JPH10229891A - Production of malonic acid derivative - Google Patents

Production of malonic acid derivative

Info

Publication number
JPH10229891A
JPH10229891A JP3651097A JP3651097A JPH10229891A JP H10229891 A JPH10229891 A JP H10229891A JP 3651097 A JP3651097 A JP 3651097A JP 3651097 A JP3651097 A JP 3651097A JP H10229891 A JPH10229891 A JP H10229891A
Authority
JP
Japan
Prior art keywords
malonic acid
microorganism
acid monoester
cyanoacetate
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3651097A
Other languages
Japanese (ja)
Inventor
Eiji Ozaki
英司 尾崎
Kanehiko Enomoto
兼彦 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP3651097A priority Critical patent/JPH10229891A/en
Priority to CN98803574A priority patent/CN1115415C/en
Priority to DE69834562T priority patent/DE69834562T2/en
Priority to EP98904405A priority patent/EP1008655B1/en
Priority to US09/367,716 priority patent/US6238896B1/en
Priority to PCT/JP1998/000711 priority patent/WO1998037219A1/en
Priority to CNA021571635A priority patent/CN1515538A/en
Publication of JPH10229891A publication Critical patent/JPH10229891A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a producing method excellent in productivity of a malonic acid monoester useful as a synthetic intermediate for various chemicals, pharmaceutical agents, agrochemicals, etc. SOLUTION: A cyanoacetic acid ester represented by the formula NCCH2 COOR (R is an alkenyl group, an aryl group, an aralkyl group or a 3-20C alkyl group) is treated with the cultured product, a cell or a cell treated material of a microorganism having nitrilase activity to produce the objective malonic acid monoester represented by the formula HOOCCH2 COOR (R is mentioned above).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、種々の化成品、医
薬、農薬等の合成中間体として有用なマロン酸モノエス
テルの製造方法に関する。
The present invention relates to a method for producing a malonic acid monoester useful as a synthetic intermediate for various chemical products, medicines, agricultural chemicals and the like.

【0002】[0002]

【従来の技術】マロン酸モノエステルの製造方法として
はマロン酸ジエステルを化学的に加水分解する方法が一
般的である。しかしながらこの方法では、反応終了後、
生成物であるマロン酸モノエステルを、未反応のマロン
酸ジエステルおよび副生成物であるマロン酸から単離す
るのが困難であり、高純度のマロン酸モノエステルを得
ることができない。
2. Description of the Related Art As a method for producing a malonic acid monoester, a method of chemically hydrolyzing a malonic acid diester is generally used. However, in this method, after completion of the reaction,
It is difficult to isolate the malonic acid monoester as a product from unreacted malonic acid diester and by-product malonic acid, and it is not possible to obtain high-purity malonic acid monoester.

【0003】高純度のマロン酸モノエステルを得る方法
として、Meldrum's 酸を原料とする方法が知られている
(例えば、Matoba Katsuhide et al., Chem. Pharm. Bu
ll.,31(8), 2955(1983)、又はRigo B. et al., Tetrahe
dron Lett., 30(23), 3073(1989) 参照)。しかしなが
ら、この方法は、高価なMeldrum's 酸を使用するため実
用的な方法とは言い難く、工業的生産には適していな
い。
[0003] As a method for obtaining high-purity malonic acid monoester, a method using Meldrum's acid as a raw material is known (for example, Matoba Katsuhide et al., Chem. Pharm. Bu.
ll., 31 (8), 2955 (1983), or Rigo B. et al., Tetrahe.
dron Lett., 30 (23), 3073 (1989)). However, this method is not practical because it uses expensive Meldrum's acid, and is not suitable for industrial production.

【0004】また、高純度のマロン酸モノエステルを得
る方法として、マロン酸ジエステルにエステル結合を加
水分解する能力を有する酵素又は微生物を作用させる方
法が公知である(特開平8-173174号公報)。しかしなが
ら、原料となるマロン酸ジエステルはコスト的に不利で
ある。したがって、生産性に優れた高純度のマロン酸モ
ノエステルの製造方法の開発が望まれていた。
Further, as a method for obtaining a high-purity malonic acid monoester, a method is known in which an enzyme or a microorganism having the ability to hydrolyze an ester bond is allowed to act on the malonic acid diester (Japanese Patent Application Laid-Open No. 8-173174). . However, malonic diester as a raw material is disadvantageous in cost. Therefore, development of a method for producing high-purity malonic acid monoester having excellent productivity has been desired.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、種々
の化成品、医薬、農薬等の合成中間体として有用なマロ
ン酸モノエステルの生産性に優れた製造方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing malonic acid monoester which is useful as a synthetic intermediate for various chemical products, medicines, agricultural chemicals and the like, and has excellent productivity.

【0006】[0006]

【課題を解決するための手段】本発明者らは、シアノ酢
酸エステルに、ニトリラーゼ活性を有する微生物の培養
物、菌体又は菌体処理物を作用させると、マロン酸モノ
エステルが選択的に生成され、エステル結合の加水分解
等の副反応もなく、高純度のマロン酸モノエステルを製
造することができることを見出し、本発明を完成した。
DISCLOSURE OF THE INVENTION The present inventors have found that when a culture, a microbial cell or a processed cell of a microorganism having nitrilase activity is allowed to act on cyanoacetate, malonic acid monoester is selectively formed. As a result, the inventors have found that a high-purity malonic acid monoester can be produced without side reactions such as hydrolysis of an ester bond, and the present invention has been completed.

【0007】本発明は、一般式(1) : NCCH2COOR (1) (式中、Rはアルケニル基、アリール基、アラルキル基
又は炭素数3〜20のアルキル基を示す。)で表されるシ
アノ酢酸エステルを、ニトリラーゼ活性を有する微生物
の培養物、菌体又は菌体処理物で処理して加水分解する
ことを特徴とする、一般式(2) : HOOCCH2COOR (2) (式中、Rは前記のとおりである。)で表されるマロン
酸モノエステルの製造方法を提供するものである。
The present invention is represented by the general formula (1): NCCH 2 COOR (1) wherein R represents an alkenyl group, an aryl group, an aralkyl group or an alkyl group having 3 to 20 carbon atoms. General formula (2): HOOCCH 2 COOR (2) wherein the cyanoacetic ester is treated with a culture, fungus body or treated product of a microorganism having nitrilase activity and hydrolyzed. R is as described above.) The method for producing a malonic acid monoester represented by the formula:

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
上記一般式(1) 又は(2) において、Rで表されるアルキ
ル基は、直鎖又は分岐状のいずれの構造でもよい。この
アルキル基の炭素数は3〜20であり、好ましくは3〜10
であり、より好ましくは3〜6である。具体的には、n-
プロピル、イソプロピル、n-ブチル、sec-ブチル、tert
- ブチル、イソブチル、n-ペンチル、イソペンチル、ヘ
キシル、オクチル、2-エチルヘキシル、デシル、ドデシ
ル、テトラデシル、ヘキサデシル、オクタデシル、イコ
シルなどが例示される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the above general formula (1) or (2), the alkyl group represented by R may have either a straight-chain or branched structure. The alkyl group has 3 to 20 carbon atoms, preferably 3 to 10 carbon atoms.
And more preferably 3 to 6. Specifically, n-
Propyl, isopropyl, n-butyl, sec-butyl, tert
-Butyl, isobutyl, n-pentyl, isopentyl, hexyl, octyl, 2-ethylhexyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, icosyl and the like.

【0009】Rで表されるアルケニル基は、直鎖又は分
岐状のいずれの構造でもよく、好ましくは炭素数2〜6
である。具体的には、ビニル基、アリル基などが例示さ
れる。Rで表されるアリール基としては、フェニル基な
どが例示される。
The alkenyl group represented by R may have a linear or branched structure, and preferably has 2 to 6 carbon atoms.
It is. Specific examples include a vinyl group and an allyl group. Examples of the aryl group represented by R include a phenyl group.

【0010】Rで表されるアラルキル基としては、ベン
ジル基などが例示される。一般式(1) で表されるシアノ
酢酸エステルの中で、代表的な化合物としては、例え
ば、シアノ酢酸n-プロピル、シアノ酢酸イソプロピル、
シアノ酢酸n-ブチル、シアノ酢酸tert- ブチル、シアノ
酢酸2-エチルヘキシル、シアノ酢酸アリル、シアノ酢酸
ベンジル等が挙げられる。
Examples of the aralkyl group represented by R include a benzyl group. Among the cyanoacetates represented by the general formula (1), typical compounds include, for example, n-propyl cyanoacetate, isopropyl cyanoacetate,
N-butyl cyanoacetate, tert-butyl cyanoacetate, 2-ethylhexyl cyanoacetate, allyl cyanoacetate, benzyl cyanoacetate and the like.

【0011】本発明に使用される微生物は、ニトリラー
ゼ活性を有していれば、特に制限されないが、例えば、
ロドコッカス(Rhodococcus) 属、シュードモナス(Pseud
omonas) 属、ブレビバクテリウム(Brevibacterium)属、
ノカルディア(Nocardia)属、アースロバクター(Arthrob
acter)属、バチルス(Bacillus)属、エシェリキア(Esche
richia) 属、ミクロコッカス(Micrococcus) 属、ストレ
プトマイセス(Streptomyces)属、アエロモナス(Aeromon
as) 属、マイコプラナ(Mycoplana) 属、セルロモナス(C
ellulomonas)属、エルビニア(Erwinia) 属、キャンディ
ダ(Candida) 属等に属する微生物であって、ニトリラー
ゼ活性を有する微生物が挙げられる。
The microorganism used in the present invention is not particularly limited as long as it has nitrilase activity.
Rhodococcus sp., Pseudomonas (Pseud
omonas), Brevibacterium,
Genus Nocardia, Arthrob
acter) genus, Bacillus genus, Escherichia (Esche
richia), Micrococcus, Streptomyces, Aeromonas
as), Mycoplana, Cellulomonas (C
Microorganisms belonging to the genus ellulomonas, the genus Erwinia, the genus Candida, and the like, and include microorganisms having nitrilase activity.

【0012】より具体的には、ロドコッカス ロドクロ
ウス(Rhodococcus rhodochrous) ATCC 33025、シュード
モナス シンキサンタ(Pseudomonas synxanta) IAM 123
56、ブレビバクテリウム アセチリカム(Brevibacteriu
m acetylicum) IAM 1790、ノカルディア アステロイデ
ス(Nocardia asteroides) IFO 3384、アースロバクター
オキシダンス(Arthrobacter oxydans) IFO 12138、バ
チルス サブチリス(Bacillus subtilis) ATCC 21697、
エシェリキア コリ(Escherichia coli) IFO 3301 、ミ
クロコッカス ルテウス(Micrococcus luteus) ATCC 38
3 、ストレプトマイセス グリセウス(Streptomyces gr
iseus) IFO 3355 、アエロモナス パンクタタ(Aeromon
as punctata) IFO 13288、マイコプラナ ジモルファ(M
ycoplanadimorpha) ATCC 4297、セルロモナス フィミ
(Cellulomonas fimi) IAM 12107、エルビニア ヘルビ
コラ(Erwinia herbicola) IFO 12686 、キャンディダ
ギリヤーモンディー(Candida guilliermondii) IFO 056
6 などが例示される。これらの微生物は、それぞれアメ
リカン タイプカルチャー コレクション(ATCC)、東
京大学応用微生物研究所(IAM) 、財団法人発酵研究所(I
FO) などから入手可能である。
More specifically, Rhodococcus rhodochrous ATCC 33025, Pseudomonas synxanta IAM 123
56, Brevibacterium acetylicum
macetyl) IAM 1790, Nocardia asteroides IFO 3384, Arthrobacter oxydans IFO 12138, Bacillus subtilis ATCC 21697,
Escherichia coli IFO 3301, Micrococcus luteus ATCC 38
3, Streptomyces griseus (Streptomyces gr
iseus) IFO 3355, Aeromonas Punctata
as punctata) IFO 13288, mycoplana dimorpha (M
ycoplanadimorpha) ATCC 4297, Cellulomonas fimi
(Cellulomonas fimi) IAM 12107, Erwinia herbicola IFO 12686, Candida
Gillian Mondi (Candida guilliermondii) IFO 056
6 and the like. These microorganisms are known as American Type Culture Collection (ATCC), Institute of Applied Microbiology (IAM), University of Tokyo, and Fermentation Research Institute (I
FO).

【0013】微生物の培養は、液体培地でも固体培地で
も行うことができる。培地としては、微生物が通常資化
しうる炭素源、窒素源、ビタミン、ミネラルなどの成分
を適宜配合したものが用いられる。微生物の加水分解能
を向上させるため、培地にニトリル化合物を少量添加す
ることも可能である。培養は、微生物が生育可能である
温度、pHで行われるが、使用する菌株の最適培養条件で
行うのが好ましい。微生物の生育を促進させるため、通
気攪拌を行ってもよい。
The cultivation of the microorganism can be performed in a liquid medium or a solid medium. As the medium, a medium appropriately mixed with components such as a carbon source, a nitrogen source, vitamins, and minerals that can normally be used by microorganisms is used. It is also possible to add a small amount of a nitrile compound to the medium in order to improve the hydrolytic capacity of the microorganism. The cultivation is performed at a temperature and a pH at which the microorganism can grow, but it is preferable to perform the culturing under the optimum culturing conditions of the strain to be used. In order to promote the growth of the microorganism, aeration and agitation may be performed.

【0014】本発明においては、上記のようなニトリラ
ーゼ活性を有する微生物を培地中で培養して得られる培
養物をそのままか、又は該培養物から遠心分離などの集
菌操作によって得られる菌体、若しくは菌体処理物を用
いることができる。菌体処理物としては、アセトン、ト
ルエン等で処理した菌体、菌体の破砕物、菌体を破砕し
た無細胞抽出物、菌体から分離した粗酵素又は精製酵素
などが挙げられる。菌体又は菌体処理物は、架橋したア
クリルアミドゲルなどに包括固定したり、イオン交換樹
脂、ケーソー土などの固体担体に物理的、化学的に固定
化して用いることにより、反応を行った後に回収再利用
することも可能である。
In the present invention, a culture obtained by culturing a microorganism having nitrilase activity as described above in a culture medium as it is, or a cell obtained by collecting cells from the culture by centrifugation or the like, Alternatively, a treated bacterial cell can be used. Examples of the treated cells include cells treated with acetone, toluene, etc., crushed cells, cell-free extracts obtained by crushing cells, crude enzymes or purified enzymes separated from cells. The cells or treated cells can be recovered after the reaction by entrapping and immobilizing them in a cross-linked acrylamide gel or by physically and chemically immobilizing them on a solid carrier such as ion-exchange resin or keso earth. It can be reused.

【0015】本発明において、マロン酸モノエステルは
以下の方法で製造することができる。反応媒体に基質で
あるシアノ酢酸エステルを添加して溶解もしくは懸濁す
る。また、基質を反応媒体に添加する前に又は添加した
後に触媒となる微生物の培養物等を加える。そして、反
応温度、必要により反応液のpHを制御しながら加水分解
反応を行う。反応媒体としては、例えば、イオン交換
水、緩衝液等が用いられる。反応温度は通常0〜70℃、
好ましくは10〜35℃であるが、菌体等のニトリラーゼ活
性が高くなる温度で行えばよい。反応液のpHは用いる微
生物酵素の至適pHに依存するが、一般的にはpH6〜9の
範囲内で実施すると化学的加水分解反応による副反応を
抑えることができるので好ましい。反応液中の菌体又は
菌体処理物の濃度は、乾燥重量として通常0.01〜5重量
%相当量である。また、反応液の基質濃度は0.01〜70重
量%の間で特に制限はないが、 0.1から15重量%の範囲
内で行うことが好ましい。
In the present invention, the malonic acid monoester can be produced by the following method. A cyanoacetic acid ester as a substrate is added to the reaction medium and dissolved or suspended. Before or after the substrate is added to the reaction medium, a culture of a microorganism serving as a catalyst is added. The hydrolysis reaction is performed while controlling the reaction temperature and, if necessary, the pH of the reaction solution. As the reaction medium, for example, ion-exchanged water, a buffer, or the like is used. Reaction temperature is usually 0 to 70 ° C,
The temperature is preferably 10 to 35 ° C., but may be performed at a temperature at which the nitrilase activity of cells and the like increases. The pH of the reaction solution depends on the optimum pH of the microbial enzyme to be used, but it is generally preferable to carry out the reaction within a pH range of 6 to 9, since side reactions due to a chemical hydrolysis reaction can be suppressed. The concentration of the cells or the treated cells in the reaction solution is usually equivalent to 0.01 to 5% by weight as a dry weight. The substrate concentration of the reaction solution is not particularly limited between 0.01 and 70% by weight, but is preferably in the range of 0.1 to 15% by weight.

【0016】さらに、加水分解反応中、シアノ酢酸エス
テルを連続添加することによりマロン酸モノエステルを
高濃度に蓄積させることができる。その際、基質による
酵素の失活を最小限に抑えるため、反応液の基質濃度を
0.01〜10重量%、好ましくは0.1〜5重量%の範囲に維
持しながら基質を添加する。
Further, during the hydrolysis reaction, malonic acid monoester can be accumulated at a high concentration by continuously adding cyanoacetate. At this time, in order to minimize the inactivation of the enzyme by the substrate,
The substrate is added while maintaining the range of 0.01 to 10% by weight, preferably 0.1 to 5% by weight.

【0017】反応終了後、触媒として使用した微生物の
菌体を遠心分離、濾過などの操作により除去してから、
ヘキサン、酢酸エチルなどの溶剤で抽出することにより
未反応のシアノ酢酸エステルを回収可能である。抽出残
液を硫酸、塩酸などの酸でpH1〜2とした後に、ヘキサ
ン、酢酸エチルなどの溶剤で抽出することにより、生成
物であるマロン酸モノエステルを得ることができる。
After completion of the reaction, the cells of the microorganisms used as the catalyst are removed by centrifugation, filtration or the like.
Unreacted cyanoacetate can be recovered by extraction with a solvent such as hexane or ethyl acetate. After the extraction residue is adjusted to pH 1 to 2 with an acid such as sulfuric acid or hydrochloric acid, the product is extracted with a solvent such as hexane or ethyl acetate to obtain a malonic acid monoester as a product.

【0018】[0018]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明の範囲はこれらの実施例に限定されるもの
ではない。 〔実施例1〕ロドコッカス ロドクロウス ATCC 33025
を滅菌したLB培地(1%ポリペプトン、 0.5%酵母エ
キス、 0.5% NaCl )3mlに植菌し、30℃で24時間振盪
培養した。得られた菌体培養液1mlを滅菌した下記培地
A 100mlに植菌し、30℃で48時間培養した。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but the scope of the present invention is not limited to these Examples. [Example 1] Rhodococcus rhodochrous ATCC 33025
Was inoculated into 3 ml of a sterilized LB medium (1% polypeptone, 0.5% yeast extract, 0.5% NaCl) and cultured with shaking at 30 ° C. for 24 hours. One ml of the obtained cell culture was inoculated into 100 ml of the following sterilized medium A and cultured at 30 ° C. for 48 hours.

【0019】培地A(pH 7.2) グリセロール 1.0 % イソバレロニトリル 0.2 % 酵母エキス 0.02 % KH2PO4 0.2 % NaCl 0.1 % MgSO4・7H2O 0.02 % FeSO4・7H2O 10 ppm CoCl2・4H2O 10 ppm CaCl2・2H2O 1 ppm MnCl2・4H2O 7 ppm[0019] Medium A (pH 7.2) 0.02% Glycerol 1.0% isovaleronitrile 0.2% yeast extract KH 2 PO 4 0.1% 0.2% NaCl MgSO 4 · 7H 2 O 0.02% FeSO 4 · 7H 2 O 10 ppm CoCl 2 · 4H 2 O 10 ppm CaCl 2・ 2H 2 O 1 ppm MnCl 2・ 4H 2 O 7 ppm

【0020】培養終了後、培養液を遠心分離し、得られ
た菌体の全量をイオン交換水で洗浄したのち、50mMリン
酸緩衝液(pH7.0) 100mlに懸濁した。この菌体懸濁液の
濁度は、OD630 =5.6 であった。この菌体懸濁液に基
質としてシアノ酢酸n-プロピル1.00gを添加し、30℃で
1時間反応させた。反応液を高速液体クロマトグラフィ
ー(HPLC、カラム:TSKgel ODS-120A (東ソー株式
会社製)、 4.6mm I.D. × 25 cm、移動相:5%アセト
ニトリル,95%水, 0.1%リン酸、流速: 0.5ml/min、
検出:UV 220nm)で分析したところ、全ての基質がマ
ロン酸モノn-プロピルに変換されていた。反応終了後、
遠心分離により菌体を除き、2N塩酸を添加し、pHを
2.0に調整し、反応生成物であるマロン酸モノエチルを
酢酸エチルで抽出した。有機層に無水硫酸ナトリウムを
加えて脱水し、溶媒を蒸発留去して、1.06gのマロン酸
モノn-プロピルを得た(収率89.9%)。
After completion of the culture, the culture was centrifuged, and the whole amount of the obtained cells was washed with ion-exchanged water and suspended in 100 ml of 50 mM phosphate buffer (pH 7.0). The turbidity of this cell suspension was OD630 = 5.6. To this cell suspension was added 1.00 g of n-propyl cyanoacetate as a substrate and reacted at 30 ° C. for 1 hour. The reaction solution was subjected to high performance liquid chromatography (HPLC, column: TSKgel ODS-120A (manufactured by Tosoh Corporation), 4.6 mm ID × 25 cm, mobile phase: 5% acetonitrile, 95% water, 0.1% phosphoric acid, flow rate: 0.5 ml) / min,
All the substrates were converted to mono-n-propyl malonate when analyzed by (detection: UV 220 nm). After the reaction,
Remove the cells by centrifugation, add 2N hydrochloric acid, and adjust the pH.
It was adjusted to 2.0 and the reaction product monoethyl malonate was extracted with ethyl acetate. The organic layer was dehydrated by adding anhydrous sodium sulfate, and the solvent was distilled off to obtain 1.06 g of mono-n-propyl malonate (yield: 89.9%).

【0021】〔実施例2〕基質としてシアノ酢酸イソプ
ロピルを用いた以外は全て実施例1と同様にして1.01g
のマロン酸モノイソプロピルを得た(収率88.6%)。
[Example 2] 1.01 g in the same manner as in Example 1 except that isopropyl cyanoacetate was used as a substrate.
Was obtained (yield 88.6%).

【0022】〔実施例3〕基質としてシアノ酢酸n-ブチ
ルを用いた以外は全て実施例1と同様にして1.05gのマ
ロン酸モノn-ブチルを得た(収率93.3%)。なお、HP
LC分析の移動相として、40%アセトニトリル,60%
水,0.1 %リン酸を用いた。
Example 3 1.05 g of mono-n-butyl malonate was obtained in the same manner as in Example 1 except that n-butyl cyanoacetate was used as a substrate (yield 93.3%). In addition, HP
40% acetonitrile, 60% as mobile phase for LC analysis
Water and 0.1% phosphoric acid were used.

【0023】〔実施例4〕基質としてシアノ酢酸t-ブチ
ルを用いた以外は全て実施例3と同様にして1.04gのマ
ロン酸モノt-ブチルを得た(収率92.4%)。
Example 4 1.04 g of mono-t-butyl malonate was obtained in the same manner as in Example 3 except that t-butyl cyanoacetate was used as a substrate (yield 92.4%).

【0024】〔実施例5〕基質としてシアノ酢酸アリル
を用いた以外は全て実施例3と同様にして1.04gのマロ
ン酸モノアリルを得た(収率87.1%)。
Example 5 1.04 g of monoallyl malonate was obtained in the same manner as in Example 3 except that allyl cyanoacetate was used as a substrate (yield: 87.1%).

【0025】〔実施例6〕基質としてシアノ酢酸2-エチ
ルヘキシルを用いた以外は全て実施例3と同様にして1.
00gのマロン酸モノ2-ヘチルヘキシルを得た(収率91.7
%)。
Example 6 The procedure of Example 3 was repeated except that 2-ethylhexyl cyanoacetate was used as the substrate.
00 g of mono-2-hexylhexyl malonate was obtained (yield 91.7%).
%).

【0026】〔実施例7〕基質としてシアノ酢酸ベンジ
ルを用いた以外は全て実施例3と同様にして反応を行っ
た。酵素反応終了後、10%のシアノ酢酸ベンジルが未反
応であった。未反応のシアノ酢酸ベンジルを酢酸エチル
で抽出除去した。その抽出後、水層に2N塩酸を添加し
てpHを 2.0に調整し、次いで反応生成物であるマロン酸
モノベンジルを酢酸エチルで抽出した。有機層に無水硫
酸ナトリウムを加えて脱水し、溶媒を蒸発留去し、0.88
gのマロン酸モノベンジルを得た(収率80.2%)。
Example 7 A reaction was carried out in the same manner as in Example 3 except that benzyl cyanoacetate was used as a substrate. After completion of the enzyme reaction, 10% of benzyl cyanoacetate was not reacted. Unreacted benzyl cyanoacetate was extracted and removed with ethyl acetate. After the extraction, 2N hydrochloric acid was added to the aqueous layer to adjust the pH to 2.0, and then the reaction product, monobenzyl malonate, was extracted with ethyl acetate. The organic layer was dehydrated by adding anhydrous sodium sulfate, and the solvent was evaporated by evaporation.
g of monobenzyl malonate was obtained (80.2% yield).

【0027】〔実施例8〜16〕実施例1と同様にして得
られた菌体懸濁液に、シアノ酢酸n-プロピルを5〜50重
量%濃度となるように添加し、25℃で20時間反応させ
た。反応終了後の反応収率を液体クロマトグラフィーで
測定した。結果を表1に示す。
Examples 8 to 16 n-Propyl cyanoacetate was added to the cell suspension obtained in the same manner as in Example 1 so as to have a concentration of 5 to 50% by weight. Allowed to react for hours. The reaction yield after completion of the reaction was measured by liquid chromatography. Table 1 shows the results.

【0028】[0028]

【表1】 [Table 1]

【0029】〔実施例20〕実施例1と同様にして得られ
た菌体懸濁液 100mlに、シアノ酢酸n-プロピルを5g添
加し、25℃で反応させた。以後、反応液中の基質濃度が
5重量%を超えないように、基質濃度を測定しながら合
計30gのシアノ酢酸エチルを分割して添加した。30時間
後、反応収率は 100%であった。
Example 20 To 100 ml of the bacterial cell suspension obtained in the same manner as in Example 1, 5 g of n-propyl cyanoacetate was added and reacted at 25 ° C. Thereafter, a total of 30 g of ethyl cyanoacetate was dividedly added while measuring the substrate concentration so that the substrate concentration in the reaction solution did not exceed 5% by weight. After 30 hours, the reaction yield was 100%.

【0030】[0030]

【発明の効果】本発明により、種々の化成品、医薬、農
薬等の合成中間体として有用な、マロン酸モノエステル
を生産性よく製造することができる。
Industrial Applicability According to the present invention, malonic acid monoesters useful as synthetic intermediates for various chemicals, medicines, agricultural chemicals and the like can be produced with high productivity.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式(1) : NCCH2COOR (1) (式中、Rは、アルケニル基、アリール基、アラルキル
基、又は炭素数3〜20のアルキル基を示す。)で表され
るシアノ酢酸エステルを、ニトリラーゼ活性を有する微
生物の培養物、菌体又は菌体処理物で処理して加水分解
することを特徴とする、一般式(2) : HOOCCH2COOR (2) (式中、Rは、前記のとおりである。)で表されるマロ
ン酸モノエステルの製造方法。
1. A compound represented by the general formula (1): NCCH 2 COOR (1) (wherein, R represents an alkenyl group, an aryl group, an aralkyl group, or an alkyl group having 3 to 20 carbon atoms). General formula (2): HOOCCH 2 COOR (2) wherein the cyanoacetic ester is treated with a culture, fungus body or treated product of a microorganism having nitrilase activity and hydrolyzed. R is as described above.).
【請求項2】 ニトリラーゼ活性を有する微生物が、ロ
ドコッカス(Rhodococcus) 属に属する微生物である、請
求項1に記載のマロン酸モノエステルの製造方法。
2. The method for producing a malonic acid monoester according to claim 1, wherein the microorganism having nitrilase activity is a microorganism belonging to the genus Rhodococcus.
【請求項3】 加水分解反応中、反応液のシアノ酢酸エ
ステルの濃度を0.01〜10重量%の範囲に維持しながら該
エステルを連続添加することを特徴とする、請求項1又
は2に記載のマロン酸モノエステルの製造方法。
3. The method according to claim 1, wherein the ester is continuously added during the hydrolysis reaction while maintaining the concentration of the cyanoacetate in the reaction solution in the range of 0.01 to 10% by weight. Method for producing malonic acid monoester.
JP3651097A 1997-02-20 1997-02-20 Production of malonic acid derivative Pending JPH10229891A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP3651097A JPH10229891A (en) 1997-02-20 1997-02-20 Production of malonic acid derivative
CN98803574A CN1115415C (en) 1997-02-20 1998-02-20 Process for producing malonic acid derivatives
DE69834562T DE69834562T2 (en) 1997-02-20 1998-02-20 PROCESS FOR THE PRODUCTION OF MALONIC ACID DERIVATIVES
EP98904405A EP1008655B1 (en) 1997-02-20 1998-02-20 Process for producing malonic acid derivatives
US09/367,716 US6238896B1 (en) 1997-02-20 1998-02-20 Process for producing malonic acid derivatives
PCT/JP1998/000711 WO1998037219A1 (en) 1997-02-20 1998-02-20 Process for producing malonic acid derivatives
CNA021571635A CN1515538A (en) 1997-02-20 1998-02-20 Process for preparing malonate derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3651097A JPH10229891A (en) 1997-02-20 1997-02-20 Production of malonic acid derivative

Publications (1)

Publication Number Publication Date
JPH10229891A true JPH10229891A (en) 1998-09-02

Family

ID=12471837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3651097A Pending JPH10229891A (en) 1997-02-20 1997-02-20 Production of malonic acid derivative

Country Status (1)

Country Link
JP (1) JPH10229891A (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004325A1 (en) 1999-07-09 2001-01-18 Degussa Ag Nucleotide sequences for the tal gene
WO2003100072A2 (en) 2002-05-23 2003-12-04 Basf Aktiengesellschaft Method for the production of sulphur-containing fine chemicals by fermentation
US7238502B2 (en) 2002-08-26 2007-07-03 Basf Aktiengesellschaft Method for zymotic production of fine chemicals (metA) containing sulphur
US7282357B2 (en) 2002-08-27 2007-10-16 Basf Aktiengesellschaft Method for the production by fermentation of sulphur-containing fine chemicals (metF)
EP1908842A2 (en) 2003-12-18 2008-04-09 Basf Se PEF-TU expression units
EP1908841A1 (en) 2004-12-22 2008-04-09 Basf Se Multiple promoters and their use for gene expression
EP1918378A1 (en) 2003-12-18 2008-05-07 Basf Se PSOD expression units
EP1921150A1 (en) 2003-12-18 2008-05-14 Basf Se PGRO expression units
US7381549B2 (en) 2002-08-26 2008-06-03 Basf Aktiengesellschaft Method for zymotic production of fine chemicals (mety) containing sulphur
EP1942198A2 (en) 2004-07-20 2008-07-09 Basf Se P-ET-TS expression units in Corynebacterium Glutamicum
DE102007015583A1 (en) 2007-03-29 2008-10-02 Albert-Ludwigs-Universität Freiburg An enzyme for the production of methylmalonyl-coenzyme A or ethylmalonyl-coenzyme A and its use
DE102007027006A1 (en) 2007-06-08 2008-12-11 Evonik Degussa Gmbh Microbiological production of aldehydes, in particular of 3-hydroxypropionaldehyde
US7485444B2 (en) 2002-04-17 2009-02-03 Evonik Degussa Gmbh Methods for producing sulphurous fine chemicals by fermentation using metH-coding cornyeform bacteria
DE102007041862A1 (en) 2007-09-03 2009-03-19 Evonik Degussa Gmbh Microbiological production of isoprenoids
DE102007059248A1 (en) 2007-12-07 2009-06-10 Albert-Ludwigs-Universität Freiburg Recombinant cell capable of converting bicarbonate to organic compounds utilizes a 16-step metabolic pathway starting with acetyl coenzyme A
DE102007060705A1 (en) 2007-12-17 2009-06-18 Evonik Degussa Gmbh ω-aminocarboxylic acids or their lactams, producing, recombinant cells
EP2085482A1 (en) 2000-09-02 2009-08-05 Evonik Degussa GmbH Nucleotide sequences which code for the metY gene
DE102008002715A1 (en) 2008-06-27 2009-12-31 Evonik Röhm Gmbh 2-hydroxyisobutyric acid producing recombinant cell
DE102008041299A1 (en) 2008-08-18 2010-02-25 Evonik Degussa Gmbh Novel, universally applicable addiction system
EP2175024A2 (en) 2005-10-10 2010-04-14 Evonik Degussa GmbH Microbiological production of 3-hydroxypropionic acid
WO2010070086A2 (en) 2008-12-18 2010-06-24 Evonik Degussa Gmbh Method for the enzymatic reaction of alkanes
US7785846B2 (en) 2003-12-18 2010-08-31 Evonik Degussa Gmbh Method for the production of methionine
WO2011061032A2 (en) 2009-11-18 2011-05-26 Evonik Degussa Gmbh Cells, nucleic acids, enzymes, and use thereof, and methods for the production of sophorolipids
EP2354235A1 (en) 2005-10-05 2011-08-10 Evonik Degussa GmbH Method for the fermentative production of L-amino acids involving the use of coryneform bacteria
DE102010019059A1 (en) 2010-05-03 2011-11-03 Forschungszentrum Jülich GmbH Sensors for intracellular metabolite detection
DE102010029973A1 (en) 2010-06-11 2011-12-15 Evonik Degussa Gmbh Microbiological production of C4 bodies from sucrose and carbon dioxide
DE102010032484A1 (en) 2010-07-28 2012-02-02 Evonik Goldschmidt Gmbh Cells and methods for producing rhamnolipids
EP2431476A1 (en) 2007-02-19 2012-03-21 Evonik Degussa GmbH Coryneform bacteria with glycine cleavage activity
EP2479279A1 (en) 2011-01-20 2012-07-25 Evonik Degussa GmbH Method for producing sulphuric amino acids by means of fermentation
DE102012201360A1 (en) 2012-01-31 2013-08-01 Evonik Industries Ag New cell capable of forming rhamnolipid compound, which is useful for the production of cosmetic, dermatological or pharmaceutical formulations, of plant protection formulations and of care and cleaning agents and surfactant concentrates
WO2013152913A1 (en) 2012-04-11 2013-10-17 Evonik Industries Ag Acetyl transferase from wickerhamomyces ciferrii
EP2700715A1 (en) 2012-08-20 2014-02-26 Evonik Degussa GmbH Method for manufacturing L-amino acids using improved strains of the enterobacteriaceae family by means of fermentation
US8728795B2 (en) 2003-12-18 2014-05-20 Basf Se Pgro expression units
DE102013202106A1 (en) 2013-02-08 2014-08-14 Evonik Industries Ag Autotrophic cultivation
US8906653B2 (en) 2008-01-23 2014-12-09 Basf Se Method for fermentatively producing 1,5-diaminopentane
WO2015110518A1 (en) 2014-01-27 2015-07-30 Evonik Degussa Gmbh Fermentative process involving cell cultivation at a low dissolved-oxygen concentration
WO2015140314A1 (en) 2014-03-21 2015-09-24 Philipps-Universität Marburg Means and methods for itaconic acid production
WO2015158800A1 (en) 2014-04-17 2015-10-22 Boehringer Ingelheim Rcv Gmbh & Co Kg Recombinant host cell for expressing proteins of interest
WO2015158808A2 (en) 2014-04-17 2015-10-22 Boehringer Ingelheim Rcv Gmbh & Co Kg Recombinant host cell engineered to overexpress helper proteins
EP2949214A1 (en) 2014-05-26 2015-12-02 Evonik Degussa GmbH Methods of producing rhamnolipids
EP2952584A1 (en) 2014-06-04 2015-12-09 Boehringer Ingelheim RCV GmbH & Co KG Improved protein production
WO2016131801A1 (en) 2015-02-19 2016-08-25 Evonik Degussa Gmbh Rhamnolipid synthesis
EP3072971A1 (en) 2015-03-25 2016-09-28 Forschungszentrum Jülich GmbH Sensors for detection and quantification of microbiological protein secretion
WO2017100376A2 (en) 2015-12-07 2017-06-15 Zymergen, Inc. Promoters from corynebacterium glutamicum
WO2018077701A1 (en) 2016-10-24 2018-05-03 Evonik Degussa Gmbh Cells and method for producing rhamnolipids using alternative glucose transporters
WO2018077700A1 (en) 2016-10-24 2018-05-03 Evonik Degussa Gmbh Rhamnolipid-producing cell having reduced glucose dehydrogenase activity
WO2018178126A1 (en) 2017-03-29 2018-10-04 Boehringer Ingelheim Rcv Gmbh & Co Kg Recombinant host cell with altered membrane lipid composition
WO2018226964A2 (en) 2017-06-07 2018-12-13 Zymergen Inc. Promoters from corynebacterium glutamicum and uses thereof in regulating ancillary gene expression
WO2019154984A1 (en) 2018-02-09 2019-08-15 Evonik Degussa Gmbh Lipid production
WO2020002494A1 (en) 2018-06-27 2020-01-02 Boehringer Ingelheim Rcv Gmbh & Co Kg Means and methods for increased protein expression by use of transcription factors
WO2020016287A1 (en) 2018-07-17 2020-01-23 Technische Universität Dortmund Biotechnological production of cannabinoids
WO2022171827A1 (en) 2021-02-12 2022-08-18 Boehringer Ingelheim Rcv Gmbh & Co Kg Signal peptides for increased protein secretion

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004325A1 (en) 1999-07-09 2001-01-18 Degussa Ag Nucleotide sequences for the tal gene
EP2085482A1 (en) 2000-09-02 2009-08-05 Evonik Degussa GmbH Nucleotide sequences which code for the metY gene
US7485444B2 (en) 2002-04-17 2009-02-03 Evonik Degussa Gmbh Methods for producing sulphurous fine chemicals by fermentation using metH-coding cornyeform bacteria
WO2003100072A2 (en) 2002-05-23 2003-12-04 Basf Aktiengesellschaft Method for the production of sulphur-containing fine chemicals by fermentation
US7635580B2 (en) 2002-05-23 2009-12-22 Evonik Degussa Gmbh Method for the production of sulpher-containing fine chemicals by fermentation
US7381549B2 (en) 2002-08-26 2008-06-03 Basf Aktiengesellschaft Method for zymotic production of fine chemicals (mety) containing sulphur
US7238502B2 (en) 2002-08-26 2007-07-03 Basf Aktiengesellschaft Method for zymotic production of fine chemicals (metA) containing sulphur
US7282357B2 (en) 2002-08-27 2007-10-16 Basf Aktiengesellschaft Method for the production by fermentation of sulphur-containing fine chemicals (metF)
EP1918378A1 (en) 2003-12-18 2008-05-07 Basf Se PSOD expression units
US7785846B2 (en) 2003-12-18 2010-08-31 Evonik Degussa Gmbh Method for the production of methionine
US7785779B2 (en) 2003-12-18 2010-08-31 Paik Kwang Industrial Co., Ltd. P EF-TU expression units
US8728795B2 (en) 2003-12-18 2014-05-20 Basf Se Pgro expression units
EP1921150A1 (en) 2003-12-18 2008-05-14 Basf Se PGRO expression units
EP1908842A2 (en) 2003-12-18 2008-04-09 Basf Se PEF-TU expression units
US8044191B2 (en) 2003-12-18 2011-10-25 Basf Se P EF-TU expression units
EP1942198A2 (en) 2004-07-20 2008-07-09 Basf Se P-ET-TS expression units in Corynebacterium Glutamicum
EP1908841A1 (en) 2004-12-22 2008-04-09 Basf Se Multiple promoters and their use for gene expression
EP2354235A1 (en) 2005-10-05 2011-08-10 Evonik Degussa GmbH Method for the fermentative production of L-amino acids involving the use of coryneform bacteria
EP2175024A2 (en) 2005-10-10 2010-04-14 Evonik Degussa GmbH Microbiological production of 3-hydroxypropionic acid
EP2431476A1 (en) 2007-02-19 2012-03-21 Evonik Degussa GmbH Coryneform bacteria with glycine cleavage activity
DE102007015583A1 (en) 2007-03-29 2008-10-02 Albert-Ludwigs-Universität Freiburg An enzyme for the production of methylmalonyl-coenzyme A or ethylmalonyl-coenzyme A and its use
DE102007027006A1 (en) 2007-06-08 2008-12-11 Evonik Degussa Gmbh Microbiological production of aldehydes, in particular of 3-hydroxypropionaldehyde
DE102007041862A1 (en) 2007-09-03 2009-03-19 Evonik Degussa Gmbh Microbiological production of isoprenoids
DE102007059248A1 (en) 2007-12-07 2009-06-10 Albert-Ludwigs-Universität Freiburg Recombinant cell capable of converting bicarbonate to organic compounds utilizes a 16-step metabolic pathway starting with acetyl coenzyme A
DE102007060705A1 (en) 2007-12-17 2009-06-18 Evonik Degussa Gmbh ω-aminocarboxylic acids or their lactams, producing, recombinant cells
US8906653B2 (en) 2008-01-23 2014-12-09 Basf Se Method for fermentatively producing 1,5-diaminopentane
DE102008002715A1 (en) 2008-06-27 2009-12-31 Evonik Röhm Gmbh 2-hydroxyisobutyric acid producing recombinant cell
DE102008041299A1 (en) 2008-08-18 2010-02-25 Evonik Degussa Gmbh Novel, universally applicable addiction system
DE102008054918A1 (en) 2008-12-18 2010-07-01 Evonik Degussa Gmbh Process for the enzymatic conversion of alkanes
WO2010070086A2 (en) 2008-12-18 2010-06-24 Evonik Degussa Gmbh Method for the enzymatic reaction of alkanes
DE102010014680A1 (en) 2009-11-18 2011-08-18 Evonik Degussa GmbH, 45128 Cells, nucleic acids, enzymes and their use, as well as methods for producing sophorolipids
WO2011061032A2 (en) 2009-11-18 2011-05-26 Evonik Degussa Gmbh Cells, nucleic acids, enzymes, and use thereof, and methods for the production of sophorolipids
DE102010019059A1 (en) 2010-05-03 2011-11-03 Forschungszentrum Jülich GmbH Sensors for intracellular metabolite detection
WO2011138006A1 (en) 2010-05-03 2011-11-10 Forschungszentrum Jülich GmbH Sensors for the detection of intracellular metabolites
DE102010029973A1 (en) 2010-06-11 2011-12-15 Evonik Degussa Gmbh Microbiological production of C4 bodies from sucrose and carbon dioxide
WO2011154503A1 (en) 2010-06-11 2011-12-15 Evonik Degussa Gmbh Microbiological production of c4 bodies from saccharose and carbon dioxide
DE102010032484A1 (en) 2010-07-28 2012-02-02 Evonik Goldschmidt Gmbh Cells and methods for producing rhamnolipids
WO2012013554A1 (en) 2010-07-28 2012-02-02 Evonik Goldschmidt Gmbh Cells and method for producing rhamnolipids
EP3418388A1 (en) 2010-07-28 2018-12-26 Evonik Degussa GmbH Cells and method for the preparation of rhamnolipids
EP2479279A1 (en) 2011-01-20 2012-07-25 Evonik Degussa GmbH Method for producing sulphuric amino acids by means of fermentation
WO2012098042A1 (en) 2011-01-20 2012-07-26 Evonik Degussa Gmbh Process for the fermentative production of sulphurous amino acids
DE102012201360A1 (en) 2012-01-31 2013-08-01 Evonik Industries Ag New cell capable of forming rhamnolipid compound, which is useful for the production of cosmetic, dermatological or pharmaceutical formulations, of plant protection formulations and of care and cleaning agents and surfactant concentrates
WO2013152913A1 (en) 2012-04-11 2013-10-17 Evonik Industries Ag Acetyl transferase from wickerhamomyces ciferrii
DE102012007491A1 (en) 2012-04-11 2013-10-17 Evonik Industries Ag New enzymes
US9388439B2 (en) 2012-04-11 2016-07-12 Evonik Degussa Gmbh Acetyltransferase from wickerhamomyces ciferrii
EP2700715A1 (en) 2012-08-20 2014-02-26 Evonik Degussa GmbH Method for manufacturing L-amino acids using improved strains of the enterobacteriaceae family by means of fermentation
WO2014029592A1 (en) 2012-08-20 2014-02-27 Evonik Degussa Gmbh Method for the fermentative production of l-amino acids using improved strains of the enterobacteriaceae family
DE102013202106A1 (en) 2013-02-08 2014-08-14 Evonik Industries Ag Autotrophic cultivation
WO2015110518A1 (en) 2014-01-27 2015-07-30 Evonik Degussa Gmbh Fermentative process involving cell cultivation at a low dissolved-oxygen concentration
DE102014201384A1 (en) 2014-01-27 2015-07-30 Evonik Industries Ag A method comprising low dissolved oxygen concentration culture
WO2015140314A1 (en) 2014-03-21 2015-09-24 Philipps-Universität Marburg Means and methods for itaconic acid production
WO2015158800A1 (en) 2014-04-17 2015-10-22 Boehringer Ingelheim Rcv Gmbh & Co Kg Recombinant host cell for expressing proteins of interest
WO2015158808A2 (en) 2014-04-17 2015-10-22 Boehringer Ingelheim Rcv Gmbh & Co Kg Recombinant host cell engineered to overexpress helper proteins
EP4311857A2 (en) 2014-04-17 2024-01-31 Boehringer Ingelheim RCV GmbH & Co KG Recombinant host cell engineered to overexpress helper proteins
EP2949214A1 (en) 2014-05-26 2015-12-02 Evonik Degussa GmbH Methods of producing rhamnolipids
US10174353B2 (en) 2014-05-26 2019-01-08 Evonik Degussa Gmbh Methods of producing rhamnolipids
EP2952585A1 (en) 2014-06-04 2015-12-09 Boehringer Ingelheim RCV GmbH & Co KG Improved protein production in fungi or yeasts
EP2952584A1 (en) 2014-06-04 2015-12-09 Boehringer Ingelheim RCV GmbH & Co KG Improved protein production
WO2016131801A1 (en) 2015-02-19 2016-08-25 Evonik Degussa Gmbh Rhamnolipid synthesis
EP3072971A1 (en) 2015-03-25 2016-09-28 Forschungszentrum Jülich GmbH Sensors for detection and quantification of microbiological protein secretion
WO2016151054A1 (en) 2015-03-25 2016-09-29 Forschungszentrum Jülich GmbH Sensors for detection and quantification of microbiological protein secretion
WO2017100376A2 (en) 2015-12-07 2017-06-15 Zymergen, Inc. Promoters from corynebacterium glutamicum
WO2018077700A1 (en) 2016-10-24 2018-05-03 Evonik Degussa Gmbh Rhamnolipid-producing cell having reduced glucose dehydrogenase activity
WO2018077701A1 (en) 2016-10-24 2018-05-03 Evonik Degussa Gmbh Cells and method for producing rhamnolipids using alternative glucose transporters
WO2018178126A1 (en) 2017-03-29 2018-10-04 Boehringer Ingelheim Rcv Gmbh & Co Kg Recombinant host cell with altered membrane lipid composition
WO2018226964A2 (en) 2017-06-07 2018-12-13 Zymergen Inc. Promoters from corynebacterium glutamicum and uses thereof in regulating ancillary gene expression
WO2019154984A1 (en) 2018-02-09 2019-08-15 Evonik Degussa Gmbh Lipid production
WO2020002494A1 (en) 2018-06-27 2020-01-02 Boehringer Ingelheim Rcv Gmbh & Co Kg Means and methods for increased protein expression by use of transcription factors
WO2020016287A1 (en) 2018-07-17 2020-01-23 Technische Universität Dortmund Biotechnological production of cannabinoids
DE102018117233A1 (en) 2018-07-17 2020-01-23 Technische Universität Dortmund Biotechnological production of cannabinoids
WO2022171827A1 (en) 2021-02-12 2022-08-18 Boehringer Ingelheim Rcv Gmbh & Co Kg Signal peptides for increased protein secretion

Similar Documents

Publication Publication Date Title
JPH10229891A (en) Production of malonic acid derivative
EP1008655B1 (en) Process for producing malonic acid derivatives
EP0093782B1 (en) Process for biologically producing amide
EP0188316B1 (en) Process for the preparation of amides using microorganisms
EP0449648B1 (en) Process for producing R(-)-mandelic acid and derivatives thereof
JP2720140B2 (en) Method for producing optically active α-hydroxycarboxylic acid having phenyl group
JPH06284899A (en) Production of optically active alpha-hydoxy-carboxylic acid having phenyl group
US5179014A (en) Process for the preparation of amides using microorganisms
EP0204555B1 (en) Method of producing an amide utilizing a microorganism
JP2696424B2 (en) Method for producing R (-)-mandelic acid
JP3014171B2 (en) Method for producing 4-halo-3-hydroxybutyramide
EP0356912A2 (en) A method for the preparation of an optically active 2-substituted carboxylic acid
JPH1175885A (en) Production of calcium 2-hydroxy-4-methylthiobutanoate
JP2640958B2 (en) Hydroxamic acid hydrolase
JP3718572B2 (en) Method for producing malonic acid derivative
JPH0479894A (en) Production of d-alanine
JPS61282089A (en) Microbiological production of unsaturated organic acid
EP0380689B1 (en) Process for preparing optically active 2-hydroxy-4-phenyl-3-butenoic acid
JPS633599B2 (en)
JP3976355B2 (en) Process for producing α-hydroxy-4-methylthiobutyric acid
JP3090761B2 (en) Production method of optically active lactic acid
JP3960667B2 (en) β-carbamoylisobutyric acid and process for producing the same
JP2840723B2 (en) Method for producing 4-halo-3-hydroxybutyronitrile
JP2983695B2 (en) Method for producing 4-halo-3-hydroxybutyric acid
US5238828A (en) Method for the preparation of an optically active 2-substituted carboxylic acid