留したときにモータ22やインバータ24の温度上昇を充分に抑制可能な流量の冷却水を循環流路34に圧送可能なウォーターポンプ36の回転数に基づいて設定されるものとした。図4は、冷却水温Twが閾値Twrefより高い場合におけるモータ22の温度の時間変化の一例を説明する説明図である。実線は、実施例の冷却装置28を用いてモータ22やインバータ24を冷却した場合のモータ22の温度やモータ22の回転数Nm,ウォーターポンプ36の目標回転数Nw*を示している。比較のため、モータ22の回転数Nmの絶対値が閾値Nref以下であると共に冷却水温Twが閾値Twrefより高いときでも、通常の冷却力でモータ22やインバータ24を冷却した場合のモータ22の温度の変化を破線で示している。通常の冷却力で冷却している場合には、図中破線で示すように、モータ22の回転数Nmが値0となったときにモータ22の温度が急激に上昇する。一方、実施例の冷却装置28では、図中実線で示すように、モータ22の回転数Nmの絶対値が閾値Nref以下となったときにウォーターポンプ36の回転数を高くして冷却装置28の冷却力を通常より大きくするから、モータ22やインバータ24の温度上昇を抑制することができる。しかも、モータ22の温度が上昇する前に冷却装置28の冷却力を大きくするから、モータ22の温度が上昇してから冷却装置28の冷却力を大きくするものに比してモータ22やインバータ24の温度の上昇をより抑制することができる。   On the other hand, when the cooling water temperature Tw is higher than the threshold value Twref (step S110), it is determined that there is a possibility that the motor 22 or the inverter 24 will reach a high temperature when the motor 22 or the inverter 24 is cooled with a normal cooling power. 3 is set as the target rotational speed Nw * of the motor 22 by setting the rotational speed set using the rotational speed setting map illustrated in FIG. 3 and the predetermined additional rotational speed Nw1 (step S140). The drive of the water pump 36 is controlled so that the water pump 36 is driven at the target rotational speed Nw * (step S150), and this routine is finished. In the process of step S140, the additional rotation speed Nw1 is set to the circulation flow path 34 with a flow rate of cooling water that can sufficiently suppress the temperature rise of the motor 22 and the inverter 24 when the rotation speed of the motor 22 stays near 0. It was set based on the number of rotations of the water pump 36 that can be pumped. FIG. 4 is an explanatory diagram illustrating an example of a temporal change in the temperature of the motor 22 when the coolant temperature Tw is higher than the threshold value Twref. A solid line indicates the temperature of the motor 22, the rotational speed Nm of the motor 22, and the target rotational speed Nw * of the water pump 36 when the motor 22 and the inverter 24 are cooled using the cooling device 28 of the embodiment. For comparison, even when the absolute value of the rotational speed Nm of the motor 22 is equal to or lower than the threshold value Nref and the cooling water temperature Tw is higher than the threshold value Twref, the temperature of the motor 22 when the motor 22 or the inverter 24 is cooled with normal cooling power. This change is indicated by a broken line. When cooling with normal cooling power, as indicated by a broken line in the figure, when the rotation speed Nm of the motor 22 becomes 0, the temperature of the motor 22 rapidly increases. On the other hand, in the cooling device 28 of the embodiment, as shown by the solid line in the figure, when the absolute value of the rotational speed Nm of the motor 22 is equal to or less than the threshold value Nref, the rotational speed of the water pump 36 is increased to increase the speed of the cooling device 28. Since the cooling power is made larger than usual, the temperature rise of the motor 22 and the inverter 24 can be suppressed. Moreover, since the cooling power of the cooling device 28 is increased before the temperature of the motor 22 rises, the motor 22 and the inverter 24 are compared to those in which the cooling power of the cooling device 28 is increased after the temperature of the motor 22 rises. The temperature rise can be further suppressed.

以上説明した実施例の電気自動車20によれば、モータ22の回転数Nmが閾値Nref以下であると共に冷却水温Twが閾値Twrefより大きいときには冷却装置28のウォーターポンプ36の回転数を上昇させるから、冷却装置28の冷却力を大きくすることができ、モータ22やインバータ24の温度の上昇を抑制することができる。このとき、冷却水温Twが大きければ大きいほどウォーターポンプ36の回転数を上昇させて冷却装置28の冷却力を大きくするから、より適正にモータ22やインバータ24の温度上昇を抑制することができる。   According to the electric vehicle 20 of the embodiment described above, the rotation speed of the water pump 36 of the cooling device 28 is increased when the rotation speed Nm of the motor 22 is equal to or lower than the threshold value Nref and the cooling water temperature Tw is higher than the threshold value Twref. The cooling power of the cooling device 28 can be increased, and an increase in temperature of the motor 22 and the inverter 24 can be suppressed. At this time, the higher the cooling water temperature Tw is, the higher the rotation speed of the water pump 36 is increased and the cooling power of the cooling device 28 is increased. Therefore, the temperature rise of the motor 22 and the inverter 24 can be suppressed more appropriately.

実施例の電気自動車20では、ステップS140の処理で加算回転数Nw1を冷却水温Twに拘わらず一定の値に設定されるものとしたが、加算回転数Nw1を冷却水温Twが大きくなるほど大きく設定されるものとしてもよい。   In the electric vehicle 20 of the embodiment, the additional rotation speed Nw1 is set to a constant value regardless of the cooling water temperature Tw in the process of step S140. However, the additional rotation speed Nw1 is set larger as the cooling water temperature Tw increases. It is good also as a thing.

実施例の電気自動車20では、図3に例示した回転数設定用マップでは、ウォーターポンプ36の回転数が冷却水温Twに比例して大きくなるものとしたが、ウォーターポンプ36の回転数を冷却水温Twが高くなるほど大きくなる傾向に設定すればよく、モータ22の回転数Nmを冷却水温Twに対してステップ状に大きく設定したり、曲線状に大きく設定するものとしてもよい。   In the electric vehicle 20 of the embodiment, in the rotation speed setting map illustrated in FIG. 3, the rotation speed of the water pump 36 is increased in proportion to the cooling water temperature Tw. What is necessary is just to set to the tendency which becomes large, so that Tw becomes high, and it is good also as what sets the rotation speed Nm of the motor 22 large stepwise with respect to the cooling water temperature Tw, or large curve shape.

実施例の電気自動車20では、図3に例示した回転数設定用マップにおけるウォーターポンプ36の回転数やステップS140の処理で用いられる加算回転数Nw1は、冷却水温Twを用いて設定されるものとしたが、モータ22の温度を反映する物理量であれば如何なるものを用いて設定されるものとしてもよく、例えば、モータ22の温度やモータ22から出力されるトルクなどを用いて設定するものとしてもよい。   In the electric vehicle 20 of the embodiment, the rotation speed of the water pump 36 in the rotation speed setting map illustrated in FIG. 3 and the additional rotation speed Nw1 used in the process of step S140 are set using the cooling water temperature Tw. However, any physical quantity that reflects the temperature of the motor 22 may be used. For example, the physical quantity may be set using the temperature of the motor 22 or the torque output from the motor 22. Good.

実施例の電気自動車20では、モータ22の回転数Nmの絶対値が閾値Nref以下であっても冷却水温Twが閾値Twrefより低いときにはモータ22やインバータ24を通常の冷却力で冷却するものとしたが、冷却水温Twと閾値Twrefとを比較する処理を実行せずにモータ22の回転数Nmの絶対値が閾値Nref以下であるときにはモータ22やインバータ24を通常より大きい冷却力で冷却するものとしてもよい。   In the electric vehicle 20 of the embodiment, even when the absolute value of the rotational speed Nm of the motor 22 is equal to or lower than the threshold value Nref, the motor 22 and the inverter 24 are cooled with normal cooling power when the cooling water temperature Tw is lower than the threshold value Twref. However, when the absolute value of the rotational speed Nm of the motor 22 is not more than the threshold value Nref without executing the process of comparing the cooling water temperature Tw and the threshold value Twref, the motor 22 and the inverter 24 are cooled with a cooling power larger than usual. Also good.

実施例の電気自動車20では、ウォーターポンプ36の回転数を調整することにより冷却装置28の冷却力を調整するものとしたが、冷却ファン32からラジエータ30へ送風する風量を調整することにより冷却力を調整するものとしてもよいし、ウォーターポンプ36および冷却ファン32の双方の回転数を調整することにより冷却力を調整するものとしてもよい。   In the electric vehicle 20 of the embodiment, the cooling power of the cooling device 28 is adjusted by adjusting the rotational speed of the water pump 36, but the cooling power is adjusted by adjusting the amount of air blown from the cooling fan 32 to the radiator 30. The cooling power may be adjusted by adjusting the rotational speeds of both the water pump 36 and the cooling fan 32.

実施例の電気自動車20では、駆動装置27は、モータ22を駆動源とするものとしたが、こうしたモータ22やバッテリ26に加えて、図5の変形例の電気自動車120に例示するように、車軸に接続された駆動軸132に遊星歯車機構126を介してエンジン122とモータ130とが接続されているものとしてもよい。この場合において、冷却装置28は、モータ22やインバータ24に加えてモータ130やモータ130を駆動するインバータ124を冷却するものとするのが望ましい。また、図6の変形例の電気自動車220に例示するように、駆動装置27を、エンジン222と、エンジン222のクランクシャフトに接続されたインナーロータ232と駆動輪21a,21bに連結された駆動軸に接続されたアウターロータ234とを有しエンジン222の動力の一部を駆動軸32に伝達すると共に残余の動力を電力に変換する対ロータ電動機230と、を備えるものとしてもよい。この場合において、冷却装置28は、モータ22やインバータ24に加えて対ロータ電動機230や対ロータ電動機230を駆動するインバータ234を冷却するものとするのが望ましい。また、こうした駆動装置に搭載されたモータを冷却することに適用する場合に限定するものではなく、駆動装置に搭載されていない形態のモータなど如何なるモータに用いてもよい。また、モータは、電動機として駆動できるものに限定したものではなく、発電機として駆動することができるものや発電機として駆動することができると共に電動機として駆動できる回転電機として構成されているものとしてもよい。さらに、こうした駆動装置の冷却装置の制御方法の形態であるものとしてもよい。   In the electric vehicle 20 of the embodiment, the drive device 27 is assumed to have the motor 22 as a drive source. However, in addition to the motor 22 and the battery 26, as illustrated in the electric vehicle 120 of the modified example of FIG. The engine 122 and the motor 130 may be connected to the drive shaft 132 connected to the axle via the planetary gear mechanism 126. In this case, it is desirable that the cooling device 28 cools the motor 130 and the inverter 124 that drives the motor 130 in addition to the motor 22 and the inverter 24. Further, as exemplified in the electric vehicle 220 of the modified example of FIG. 6, the drive device 27 includes a drive shaft connected to the engine 222, the inner rotor 232 connected to the crankshaft of the engine 222, and the drive wheels 21 a and 21 b. And an outer rotor 234 connected to the counter rotor motor 230 that transmits a part of the power of the engine 222 to the drive shaft 32 and converts the remaining power into electric power. In this case, it is desirable that the cooling device 28 cools the counter-rotor motor 230 and the inverter 234 that drives the counter-rotor motor 230 in addition to the motor 22 and the inverter 24. In addition, the present invention is not limited to the case where the motor mounted on the driving device is cooled, and may be used for any motor such as a motor that is not mounted on the driving device. In addition, the motor is not limited to one that can be driven as an electric motor, and may be one that can be driven as a generator or one that can be driven as a generator and that is configured as a rotating electrical machine that can be driven as an electric motor. Good. Furthermore, it may be in the form of a method for controlling the cooling device of such a drive device.

ここで、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、モータ22が「回転電機」に相当し、調整可能な冷却力をもってモータ22を冷却する冷却装置28が「冷却手段」に相当し、冷却水温Twを検出する冷却水温センサ39が「温度反映物理量検出手段」に相当し、モータ22の回転数Nmの絶対値が閾値Nrefより大きいときに図3に例示した回転数設定用マップを用いてウォーターポンプ36の目標回転数Nw*を設定するステップS130の処理やモータ22の回転数Nmの絶対値が閾値Nref以下であるときに図3に例示した回転数設定用マップを用いて設定された回転数Nw1に回転数Nw2を加えた回転数をウォーターポンプ36の目標回転数Nw*として設定するステップS140の処理,設定された目標回転数Nw*でウォーターポンプ36が駆動するようウォーターポンプ36を駆動制御するステップS150の処理を実行する電子制御ユニット40が「制御手段」に相当する。また、車軸に接続された駆動軸132に動力を出力するエンジン122が「内燃機関」に相当し、駆動軸132に接続されると共に駆動軸132とは独立に回転可能にエンジン122の出力軸に接続され電力と動力の入出力を伴ってエンジン122からの動力の少なくとも一部を駆動軸132に出力可能な遊星歯車機構126とモータ122とを有する構成が「電力動力入出力手段」に相当する。モータ130や対ロータ電動機230も「回転電機」に相当する。なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための最良の形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。   Here, the correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problems will be described. In the embodiment, the motor 22 corresponds to “rotary electric machine”, the cooling device 28 that cools the motor 22 with adjustable cooling power corresponds to “cooling means”, and the cooling water temperature sensor 39 that detects the cooling water temperature Tw includes “ Corresponding to “temperature reflected physical quantity detection means”, when the absolute value of the rotational speed Nm of the motor 22 is larger than the threshold value Nref, the target rotational speed Nw * of the water pump 36 is set using the rotational speed setting map illustrated in FIG. Rotation obtained by adding the rotation speed Nw2 to the rotation speed Nw1 set using the rotation speed setting map illustrated in FIG. 3 when the processing in step S130 or the absolute value of the rotation speed Nm of the motor 22 is equal to or less than the threshold value Nref. Step S140 for setting the number as the target rotational speed Nw * of the water pump 36, so that the water pump 36 is driven at the set target rotational speed Nw *. Electronic control unit 40 executing the processing in step S150 for driving and controlling the Otaponpu 36 corresponds to a "control unit". The engine 122 that outputs power to the drive shaft 132 connected to the axle corresponds to an “internal combustion engine”. The engine 122 is connected to the drive shaft 132 and can be rotated independently of the drive shaft 132 to the output shaft of the engine 122. A configuration having a planetary gear mechanism 126 and a motor 122 connected and capable of outputting at least a part of the power from the engine 122 to the drive shaft 132 with input / output of electric power and power corresponds to “power power input / output means”. . The motor 130 and the counter-rotor motor 230 also correspond to the “rotary electric machine”. The correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problem is the same as that of the embodiment described in the column of means for solving the problem. It is an example for specifically explaining the best mode for doing so, and does not limit the elements of the invention described in the column of means for solving the problem. In other words, the interpretation of the invention described in the column of means for solving the problem should be made based on the description of the column, and the examples are those of the invention described in the column of means for solving the problem. It is only a specific example.

以上、本発明を実施するための最良の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   The best mode for carrying out the present invention has been described with reference to the embodiments. However, the present invention is not limited to these embodiments, and various modifications can be made without departing from the gist of the present invention. Of course, it can be implemented in the form.

本発明は、回転電機の冷却装置の製造業や車両の製造業などに利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used in the manufacturing industry of a cooling device for a rotating electrical machine, the manufacturing industry of a vehicle, and the like.

本発明の一実施例である電気自動車20の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the electric vehicle 20 which is one Example of this invention. 実施例の電子制御ユニット40により実行されるウォーターポンプ36の駆動制御ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of the drive control routine of the water pump 36 performed by the electronic control unit 40 of an Example. 回転数設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the map for rotation speed setting. モータ22の温度の時間変化の一例を説明する説明図である。It is explanatory drawing explaining an example of the time change of the temperature of the motor. 変形例の電気自動車120の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the electric vehicle 120 of a modification. 変形例の電気自動車220の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the electric vehicle 220 of a modification.

符号の説明Explanation of symbols

20,120,220 電気自動車、21a,21b 駆動輪、22 モータ、23 回転位置検出センサ、24,124,224 インバータ、26 バッテリ、27 駆動装置、28 冷却装置、30 ラジエータ、32 冷却ファン、34 循環流路、36 ウォーターポンプ、40 電子制御ユニット、42 CPU、44 ROM、46 RAM、122,222 エンジン、126 遊星歯車機構、22,130 モータ、132 駆動軸、230 対ロータ電動機、232 インナーロータ、234 アウターロータ。   20, 120, 220 Electric vehicle, 21a, 21b Drive wheel, 22 Motor, 23 Rotation position detection sensor, 24, 124, 224 Inverter, 26 Battery, 27 Drive device, 28 Cooling device, 30 Radiator, 32 Cooling fan, 34 Circulation Flow path, 36 Water pump, 40 Electronic control unit, 42 CPU, 44 ROM, 46 RAM, 122, 222 Engine, 126 Planetary gear mechanism, 22, 130 Motor, 132 Drive shaft, 230 Counter rotor motor, 232 Inner rotor, 234 Outer rotor.

Claims (9)

回転電機を冷却する冷却システムであって、
調整可能な冷却力をもって少なくとも前記回転電機を冷却する冷却手段と、
前記回転電機の回転数を検出する回転数検出手段と、
前記回転電機の温度を反映する物理量である温度反映物理量を検出する温度反映物理量検出手段と、
前記回転電機の回転数の絶対値が所定値より大きいときには前記検出された温度反映物理量と所定の関係とに基づく冷却力で前記回転電機が冷却されるよう前記冷却手段を制御し、前記回転電機の回転数の絶対値が前記所定値以下であるときには前記検出された温度反映物理量と前記所定の関係とに基づく冷却力より大きな冷却力で前記回転電機が冷却されるよう前記冷却手段を制御する制御手段と、
を備える冷却システム。
A cooling system for cooling a rotating electrical machine,
Cooling means for cooling at least the rotating electrical machine with adjustable cooling power;
A rotational speed detection means for detecting the rotational speed of the rotating electrical machine;
Temperature reflected physical quantity detecting means for detecting a temperature reflected physical quantity that is a physical quantity reflecting the temperature of the rotating electrical machine;
When the absolute value of the rotational speed of the rotating electrical machine is greater than a predetermined value, the cooling means is controlled to cool the rotating electrical machine with a cooling power based on the detected temperature-reflecting physical quantity and a predetermined relationship; When the absolute value of the number of rotations is less than or equal to the predetermined value, the cooling means is controlled so that the rotating electrical machine is cooled with a cooling power larger than the cooling power based on the detected temperature reflected physical quantity and the predetermined relationship. Control means;
With cooling system.
前記所定の関係は、前記検出された温度反映物理量により反映される前記回転電機の温度が高くなるほど前記冷却手段の冷却力が大きくなる関係である請求項1記載の冷却システム。   The cooling system according to claim 1, wherein the predetermined relationship is a relationship in which the cooling power of the cooling unit increases as the temperature of the rotating electrical machine reflected by the detected temperature reflecting physical quantity increases. 前記制御手段は、前記回転電機の回転数の絶対値が前記所定値以下であるときに前記温度反映物理量により反映される前記回転電機の温度が所定温度以下であるときには前記温度反映物理量と前記所定の関係とに基づく冷却力で前記回転電機が冷却されるよう前記冷却手段を制御する手段である請求項1または2記載の冷却システム。   When the absolute value of the rotational speed of the rotating electrical machine is equal to or lower than the predetermined value, the control means is configured to detect the temperature reflected physical quantity and the predetermined speed when the temperature of the rotating electrical machine reflected by the temperature reflected physical quantity is equal to or lower than a predetermined temperature. The cooling system according to claim 1, wherein the cooling means is controlled so that the rotating electrical machine is cooled by a cooling force based on 前記冷却手段は、前記回転電機に冷却媒体を循環させる循環流路に前記冷却媒体を圧送する圧送手段と、前記冷却媒体を外気との熱交換により冷却するラジエータとを有し、前記圧送手段により圧送される冷却媒体の流量を調整することにより冷却力を調整可能な手段である請求項1ないし3いずれか記載の冷却システム。   The cooling means includes a pressure feeding means that pumps the cooling medium to a circulation passage that circulates the cooling medium to the rotating electrical machine, and a radiator that cools the cooling medium by heat exchange with outside air. The cooling system according to any one of claims 1 to 3, wherein the cooling system is a means capable of adjusting a cooling power by adjusting a flow rate of a cooling medium to be pumped. 前記冷却手段は、前記ラジエータへ外気を供給する送風手段を有し、該送風手段により前記ラジエータへ供給される外気の量を調整することにより冷却力を調整可能な手段である請求項4記載の冷却システム。   The said cooling means has a ventilation means which supplies external air to the said radiator, and is a means which can adjust a cooling power by adjusting the quantity of the external air supplied to the said radiator by this ventilation means. Cooling system. 回転電機と、該回転電機を冷却する請求項1ないし5いずれか記載の冷却システムと、を備える車両。   A vehicle comprising: a rotating electrical machine; and the cooling system according to claim 1 that cools the rotating electrical machine. 前記回転電機は、走行用の駆動源の一つとして用いられてなる請求項6記載の車両。   The vehicle according to claim 6, wherein the rotating electric machine is used as one of driving sources for traveling. 請求項7記載の車両であって、
車軸に接続された駆動軸に動力を出力する内燃機関と、
前記駆動軸に接続されると共に該駆動軸とは独立に回転可能に前記内燃機関の出力軸に接続され電力と動力の入出力を伴って前記内燃機関からの動力の少なくとも一部を前記駆動軸に出力可能な電力動力入出力手段と、を備え、
前記回転電機は、前記駆動軸に動力を出力可能に接続されてなり、
前記冷却システムは、前記回転電機と前記回転調整手段とを冷却する手段である
車両。
The vehicle according to claim 7,
An internal combustion engine that outputs power to a drive shaft connected to the axle;
Connected to the drive shaft and connected to the output shaft of the internal combustion engine so as to be rotatable independently of the drive shaft, and at least part of the power from the internal combustion engine with input and output of electric power and power is the drive shaft Power input / output means capable of outputting to
The rotating electrical machine is connected to the drive shaft so that power can be output,
The cooling system is a means for cooling the rotating electrical machine and the rotation adjusting means.
調整可能な冷却力をもって少なくとも回転電機を冷却する冷却手段を備える冷却システムの制御方法であって、
前記回転電機の回転数を検出する回転数検出手段と、
前記回転電機の温度を反映する物理量である温度反映物理量を検出する温度反映物理量検出手段と、
前記回転電機の回転数の絶対値が所定値より大きいときには前記回転電機の温度を反映する物理量である温度反映物理量と所定の関係とに基づく冷却力で前記回転電機が冷却されるよう前記冷却手段を制御し、前記回転電機の回転数の絶対値が前記所定値以下であるときには前記温度反映物理量と前記所定の関係とに基づく冷却力より大きな冷却力で前記回転電機が冷却されるよう前記冷却手段を制御する
ことを特徴とする冷却システムの制御方法。
A control method of a cooling system comprising cooling means for cooling at least a rotating electrical machine with an adjustable cooling power,
A rotational speed detection means for detecting the rotational speed of the rotating electrical machine;
Temperature reflected physical quantity detection means for detecting a temperature reflected physical quantity that is a physical quantity reflecting the temperature of the rotating electrical machine;
When the absolute value of the rotational speed of the rotating electrical machine is greater than a predetermined value, the cooling means is configured to cool the rotating electrical machine with a cooling force based on a temperature reflecting physical quantity that is a physical quantity reflecting the temperature of the rotating electrical machine and a predetermined relationship. And when the absolute value of the rotational speed of the rotating electrical machine is equal to or less than the predetermined value, the cooling electrical machine is cooled with a cooling power larger than the cooling power based on the temperature reflected physical quantity and the predetermined relationship. A control method for a cooling system, characterized by controlling the means.
JP2007075346A 2007-03-22 2007-03-22 Cooling system, and control method and vehicle therefor Withdrawn JP2008236955A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007075346A JP2008236955A (en) 2007-03-22 2007-03-22 Cooling system, and control method and vehicle therefor
PCT/JP2008/053967 WO2008114612A1 (en) 2007-03-22 2008-03-05 Cooling system, method of controlling the cooling system, and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007075346A JP2008236955A (en) 2007-03-22 2007-03-22 Cooling system, and control method and vehicle therefor

Publications (1)

Publication Number Publication Date
JP2008236955A true JP2008236955A (en) 2008-10-02

Family

ID=39765722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007075346A Withdrawn JP2008236955A (en) 2007-03-22 2007-03-22 Cooling system, and control method and vehicle therefor

Country Status (2)

Country Link
JP (1) JP2008236955A (en)
WO (1) WO2008114612A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10160307B2 (en) 2016-11-07 2018-12-25 Hyundai Motor Company System and method for controlling motor temperature for green car
WO2023284912A1 (en) * 2021-07-14 2023-01-19 Schaeffler Technologies AG & Co. KG Method for controlling the temperature of an electric motor, and fluid supply device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110572146B (en) * 2019-08-29 2022-10-14 安徽大学 Latch capable of tolerating any three-node turnover and filtering transient pulse
CN112072857B (en) * 2020-08-10 2022-03-25 北京汽车股份有限公司 New energy automobile motor cooling system control method and device and new energy automobile
TWM616667U (en) * 2020-10-13 2021-09-11 光陽工業股份有限公司 Electric vehicle cooling system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003018861A (en) * 2001-06-27 2003-01-17 Nissan Motor Co Ltd Cooling controller of inverter
JP4023407B2 (en) * 2003-07-22 2007-12-19 トヨタ自動車株式会社 POWER OUTPUT DEVICE, ITS CONTROL METHOD, AND AUTOMOBILE
JP2006325367A (en) * 2005-05-20 2006-11-30 Hitachi Ltd Cooling apparatus for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10160307B2 (en) 2016-11-07 2018-12-25 Hyundai Motor Company System and method for controlling motor temperature for green car
WO2023284912A1 (en) * 2021-07-14 2023-01-19 Schaeffler Technologies AG & Co. KG Method for controlling the temperature of an electric motor, and fluid supply device

Also Published As

Publication number Publication date
WO2008114612A1 (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP4920337B2 (en) Radiator fan control device for hybrid vehicle
JP5077162B2 (en) DRIVE DEVICE, ITS CONTROL METHOD, AND VEHICLE
JP5725831B2 (en) Engine cooling system
JP2008256313A (en) Cooling system control device and rotating electric apparatus system control device
JP6070849B2 (en) Sensor abnormality determination device
JP4579309B2 (en) Electric water pump control device
JP5438662B2 (en) Failure judgment device for cooling circuit valve
JP2008236955A (en) Cooling system, and control method and vehicle therefor
JP4865054B2 (en) Electric water pump control device
KR20130031539A (en) Control system for electric water pump of vehicle, and control method thereof
JP6104225B2 (en) Rotating electric machine control device and engine control system equipped with rotating electric machine controlled by the control device
JP4052256B2 (en) Temperature control device
JP5553097B2 (en) Rotating electrical machine system controller
JP2002213242A (en) Cooling controller for movable body
JP4915206B2 (en) Apparatus and method for temperature protection control of motor
JP2019115146A (en) Vehicle control device and vehicle control method
JP2005218272A (en) Motor cooling device
JP2012031811A (en) Device for controlling electric water pump
JP2004176591A (en) Radiator fan drive control device
KR101988980B1 (en) Control method of cooling fan motor
JP3661007B2 (en) Outdoor fan control device
JP2016193681A (en) Cooling device of rotary electric machine for vehicle
JP2007186089A (en) Warming-up device for vehicular equipment
JP6384135B2 (en) Cooling system
JP2011226423A (en) System for cooling vehicle driving device

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081105