JPH10233130A - 交流用超電導多重撚線 - Google Patents

交流用超電導多重撚線

Info

Publication number
JPH10233130A
JPH10233130A JP9346429A JP34642997A JPH10233130A JP H10233130 A JPH10233130 A JP H10233130A JP 9346429 A JP9346429 A JP 9346429A JP 34642997 A JP34642997 A JP 34642997A JP H10233130 A JPH10233130 A JP H10233130A
Authority
JP
Japan
Prior art keywords
superconducting
stranded wire
stranded
wire
metal body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9346429A
Other languages
English (en)
Inventor
Masahiro Sugimoto
昌弘 杉本
Hisaki Sakamoto
久樹 坂本
Akio Kimura
昭夫 木村
Yasuzo Tanaka
靖三 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP9346429A priority Critical patent/JPH10233130A/ja
Publication of JPH10233130A publication Critical patent/JPH10233130A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】 【課題】 商用周波数領域の交流変動磁場下において、
高い通電電流密度、小さい交流損失、高い安定性をバラ
ンスよく実現する交流用超電導多重撚線を提供すること
を目的とする。 【解決手段】 超電導撚線が複数本撚り合わせられてな
る超電導多重撚線であって、前記超電導撚線は、常電導
金属体に複数本の超電導体が埋設された超電導素線が複
数本撚り合わせられ、その外周に常電導金属体が螺旋状
に巻き付けられていることを特徴とする。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、交流変動磁場下に
おいて、安定性が高く、通電電流が大きい交流用超電導
多重撚線に関する。
【0002】
【従来の技術】交流用超電導素線は、交流損失を低減
し、安定性を高めるために、縮径化された超電導フィラ
メントを多数本、常電導金属マトリクスに埋設してなる
複合多芯構造を有する。また、交流変動磁場に対して超
電導フィラメントの電磁気的結合による交流損失の増大
を抑制するために、常電導金属マトリクスの比抵抗を高
め、ツイストピッチを縮小する必要がある。従って、超
電導素線の直径を小さくすることにより、素線1本当た
りの臨界電流が小さくなるので、大電流を通電する場合
には、超電導素線を何重にも撚り合わせた多重撚線構造
にする。
【0003】超電導多重撚線を変動磁場下において使用
する場合、電磁力による機械的振動、冷却特性の低下、
撚線間に生じる結合損失による温度上昇、撚線間の電気
的接触不良による撚線間を横断する電流の転流特性の低
下等により、超電導多重撚線を構成する超電導素線が電
気的に不安定になり、クエンチ(常電導転移)し、ひい
ては多重撚線導体全体のクエンチが起こりやすくなる。
この現象は、50Hz/60Hzという商用周波数の交
流変動磁場下で顕著になる。
【0004】そこで、超電導多重撚線の安定性を高める
ためには、超電導素線と安定化用低抵抗部材や補強用高
強度部材などとを複合化する必要がある。その従来技術
としは、下記のような各種の方法が提案されている。即
ち、 1)放射状に配置された超電導撚線の間に常電導体を設
け、その導体の外周を補強用の常電導体で覆う(特開昭
56−1412号公報参照)。
【0005】2)超電導撚線と撚り合わされた低抵抗の
常電導金属体を高抵抗の常電導金属体で分割することに
よって、低抵抗な常電導金属体部分で生じる渦電流損失
を低減する(特開昭60−158510号公報参照)。
【0006】3)超電導撚線の素線間に導電性微粉末と
絶縁性有機物とからなる電気抵抗性物質を設ける(特開
昭62−178007号公報参照)。 4)超電導撚線の素線間を半田で接着し、圧縮すること
によって安定性を高める(特開昭63−193409号
公報参照)。
【0007】5)超電導撚線を部分的にスリットを設け
たアルミ安定化材で被覆し、その外周を補強材で被覆す
る(特開平4−6713号公報参照)。 6)素線に溝加工が施され、その凸部表面に高抵抗層を
設ける(特開平5−342926号公報参照)。
【0008】7)絶縁された超電導素線を撚り合わせた
超電導撚線において、長手方向に所定のピッチで電気的
に短絡することにより、撚線内で電流を均一化し、通電
電流の偏流を抑制する(特開平7−14441号公報参
照)。
【0009】8)超電導撚線の素線長手方向に連続的な
非絶縁物を設ける(特開平7−65644号公報参
照)。 9)超電導線に絶縁テープを螺旋状に撚り付け、巻線し
た場合に冷媒通路を確保するとともに、線間の絶縁をと
る(特開平8−190822号公報参照)。
【0010】
【発明が解決しようとする課題】しかしながら、上述の
技術を用いて作製した超電導多重撚線においても、交流
変動磁場下における使用において、高い通電電流密度、
小さい交流損失、高い安定性をバランスよく実現するこ
とができないという問題があった。
【0011】例えば、Cu−Ni合金母材にサブミクロ
ンの直径を有するNb−Tiフィラメントが数十万本埋
設された交流用超電導素線を用いた超電導多重撚線にお
いては、超電導多重撚線の交流クエンチ電流が交流用超
電導素線の交流クエンチ電流の撚り本数倍よりもかなり
小さくなるという交流クエンチ電流のデグラデーション
の問題を解決することはできない。
【0012】これは、撚り次数が2を越える場合に、低
次の撚線間が超電導素線同士の点接触となるため、接触
抵抗が大きくなり、低次の撚線間を横断する電流の転流
が抑制され、電流が偏流し易くなることに起因する。
【0013】なお、超電導素線間の転流特性を向上させ
るには、超電導フィラメントを埋設する母材や素線シー
ス部分の常電導金属の比抵抗を小さくし、素線間の接触
抵抗を下げる方法があるが、この方法は素線内及び素線
間結合損失を増大するという別の問題を生ずる。
【0014】本発明は上記問題点を解決するためになさ
れたもので、商用周波数領域の交流変動磁場下におい
て、高い通電電流密度、小さい交流損失、高い安定性を
バランスよく実現する交流用超電導多重撚線を提供する
ことを目的とする。
【0015】
【課題を解決するための手段】本発明は上記問題点を解
決すべくなされたもので、請求項1に記載の発明は、超
電導撚線が複数本撚り合わせられてなる超電導多重撚線
であって、前記超電導撚線は、常電導金属体に複数本の
超電導体が埋設された超電導素線が複数本撚り合わせら
れ、その外周に常電導金属体が螺旋状に巻き付けられて
いることを特徴とするものである。
【0016】また、請求項2に記載の発明は、請求項1
に記載の発明において、超電導撚線に螺旋状に巻き付け
られている常電導金属体の巻き付け方向が、前記超電導
撚線の撚り方向と逆方向になっていることを特徴とする
ものである。
【0017】また、請求項3に記載の発明は、請求項1
または2に記載の発明において、超電導撚線に螺旋状に
巻き付けられている常電導金属体はテープ形状であっ
て、その幅よりも大きいピッチで巻き付けられているこ
とを特徴とするものである。
【0018】更に、請求項4に記載の発明は、請求項1
ないし3に記載の発明において、超電導撚線に螺旋状に
巻き付けられている常電導金属体は、超電導体が埋設さ
れた常電導金属体よりも比抵抗が小さい金属体、または
超電導体が埋設された常電導金属体よりも比抵抗が小さ
い金属体がそれよりも比抵抗が大きい金属体により長手
方向と平行に細分化されかつツイストされたものである
ことを特徴とするものである。
【0019】更にまた、請求項5に記載の発明は、請求
項1ないし3に記載の発明において、超電導撚線に螺旋
状に巻き付けられている常電導金属体が、少なくとも該
交流用超電導多重撚線と電流導入部との接続部分に設け
られていることを特徴とするものである。
【0020】請求項1に記載の超電導多重撚線において
は、超電導撚線の外周に常電導金属体(以下、常電導金
属体Aとする)が螺旋状に巻き付けられている。そのた
め、常電導金属体Aの比抵抗、形状、数量および超電導
撚線の撚り方向とそれに螺旋状に巻き付けられている常
電導金属体Aの巻き付け方向のなす角度を調整すること
により、超電導撚線間の接触抵抗を、常電導金属体Aが
介在しない場合よりも小さく、適切に設定することがで
きる。従って、結合損失を増大させることなく、超電導
撚線間の転流を良好に行うことができる。
【0021】また、超電導撚線間の冷媒流路が螺旋状に
巻き付けられた常電導金属体Aで確保されるので、冷却
特性が向上する。従って、本発明の超電導多重撚線によ
ると、これらの作用の相乗効果により、電流の偏流が抑
制され、交流損失が小さく、安定性が優れ、交流電流の
通電容量が大きくなる。
【0022】また、請求項2に記載の超電導多重撚線に
おいては、常電導金属体Aの巻き付け方向が前記超電導
撚線の撚り方向と逆方向になっているため、超電導撚線
の撚り方向と同じ方向に巻き付けた場合よりも、常電導
金属体Aと超電導撚線が均一、かつ確実に接触する。
【0023】また、請求項3に記載の超電導多重撚線に
おいては、常電導金属体Aはテープ形状であって、その
巻き付けピッチが常電導金属体Aの幅よりも大きいた
め、冷媒流路が広くとれ、冷却特性に優れている。
【0024】更に、請求項4に記載の超電導多重撚線に
おいては、常電導金属体Aは、低比抵抗金属体(超電導
体が埋設された常電導金属体よりも比抵抗が小さい金属
体)であるので、常電導金属体Aの抵抗が低く抑えら
れ、転流特性に優れる。また、低比抵抗金属体が該金属
体よりも比抵抗が大きい金属体により長手方向と平行に
細分化され、かつツイストされた構造にすれば、常電導
金属体Aの撚線間での抵抗を低く保持したまま、渦流損
失が一層抑制され、通電容量が大きくなる。
【0025】更にまた、請求項5に記載の超電導多重撚
線においては、常電導金属体Aが、交流用超電導多重撚
線と電流導入部との接続部分に設けられており、このよ
うに常電導金属体Aが導体全体に設けられていなくて
も、電流導入部との接続部分に設けられていれば、通電
電流の偏流を抑制し、各素線に分配される電流が均一化
される効果が発揮される。
【0026】
【発明の実施の形態】以下、図面に基づいて本発明の実
施形態について詳細に説明する。 (実施形態1)図1(a)〜(c)は、本発明の一実施
形態に係る超電導多重撚線の作製工程を説明する図であ
る。この超電導多重撚線7は、以下の手順で作製した。
即ち、1)直径0.1μmのNb−Tiフィラメントが
約20万本、Cu−Ni合金に埋設された直径0.2m
mの交流用超電導素線1(絶縁被覆されていない)を、
絶縁された直径0.2mmのステンレス線2の周囲に6
本、Ζ方向にピッチ6mmで同心に撚り付け(左撚
り)、直径0.6mmの超電導1次撚線3とした(図1
(a))。
【0027】2)次いで、前記超電導1次撚線3をさら
に、直径0.6mmの絶縁されたステンレス線4の周囲
に6本、Z方向にピッチ20mmで同心に撚り付け(左
撚り)、直径1.8mmの超電導2次撚線6aとした。
この超電導2次撚線6aの外周に、幅1.5mm、厚さ
0.15mmの銅テープ5を1本、螺旋状にピッチ20
mmでS方向に巻き付け(右巻き)、銅テープ付き超電導
2次撚線6とした(図1(b))。
【0028】3)次いで、前記銅テープ付き超電導2次
撚線6をさらに、直径0.6mmの絶縁されたステンレ
ス線4を7本撚り合わせた撚線の外周に6本、ピッチ6
0mmでΖ方向に撚り付け(左撚り)、超電導多重撚線
7とした(図1(c))。図1(d)は超電導多重撚線
7の斜視図である。
【0029】本実施形態では、銅テープ5の巻き方向
(S方向)が超電導2次撚線6aの同心の撚り方向(Ζ
方向)とは逆になっている。従って、銅テープ5と超電
導2次撚線6aを構成する各超電導1次撚線3とは、銅
テープ5の巻き方向が超電導2次撚線6aの同心の撚り
方向と同じ場合よりも均一かつ確実に接触する。
【0030】(実施形態2)本実施形態の超電導多重撚
線17は、図2(a)、(b)に示すように、実施形態
1における銅テープ5の代わりに、前記銅テープ5と同
一形状で、銅部分15aが長手方向に平行にそれよりも
比抵抗が大きいCu−Ni層15bで4分割(横断面に
おいて縦横に4分割)され、ツイストされたCu/Cu
−Ni複合テープ15を超電導2次撚線6aに巻き付け
てテープ付き超電導2次撚線16を構成したものであ
る。
【0031】(実施形態3)本実施形態の超電導多重撚
線27は、図3に示すように、実施形態1(図1(a)
〜(d))に示した超電導多重撚線7において螺旋状に
巻き付けた銅テープが、電流導入部8とのハンダ9によ
る接続部分のみに設けられている。
【0032】なお、従来例として、図4(a)、(b)
に示すように、実施形態1の銅テープ5を除き、超電導
2次撚線6aをΖ方向に撚り付け(左撚り)、超電導多
重撚線27を作製した。
【0033】上記実施形態1〜3、および従来例の各超
電導多重撚線の交流変動磁場下における超電導通電特性
を評価するために、直流および交流(50Hz)のクエ
ンチ電流を液体ヘリウム中で測定した。
【0034】クエンチ電流の測定方法は、導体長が30
0mmの超電導多重撚線をサンプルとし、直線状にして
その両端50mmずつを銅平板に半田で接続した。電源
容量の制約から、超電導素線の臨界電流を小さくするた
めに、1Tの直流磁場を導体長手方向に対して垂直に印
加した状態で交流のクエンチ電流を測定した。そして、
サンプルに常電導抵抗が発生した時の電流値をクエンチ
電流とした。
【0035】クエンチ電流の測定結果を図5に示す。図
5において、横軸は通電電流の周波数を示し、縦軸は直
流電流のクエンチ電流で規格化した交流のクエンチ電流
を示している。なお、一般的に、周波数が大きいほど交
流損失および通電電流の偏流が大きくなり、交流クエン
チ電流が低下しやすくなる。
【0036】図5から明らかなように、実施形態1およ
び2、さらに実施形態3は、通電電流の周波数が50H
zであってもクエンチ電流の低下が、従来例と比べて非
常に小さいことが分かる。
【0037】これは、実施形態1、2では銅テープ5あ
るいはCu/Cu−Ni複合テープ15が超電導2次撚
線6aに巻き付けられているので、超電導2次撚線6
a、6a間に冷媒通路が形成され、冷却特性が良くなる
とともに、超電導2次撚線6a、6a間および超電導2
次撚線6a内での転流が可能になったためである。
【0038】また、実施形態2のクエンチ電流の低下が
実施形態1よりも若干小さいのは、Cu/Cu−Ni複
合テープ15では、低比抵抗の銅部分15aがそれより
も比抵抗が大きいCu−Ni層15bで分割されている
ため、Cu/Cu−Ni複合テープ15部分での渦電流
損失が銅テープ5部分でめ渦電流損失よりも抑制された
ためであると考えられる。
【0039】更に、実施形態3においては、実施形態1
に近い交流クエンチ電流値が得られている。これは、本
発明における交流用超電導撚線導体においては、電流導
入部において各素線に分配される電流が均一化される傾
向にあることを示唆しているものと考えられる。つま
り、本発明に係る超電導撚線に螺旋状に巻き付けられた
常電導金属体は、導体全体に設けられていなくても、電
流導入部との接続部分に設けられていれば、通電電流の
偏流を抑制する効果があると考えられる。また、導体を
2次撚線までほぐして、電流導入部とハンダ接続する方
法も効果的であると推測される。
【0040】以上の実施形態においては、Nb−Tiフ
ィラメントが埋設された超電導素線1を撚った超電導2
次撚線6に、銅テープ5またはツイストされたCu/C
u−Ni複合テープ15が巻き付けられているが、本発
明はその要旨を逸脱しない範囲で種々変更して実施でき
る。
【0041】
【発明の効果】以上説明したように、本発明によれば、
通電電流の偏流および交流損失の増大が抑制され、冷却
特性も良好なので、交流変動磁場下における通電容量が
大きくなるという優れた効果がある。
【図面の簡単な説明】
【図1】(a)〜(c)は、本発明の一実施形態に係る
交流用超電導多重撚線の作製工程を示す断面図であり、
(d)は前記超電導多重撚線の斜視図である。
【図2】(a)は本発明の他の実施形態に係る交流用超
電導多重撚線の断面図であり、(b)はその斜視図であ
る。
【図3】本発明の更に他の実施形態に係る交流用超電導
多重撚線の断面図である。
【図4】(a)は従来の超電導多重撚線の断面図であ
り、(b)はその斜視図である。
【図5】上記実施形態に係る交流用超電導多重撚線の通
電電流の周波数とクエンチ電流の関係を示す特性図であ
る。
【符号の説明】
1…交流用超電導素線 2、4…ステンレス線 3…超電導1次撚線 5…銅テープ 6、16…テープ付き超電導2次撚線 6a…超電導2次撚線 7、17、27、37…超電導多重撚線 8…電流導入部 9…ハンダ 15…Cu/Cu−Ni複合テープ 15a…銅部分 15b…Cu−Ni層
───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 靖三 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 交流用超電導線を用いた超電導撚線が複
    数本撚り合わせられてなる交流用超電導多重撚線であっ
    て、前記超電導撚線は、常電導金属体に複数本の超電導
    体が埋設された超電導素線が複数本撚り合わせられ、そ
    の外周の全体又は一部に常電導金属体が螺旋状に巻き付
    けられていることを特徴とする交流用超電導多重撚線。
  2. 【請求項2】 超電導撚線に螺旋状に巻き付けられてい
    る常電導金属体の巻き付け方向が、前記超電導撚線の撚
    り方向と逆方向になっていることを特徴とする請求項1
    に記載の交流用超電導多重撚線。
  3. 【請求項3】 超電導撚線に螺旋状に巻き付けられてい
    る常電導金属体はテープ形状であって、その幅よりも大
    きいピッチで巻き付けられていることを特徴とする請求
    項1または2に記載の交流用超電導多重撚線。
  4. 【請求項4】 超電導撚線に螺旋状に巻き付けられてい
    る常電導金属体は、超電導体が埋設された常電導金属体
    よりも比抵抗が小さい金属体、または超電導体が埋設さ
    れた常電導金属体よりも比抵抗が小さい金属体がそれよ
    りも比抵抗が大きい金属体により長手方向と平行に細分
    化され、かつツイストされたものであることを特徴とす
    る請求項1ないし3に記載の交流用超電導多重撚線。
  5. 【請求項5】 超電導撚線に螺旋状に巻き付けられてい
    る常電導金属体が、少なくとも該交流用超電導多重撚線
    と電流導入部との接続部分に設けられていることを特徴
    とする請求項1ないし4のいずれかの項に記載の交流用
    超電導多重撚線。
JP9346429A 1996-12-16 1997-12-16 交流用超電導多重撚線 Pending JPH10233130A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9346429A JPH10233130A (ja) 1996-12-16 1997-12-16 交流用超電導多重撚線

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33554996 1996-12-16
JP8-335549 1996-12-16
JP9346429A JPH10233130A (ja) 1996-12-16 1997-12-16 交流用超電導多重撚線

Publications (1)

Publication Number Publication Date
JPH10233130A true JPH10233130A (ja) 1998-09-02

Family

ID=26575211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9346429A Pending JPH10233130A (ja) 1996-12-16 1997-12-16 交流用超電導多重撚線

Country Status (1)

Country Link
JP (1) JPH10233130A (ja)

Similar Documents

Publication Publication Date Title
US4079187A (en) Superconductor
US5581220A (en) Variable profile superconducting magnetic coil
JPH11506260A (ja) 撚られた電気導体を有する交流ケーブル
JP2960481B2 (ja) 超電導体テープ中の渦電流の低減方法および超電導体装置
US6049042A (en) Electrical cables and methods of making same
US5604473A (en) Shaped superconducting magnetic coil
US4169964A (en) Electrical superconductor
US4409425A (en) Cryogenically stabilized superconductor in cable form for large currents and alternating field stresses
JPH10233130A (ja) 交流用超電導多重撚線
JPH07230835A (ja) 交流超電導線の電流供給端子
JPH08264039A (ja) 超電導ケーブル
JPH0377607B2 (ja)
JP3568745B2 (ja) 酸化物超電導ケーブル
JP2003007150A (ja) 高温超電導線の交流損失低減法
JPH10321058A (ja) 交流用超電導導体
JP3286036B2 (ja) 強制冷却型超電導導体
JP3119514B2 (ja) 超電導導体
JPH0146963B2 (ja)
JPH1092235A (ja) 交流用超電導導体
JP2002133954A (ja) 超電導導体及び集合型超電導導体
JP2561839B2 (ja) 低交流抵抗導体
JPH0430124B2 (ja)
JPH0430123B2 (ja)
JPH06196028A (ja) 超電導ブスバー用導体
Nb3Sn MS Walker, JM Cutro, RE Wilcox, BA Zeitlin, A. Petrovich, and GM Ozeryansky Intermagnetics General Corporation, Guilderland, New York