JPH1021912A - Manufacture of nonaqueous electrolyte secondary battery and its positive electrode - Google Patents

Manufacture of nonaqueous electrolyte secondary battery and its positive electrode

Info

Publication number
JPH1021912A
JPH1021912A JP8170082A JP17008296A JPH1021912A JP H1021912 A JPH1021912 A JP H1021912A JP 8170082 A JP8170082 A JP 8170082A JP 17008296 A JP17008296 A JP 17008296A JP H1021912 A JPH1021912 A JP H1021912A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
battery
carbon material
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8170082A
Other languages
Japanese (ja)
Inventor
Shuji Ito
修二 伊藤
Toshihide Murata
年秀 村田
Yasuhiko Mifuji
靖彦 美藤
Yoshinori Toyoguchi
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8170082A priority Critical patent/JPH1021912A/en
Publication of JPH1021912A publication Critical patent/JPH1021912A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery where high temperature preservation property is improved. SOLUTION: In a nonaqueous electrolyte secondary battery possessing a chargeable and dischargeable positive electrode, a nonaqueous electrolyte, and a chargeable and dischargeable negative electrode, the positive electrode contains the carbon material which includes at least one kind of element (but, in case that it contains two or more kinds, 35wt.% in total is the limit) being selected from the group consisting of 0.5-19wt.% nitrogen, 0.5-35wt.% sulfur, and 0.5-25wt.% oxygen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池、特にその正極の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to an improvement in a positive electrode thereof.

【0002】[0002]

【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解質二次電池は、高電圧で高エネルギー密度
となることが期待され、盛んに研究が行われている。負
極としては、リチウムと層間化合物を形成する黒鉛など
の炭素材が、金属リチウムや合金負極に比べて容量は小
さいもののサイクル特性に優れているところから、実用
化されている。一方、正極の活物質としては、これまで
MnO2やTiS2がよく検討されきた。これらの正極活
物質は、リチウムに対する電位が3V程度である。最近
では、LiMn24、LiCoO2、LiNiO2、Li
MnO2、LiFeO2などリチウムに対して4V近い電
位を示す正極活物質も活発に研究がなされ、すでにLi
CoO2を正極に用いた電池が実用化されている。すな
わち、電池の高エネルギー密度を得る手段として、容量
の拡大とともに電池電圧を高める努力がなされている。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries using lithium or a lithium compound as a negative electrode are expected to have a high voltage and a high energy density, and are being actively studied. As a negative electrode, a carbon material such as graphite, which forms an intercalation compound with lithium, has been put to practical use because of its smaller cycle capacity but superior cycle characteristics as compared with metallic lithium or alloy negative electrodes. On the other hand, as the active material of the positive electrode, MnO 2 and TiS 2 have been well studied. These positive electrode active materials have a potential of about 3 V with respect to lithium. Recently, LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , Li
MnO 2, LiFeO cathode active material showing a 4V potential close the lithium such as 2 also actively studied have been made already Li
Batteries using CoO 2 for the positive electrode have been put to practical use. That is, as a means for obtaining a high energy density of a battery, efforts are being made to increase the battery voltage as well as the capacity.

【0003】[0003]

【発明が解決しようとする課題】上記の正極活物質を用
いると、電池電圧および容量が増加するため、電池の高
エネルギー密度化が可能になる。しかし、充電電圧が3
V以上あるいは4Vを越える場合もあるため、充電後の
特に高温での保存特性に問題があった。非水電解質二次
電池の高温における充電後の自己放電あるいはその後の
容量低下の原因の一つとして、正極活物質上での電解液
等の分解による電池の内部抵抗の増大が挙げられてい
る。特に、電池の使用温度領域は、できるだけ高温であ
ることが要求されており、より高温状態での保存特性の
改善が望まれている。本発明は、このような課題を解決
するもので、高エネルギー密度で、保存特性に優れた非
水電解質二次電池を与える正極を提供することを目的と
する。
When the above-mentioned positive electrode active material is used, the battery voltage and the capacity are increased, so that the energy density of the battery can be increased. However, when the charging voltage is 3
Since the voltage may exceed V or exceed 4 V in some cases, there is a problem in storage characteristics especially at high temperature after charging. One of the causes of self-discharge after charging at a high temperature of a nonaqueous electrolyte secondary battery or a subsequent decrease in capacity is an increase in internal resistance of the battery due to decomposition of an electrolyte solution or the like on a positive electrode active material. In particular, the operating temperature range of the battery is required to be as high as possible, and it is desired to improve the storage characteristics in a higher temperature state. An object of the present invention is to solve such problems and to provide a positive electrode that provides a non-aqueous electrolyte secondary battery having high energy density and excellent storage characteristics.

【0004】[0004]

【課題を解決するための手段】本発明は、充放電可能な
正極、非水電解質、および充放電可能な負極を具備する
非水電解質二次電池において、正極が、0.5〜19w
t%の窒素、0.5〜35wt%の硫黄および0.5〜
25wt%の酸素からなる群より選択される少なくとも
一種の元素を含む(ただし、二種以上を含む場合は併せ
て35wt%を限度とする)炭素材を含有することを特
徴とする。この構成により、高温時の正極活物質上での
電解液の分解反応などが抑制され、高温保存特性への悪
影響を実質的に除去することができる。
SUMMARY OF THE INVENTION The present invention relates to a non-aqueous electrolyte secondary battery having a chargeable / dischargeable positive electrode, a nonaqueous electrolyte, and a chargeable / dischargeable negative electrode.
t% nitrogen, 0.5-35 wt% sulfur and 0.5-35 wt%
It is characterized by containing a carbon material containing at least one element selected from the group consisting of 25 wt% oxygen (however, when two or more kinds are contained, the total is up to 35 wt%). With this configuration, the decomposition reaction of the electrolytic solution on the positive electrode active material at a high temperature is suppressed, and the adverse effect on the high-temperature storage characteristics can be substantially eliminated.

【0005】[0005]

【発明の実施の形態】本発明の正極は、0.5〜19w
t%の窒素、0.5〜35wt%の硫黄および0.5〜
25wt%の酸素からなる群より選択される少なくとも
一種の元素を含む(ただし、二種以上を含む場合は併せ
て35wt%を限度とする)炭素材を含有するもので、
一態様においては、これら炭素材は正極合剤中に混合さ
れている。また、他の態様においては、正極の活物質表
層の少なくとも一部が、0.5〜19wt%の窒素、
0.5〜35wt%の硫黄および0.5〜25wt%の
酸素からなる群より選択される少なくとも一種の元素を
含む(ただし、二種以上を含む場合は併せて35wt%
を限度とする)炭素材層を含有する。炭素材を正極活物
質表層の少なくとも一部に含有させる態様においては、
炭素材が窒素、硫黄または酸素元素を含まないものであ
っても高温保存特性を改善する効果が得られる。正極の
前記炭素材の含有量は、正極活物質の1〜15wt%相
当、特に3〜15wt%相当が好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The positive electrode of the present invention has a thickness of 0.5 to 19 watts.
t% nitrogen, 0.5-35 wt% sulfur and 0.5-35 wt%
A carbon material containing at least one element selected from the group consisting of 25 wt% oxygen (however, if two or more elements are contained, the total is up to 35 wt%);
In one embodiment, these carbon materials are mixed in the positive electrode mixture. In another aspect, at least a part of the surface of the active material of the positive electrode includes 0.5 to 19 wt% of nitrogen,
Contains at least one element selected from the group consisting of 0.5 to 35 wt% sulfur and 0.5 to 25 wt% oxygen (however, when two or more elements are included, 35 wt%
) Carbon material layer. In an embodiment in which the carbon material is contained in at least a part of the positive electrode active material surface layer,
Even if the carbon material does not contain nitrogen, sulfur or oxygen elements, the effect of improving high-temperature storage characteristics can be obtained. The content of the carbon material in the positive electrode is equivalent to 1 to 15 wt% of the positive electrode active material, particularly preferably 3 to 15 wt%.

【0006】本発明の非水電解質二次電池用正極の製造
方法は、窒素、硫黄および酸素からなる群より選択され
る少なくとも一種の元素を含有した有機物を正極活物質
に添加した後、不活性雰囲気下で加熱して前記有機物を
炭素化し、正極活物質の表層に、窒素、硫黄および酸素
からなる群より選択される少なくとも一種の元素を含有
した炭素材層を形成することを特徴とする。本発明の非
水電解質二次電池用正極の他の製造方法は、有機物、ま
たは窒素、硫黄および酸素からなる群より選択される少
なくとも一種の元素を含有した有機物を正極活物質に添
加する工程、前記有機物を添加された正極活物質を正極
集電体表面に形成する工程、および不活性雰囲気中で加
熱して前記有機物を炭素化する工程を有する。これらの
製造方法に用いられる、窒素、硫黄および酸素からなる
群より選択される少なくとも一種の元素を含有した有機
物は、炭素化された後における窒素、硫黄、または酸素
の含有量が上記の範囲になるものが好ましい。
According to the method of manufacturing a positive electrode for a non-aqueous electrolyte secondary battery of the present invention, an organic material containing at least one element selected from the group consisting of nitrogen, sulfur and oxygen is added to a positive electrode active material, The organic material is carbonized by heating in an atmosphere, and a carbon material layer containing at least one element selected from the group consisting of nitrogen, sulfur and oxygen is formed on the surface layer of the positive electrode active material. Another method for producing a positive electrode for a non-aqueous electrolyte secondary battery of the present invention is a step of adding an organic substance or an organic substance containing at least one element selected from the group consisting of nitrogen, sulfur and oxygen to the positive electrode active material, Forming a positive electrode active material to which the organic substance is added on the surface of the positive electrode current collector; and heating the organic substance in an inert atmosphere to carbonize the organic substance. The organic material containing at least one element selected from the group consisting of nitrogen, sulfur and oxygen used in these production methods has a nitrogen, sulfur, or oxygen content after carbonization in the above range. Are preferred.

【0007】本発明に用いる正極活物質としては、Li
Mn24、LiMnO2、LiCoO2、LiNiO2
およびLiFeO2からなる群より選ばれるものが好ま
しい。炭素材の原料となる有機物としては、炭素と水素
からなるピッチ、コールタールをはじめベンゼン、ナフ
タレン、アントラセンなどの環式化合物あるいはそれら
の誘導体または重合体が好ましい。窒素を含む有機物と
しては、アニリンあるいはポリアニリンなどの環式化合
物、それらの誘導体または重合体、さらにはピロール、
ポリピロール、ピペラジン、ピラジン、ピラゾール、ト
リアジン、トリアゾール、キノリン、テトラヒドロキノ
リン、メラミン、それらの誘導体あるいは重合体などの
窒素原子を含む複素環式化合物が好ましい。また、ジメ
チルホルムアミドあるいはアセトニトリル、アクリロニ
トリル、プロピオニトリル、ブチロニトリル、ペンタノ
ニトリルに代表される鎖式ニトリル、それらの誘導体、
さらにはポリアクリロニトリルあるいはその共重合体な
どの窒素原子を含む鎖式化合物が好ましい。
The positive electrode active material used in the present invention is Li
Mn 2 O 4 , LiMnO 2 , LiCoO 2 , LiNiO 2 ,
And those selected from the group consisting of LiFeO 2 . As the organic substance used as the raw material of the carbon material, a cyclic compound such as pitch, coal tar, benzene, naphthalene, anthracene or the like, or a derivative or polymer thereof is preferable. Examples of the organic substance containing nitrogen include cyclic compounds such as aniline and polyaniline, derivatives and polymers thereof, and pyrrole.
Heterocyclic compounds containing a nitrogen atom such as polypyrrole, piperazine, pyrazine, pyrazole, triazine, triazole, quinoline, tetrahydroquinoline, melamine, derivatives and polymers thereof are preferred. Further, dimethylformamide or acetonitrile, acrylonitrile, propionitrile, butyronitrile, chain-type nitrile represented by pentanonitrile, derivatives thereof,
Further, a chain compound containing a nitrogen atom such as polyacrylonitrile or a copolymer thereof is preferable.

【0008】硫黄を含む有機物としては、チオフェン、
テトラヒドロチオフェン、ポリチオフェン、チアン、ジ
チアン、トリチアン、チオフテン、ベンゾチオフェン、
チアントレン、それらの誘導体または重合体などの硫黄
原子を含む複素環式化合物が好ましい。また、メタンチ
オール、エタンチオール、プロパンチオール、ブタンチ
オール、ヘキサンチオール、ヘプタンチオール、エタン
ジチオール、プロパンジチオール、ジメチルスルフィ
ド、ジエチルスルフィド、ジプロピルスルフィド、ジメ
チルジスルフィド、ジエチルジスルフィド、ジプロピル
ジスルフィド、それらの誘導体または重合体などの硫黄
原子を含む鎖式化合物が好ましい。
As organic substances containing sulfur, thiophene,
Tetrahydrothiophene, polythiophene, thiane, dithiane, trithiane, thiophthene, benzothiophene,
Heterocyclic compounds containing a sulfur atom such as thianthrene, derivatives or polymers thereof are preferred. Further, methanethiol, ethanethiol, propanethiol, butanethiol, hexanethiol, heptanethiol, ethanedithiol, propanedithiol, dimethylsulfide, diethylsulfide, dipropylsulfide, dimethyldisulfide, diethyldisulfide, dipropyldisulfide, derivatives thereof or A chain compound containing a sulfur atom such as a polymer is preferred.

【0009】酸素を含む有機物としては、フラン、ポリ
フラン、テトラヒドロフラン、ピラン、ジオキサン、ト
リオキサン、ジオキソラン、オキソラン、ベンゾフラ
ン、ブチロラクトン、クロメン、クロマン、ベンゾキノ
ン、ナフトール、ナフトキノン、フェノール、フェノー
ル樹脂、それらの誘導体または重合体などの酸素原子を
含む環式化合物が好ましい。また、ポリエチレンオキサ
イド、ポリプロピレンオキサイドなどのポリエーテル
系、ポリエチレンテレフタレート、アルキド樹脂、マレ
イン酸樹脂などのポリエステル系、ポリビニルアルコー
ルなどの重合体あるい共重合体、さらにはエチルアルコ
ールなどのアルコール類、アセトアルデヒドなどのアル
デヒド類、酢酸などのカルボン酸類など酸素原子を含む
鎖式化合物が好ましい。
Examples of the organic substance containing oxygen include furan, polyfuran, tetrahydrofuran, pyran, dioxane, trioxane, dioxolan, oxolan, benzofuran, butyrolactone, chromene, chroman, benzoquinone, naphthol, naphthoquinone, phenol, phenolic resin, and derivatives or polyphenols thereof. Cyclic compounds containing an oxygen atom such as coalescence are preferred. Polyethers such as polyethylene oxide and polypropylene oxide; polyesters such as polyethylene terephthalate, alkyd resin and maleic acid resin; polymers and copolymers such as polyvinyl alcohol; and alcohols such as ethyl alcohol, acetaldehyde and the like. Preferred are chain compounds containing an oxygen atom such as aldehydes and carboxylic acids such as acetic acid.

【0010】[0010]

【実施例】以下、本発明の実施例を説明する。 《実施例1》本実施例では、窒素を含有した炭素材の添
加量について検討した。正極活物質にはLiMn24
LiMnO2、LiCoO2、LiNiO2、またはLi
FeO2を、炭素材にはポリアクリロニトリルを加熱し
て得られた窒素含有量5wt%のものをそれぞれ用い
た。正極活物質100gに、結着剤のポリフッ化エチレ
ン樹脂4.0gおよび窒素含有量が5wt%の炭素材を
表1に示す量だけ混合し、正極合剤とした。なお、表1
において、炭素材の添加量は、正極活物質を100wt
%としたときの値である(以下の表においても同じとす
る)。この正極合剤0.1gを1トン/cm2の圧力で
直径17.5mmの円盤にプレス成型して、正極とし
た。この正極1をステンレス鋼製ケース2の中に設置
し、その上に微孔性ポリプロピレンフィルムからなるセ
パレータ3を置き、電解液を注液後、内側に直径17.
5mm、厚さ0.3mmの負極リチウム板4を張り付
け、外周部にポリプロピレン製ガスケット5を付けた封
口板6により封口して試験電池とした。なお、電解液に
は、1モル/lの過塩素酸リチウム(LiClO4)を
溶解したエチレンカーボネートとジエチレンカーボネー
トの体積比1:1の混合溶液を用いた。また、比較のた
め、窒素を含有しない炭素材としてアセチレンブッラク
を用いた正極を作製し、同様の電池を組み立てた。
Embodiments of the present invention will be described below. Example 1 In this example, the amount of the carbon material containing nitrogen was examined. LiMn 2 O 4 as the positive electrode active material,
LiMnO 2 , LiCoO 2 , LiNiO 2 , or Li
FeO 2 was used, and a carbon material having a nitrogen content of 5 wt% obtained by heating polyacrylonitrile was used. 4.0 g of a polyfluoroethylene resin as a binder and a carbon material having a nitrogen content of 5 wt% were mixed with 100 g of the positive electrode active material in amounts shown in Table 1 to prepare a positive electrode mixture. Table 1
, The addition amount of the carbon material is 100 wt.
% (The same applies to the following tables). 0.1 g of this positive electrode mixture was press-molded at a pressure of 1 ton / cm 2 into a disk having a diameter of 17.5 mm to obtain a positive electrode. The positive electrode 1 is placed in a stainless steel case 2, a separator 3 made of a microporous polypropylene film is placed thereon, and after injecting an electrolytic solution, a diameter of 17.
A negative electrode lithium plate 4 having a thickness of 5 mm and a thickness of 0.3 mm was adhered, and sealed with a sealing plate 6 having a polypropylene gasket 5 attached to the outer periphery to obtain a test battery. In addition, a mixed solution of ethylene carbonate and diethylene carbonate in a volume ratio of 1: 1 in which 1 mol / l of lithium perchlorate (LiClO 4 ) was dissolved was used as the electrolytic solution. For comparison, a positive electrode using acetylene black as a carbon material containing no nitrogen was produced, and a similar battery was assembled.

【0011】これらの電池について高温保存試験を行っ
た。すなわち、20℃において、1mAの定電流で、L
iCoO2またはLiNiO2を正極活物質とする電池は
4.2Vまで、LiMn24、LiMnO2、またはL
iFeO2を正極活物質とする電池は4.5Vまでそれぞ
れ充電し、次いで3Vまで放電する充放電を10サイク
ル繰り返した。次に、11サイクル目の充電終了後、8
0℃で1カ月間保存した。この保存後20℃の雰囲気に
戻し、上記と同じ条件で放電した。ここで、容量維持率
は次のように定義した。 容量維持率=[100×11サイクル目の放電電気量]
/[10サイクル目の放電電気量] また、保存終了後に充電を行い、その後の放電容量を評
価した。ここで、容量回復率を次のように定義した。 容量回復率=[100×12サイクル目の放電電気量]
/[10サイクル目の放電電気量] 上記のようにして求めた各電池の保存1カ月後の容量維
持率、および容量回復率を表1に示す。また、炭素材と
してアセチレンブラックを用いた比較例の結果を表2に
示す。
A high temperature storage test was performed on these batteries. That is, at 20 ° C., at a constant current of 1 mA, L
A battery using iCoO 2 or LiNiO 2 as a positive electrode active material has a capacity of up to 4.2 V to LiMn 2 O 4 , LiMnO 2 , or L
The battery using iFeO 2 as a positive electrode active material was charged to 4.5 V, and then charged and discharged to 3 V repeatedly for 10 cycles. Next, after the completion of the charging in the eleventh cycle, 8
Stored at 0 ° C. for one month. After this storage, the atmosphere was returned to the temperature of 20 ° C., and discharge was performed under the same conditions as above. Here, the capacity retention rate was defined as follows. Capacity retention rate = [discharged electricity amount at 100 × 11th cycle]
/ [Discharged electricity amount at 10th cycle] Further, after the storage was completed, charging was performed, and the subsequent discharge capacity was evaluated. Here, the capacity recovery rate was defined as follows. Capacity recovery rate = [discharged electricity amount at 100 × 12th cycle]
/ [Discharged electricity amount at 10th cycle] Table 1 shows the capacity retention rate and capacity recovery rate of each battery obtained as described above after one month of storage. Table 2 shows the results of comparative examples using acetylene black as the carbon material.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】窒素を含有しないアセチレンブッラクを用
いた電池は、いずれの正極活物質を用いた場合でも、8
0℃で1カ月保存することにより非常に大きな容量低下
を示した。一方、窒素を含有した炭素材を用いた電池で
は、その添加量が活物質の15wt%相当までは、添加
量が増加するほど容量維持率および容量回復率が高くな
った。添加量が増加するほど、電池容量が低下すること
から、添加量としては正極活物質の1〜15wt%相当
が好ましい。
A battery using acetylene black containing no nitrogen can be used with any of the positive electrode active materials.
Storing at 0 ° C. for 1 month showed a very large capacity loss. On the other hand, in a battery using a carbon material containing nitrogen, up to 15 wt% of the active material, the higher the amount of addition, the higher the capacity retention ratio and the capacity recovery ratio. Since the battery capacity decreases as the addition amount increases, the addition amount is preferably equivalent to 1 to 15 wt% of the positive electrode active material.

【0015】《実施例2》本実施例では、窒素を含有し
た炭素材の窒素含有量について検討した。正極活物質に
はLiMn24、LiMnO2、LiCoO2、LiNi
2、またはLiFeO2を、炭素材にはポリアクリロニ
トリルを加熱して得られた窒素含有量が0.1〜25w
t%のものをそれぞれ用いた。正極活物質100gに、
結着剤のポリフッ化エチレン樹脂4.0gおよび表3に
示す窒素含有量が異なる炭素材5.0gを混合し、正極
合剤とした。この正極合剤を用いて、実施例1と同様の
方法で正極を作製し、電池を組み立てた。実施例1と同
様の方法で高温保存試験を行った。表3に、各電池の保
存1カ月後の容量維持率、および容量回復率を示す。
Example 2 In this example, the nitrogen content of a carbon material containing nitrogen was examined. LiMn 2 O 4 , LiMnO 2 , LiCoO 2 , LiNi
O 2 or LiFeO 2 , and the carbon material obtained by heating polyacrylonitrile has a nitrogen content of 0.1 to 25 watts.
Each of t% was used. In 100 g of the positive electrode active material,
4.0 g of a polyfluoroethylene resin as a binder and 5.0 g of carbon materials having different nitrogen contents shown in Table 3 were mixed to prepare a positive electrode mixture. Using this positive electrode mixture, a positive electrode was produced in the same manner as in Example 1, and a battery was assembled. A high-temperature storage test was performed in the same manner as in Example 1. Table 3 shows the capacity maintenance rate and capacity recovery rate of each battery after one month of storage.

【0016】[0016]

【表3】 [Table 3]

【0017】窒素を含有した炭素材を用いた電池では、
80℃で1カ月保存しても容量維持率および容量回復率
が高く、特に窒素含有量が0.5〜19wt%の範囲で
は容量維持率は70%以上であり、容量回復率は78%
以上であった。このように正極中に窒素を含む炭素材を
含有させることにより、高温保存にともなう容量低下を
抑制する効果が得られる。
In a battery using a carbon material containing nitrogen,
Even when stored at 80 ° C. for one month, the capacity retention rate and the capacity recovery rate are high, and particularly when the nitrogen content is in the range of 0.5 to 19 wt%, the capacity retention rate is 70% or more, and the capacity recovery rate is 78%.
That was all. By including the carbon material containing nitrogen in the positive electrode as described above, an effect of suppressing a decrease in capacity due to high-temperature storage can be obtained.

【0018】《実施例3》本実施例では、硫黄を含有し
た炭素材の添加量について検討した。正極活物質にはL
iMn24、LiMnO2、LiCoO2、LiNi
2、またはLiFeO2を、炭素材にはポリチオフェン
を加熱して得られた硫黄含有量が7wt%のものをそれ
ぞれ用いた。正極活物質100gに、結着剤のポリフッ
化エチレン樹脂4.0gおよび硫黄含有量が7wt%の
炭素材を表3に示す量だけ混合し、正極合剤とした。こ
の正極合剤を用いて、実施例1と同様の方法で正極を作
製し、電池を組み立てた。実施例1と同様の方法で高温
保存試験を行った。表4に、各電池の保存1カ月後の容
量維持率、および容量回復率を示す。
Example 3 In this example, the amount of sulfur-containing carbon material added was examined. L for the positive electrode active material
iMn 2 O 4 , LiMnO 2 , LiCoO 2 , LiNi
O 2 or LiFeO 2 was used, and a carbon material having a sulfur content of 7 wt% obtained by heating polythiophene was used. 4.0 g of a polyfluoroethylene resin as a binder and a carbon material having a sulfur content of 7 wt% were mixed with 100 g of the positive electrode active material in amounts shown in Table 3 to obtain a positive electrode mixture. Using this positive electrode mixture, a positive electrode was produced in the same manner as in Example 1, and a battery was assembled. A high-temperature storage test was performed in the same manner as in Example 1. Table 4 shows the capacity maintenance rate and capacity recovery rate of each battery after one month of storage.

【0019】[0019]

【表4】 [Table 4]

【0020】硫黄を含有しないアセチレンブッラクを用
いた電池は、いずれの正極活物質を用いた場合でも、8
0℃で1カ月保存すると、非常に大きな容量低下を示し
た。一方、硫黄を含有した炭素材を用いた電池では、そ
の添加量が正極活物質の15wt%相当までは添加量が
増加するほど容量維持率および容量回復率が高くなっ
た。添加量が増加するほど、電池容量が低下することか
ら、添加量としては正極活物質の1〜15wt%相当が
好ましい。
A battery using acetylene black containing no sulfur can be used in any of the positive electrode active materials.
Storing at 0 ° C. for 1 month showed a very large capacity loss. On the other hand, in the battery using the carbon material containing sulfur, the capacity retention ratio and the capacity recovery ratio increased as the addition amount increased up to 15 wt% of the positive electrode active material. Since the battery capacity decreases as the addition amount increases, the addition amount is preferably equivalent to 1 to 15 wt% of the positive electrode active material.

【0021】《実施例4》本実施例では、硫黄を含有し
た炭素材の硫黄含有量について検討した。正極活物質に
はLiMn24、LiMnO2、LiCoO2、LiNi
2、またはLiFeO2を、炭素材にはポリチオフェン
を加熱して得られた硫黄含有量が0.1〜37wt%の
ものをそれぞれ用いた。正極活物質100gに、結着剤
のポリフッ化エチレン樹脂4.0gおよび表5に示す硫
黄含有量が異なる炭素材5.0gを混合し、正極合剤と
した。この正極合剤を用いて、実施例1と同様の方法で
正極を作製し、電池を組み立てた。実施例1と同様の方
法で高温保存試験を行った。表5に、各電池の保存1カ
月後の容量維持率、および容量回復率を示す。
Example 4 In this example, the sulfur content of a carbon material containing sulfur was examined. LiMn 2 O 4 , LiMnO 2 , LiCoO 2 , LiNi
O 2 or LiFeO 2 was used, and a carbon material having a sulfur content of 0.1 to 37 wt% obtained by heating polythiophene was used. To 100 g of the positive electrode active material, 4.0 g of a polyfluoroethylene resin as a binder and 5.0 g of carbon materials having different sulfur contents shown in Table 5 were mixed to prepare a positive electrode mixture. Using this positive electrode mixture, a positive electrode was produced in the same manner as in Example 1, and a battery was assembled. A high-temperature storage test was performed in the same manner as in Example 1. Table 5 shows the capacity retention rate and capacity recovery rate of each battery after one month of storage.

【0022】[0022]

【表5】 [Table 5]

【0023】硫黄を含有した炭素材を用いた電池では、
80℃で1カ月保存しても容量維持率および容量回復率
が高く、特に窒素含有量が0.5〜35wt%の範囲で
は容量維持率は65%以上であり、容量回復率は75%
以上であった。このように正極中に硫黄を含む炭素材を
含有させることにより、高温保存にともなう容量低下を
抑制する効果が得られる。
In a battery using a carbon material containing sulfur,
Even when stored at 80 ° C. for one month, the capacity retention rate and the capacity recovery rate are high, especially when the nitrogen content is in the range of 0.5 to 35 wt%, the capacity retention rate is 65% or more, and the capacity recovery rate is 75%.
That was all. By including a carbon material containing sulfur in the positive electrode as described above, an effect of suppressing a decrease in capacity due to high-temperature storage can be obtained.

【0024】《実施例5》本実施例では、酸素を含有し
た炭素材の添加量について検討した。正極活物質にはL
iMn24、LiMnO2、LiCoO2、LiNi
2、またはLiFeO2を、炭素材にはポリエチレンオ
キサイドを加熱して得られた酸素含有量が4wt%の炭
素材をそれぞれ用いた。正極活物質100gに、結着剤
のポリフッ化エチレン樹脂4.0gおよび酸素含有量が
4wt%の炭素材を表6に示す量だけ混合し、正極合剤
とした。この正極合剤を用いて、実施例1と同様の方法
で正極を作製し、電池を組み立てた。実施例1と同様の
方法で高温保存試験を行った。表6に、各電池の保存1
カ月後の容量維持率、および容量回復率を示す。
Example 5 In this example, the amount of the carbon material containing oxygen was examined. L for the positive electrode active material
iMn 2 O 4 , LiMnO 2 , LiCoO 2 , LiNi
O 2 or LiFeO 2 was used, and a carbon material having an oxygen content of 4 wt% obtained by heating polyethylene oxide was used as the carbon material. 4.0 g of a polyfluoroethylene resin as a binder and a carbon material having an oxygen content of 4 wt% were mixed with 100 g of the positive electrode active material in amounts shown in Table 6 to prepare a positive electrode mixture. Using this positive electrode mixture, a positive electrode was produced in the same manner as in Example 1, and a battery was assembled. A high-temperature storage test was performed in the same manner as in Example 1. Table 6 shows the storage 1 for each battery.
The capacity maintenance rate after a month and the capacity recovery rate are shown.

【0025】[0025]

【表6】 [Table 6]

【0026】酸素を含有しないアセチレンブッラクを用
いた電池は、いずれの正極活物質を用いた場合でも、8
0℃で1カ月保存すると、非常に大きな容量低下を示し
た。一方、酸素を含有した炭素材を用いた電池では、そ
の添加量が正極活物質の15wt%相当までは、添加量
が増加するほど容量維持率および容量回復率が高くなっ
た。添加量が増加するほど、電池容量が低下することか
ら、添加量としては正極活物質の1〜15wt%相当が
好ましい。
A battery using acetylene black containing no oxygen can be used with any of the positive electrode active materials.
Storing at 0 ° C. for 1 month showed a very large capacity loss. On the other hand, in the battery using the carbon material containing oxygen, up to 15 wt% of the positive electrode active material, the capacity retention ratio and the capacity recovery ratio increased as the addition amount increased. Since the battery capacity decreases as the addition amount increases, the addition amount is preferably equivalent to 1 to 15 wt% of the positive electrode active material.

【0027】《実施例6》本実施例では、酸素を含有し
た炭素材の酸素含有量について検討した。正極活物質に
はLiMn24、LiMnO2、LiCoO2、LiNi
2、またはLiFeO2を、炭素材にはポリエチレンオ
キサイドを加熱して得られた酸素含有量が0.1〜28
wt%のものをそれぞれ用いた。正極活物質100g
に、結着剤のポリフッ化エチレン樹脂4.0gおよび表
7に示す酸素含有量が異なる炭素材5.0gを混合し、
正極合剤とした。この正極合剤を用いて、実施例1と同
様の方法で正極を作製し、電池を組み立てた。実施例1
と同様の方法で高温保存試験を行った。表7に、各電池
の保存1カ月後の容量維持率、および容量回復率を示
す。
Example 6 In this example, the oxygen content of an oxygen-containing carbon material was examined. LiMn 2 O 4 , LiMnO 2 , LiCoO 2 , LiNi
O 2 or LiFeO 2 , and the carbon material obtained by heating polyethylene oxide has an oxygen content of 0.1 to 28.
wt% of each was used. 100 g of positive electrode active material
Was mixed with 4.0 g of a polyfluoroethylene resin as a binder and 5.0 g of a carbon material having a different oxygen content shown in Table 7,
A positive electrode mixture was used. Using this positive electrode mixture, a positive electrode was produced in the same manner as in Example 1, and a battery was assembled. Example 1
A high-temperature storage test was performed in the same manner as described above. Table 7 shows the capacity retention rate and capacity recovery rate of each battery after one month of storage.

【0028】[0028]

【表7】 [Table 7]

【0029】酸素を含有した炭素材を用いた電池では、
80℃で1カ月保存しても容量維持率および容量回復率
が高く、特に酸素含有量が0.5〜25wt%の範囲で
は容量維持率は65%以上であり、容量回復率は75%
以上であった。このように正極中に酸素を含む炭素材を
含有させることにより、高温保存にともなう容量低下を
抑制する効果が得られる。
In a battery using a carbon material containing oxygen,
Even when stored at 80 ° C. for one month, the capacity retention rate and the capacity recovery rate are high, and particularly when the oxygen content is in the range of 0.5 to 25 wt%, the capacity retention rate is 65% or more, and the capacity recovery rate is 75%.
That was all. By including the carbon material containing oxygen in the positive electrode as described above, an effect of suppressing a decrease in capacity due to high-temperature storage can be obtained.

【0030】《実施例7》本実施例では、表層に炭素材
層を設けた活物質を用いた正極について説明する。正極
活物質には、LiMn24、LiMnO2、LiCo
2、LiNiO2、またはLiFeO2を用いた。ま
た、炭素材層を形成する有機物には、ピッチまたはベン
ゼン重合体のポリパラフェニレンを用いた。表層に炭素
材層を設けた正極活物質は、次のようにして作製した。
まず、キノリンに分散させたピッチ、またはジメチルホ
ルムアミドに分散もしくは溶解させたポリパラフェニレ
ンの所定量を正極活物質に混合し、乾燥した。これを粉
砕した後、窒素雰囲気中において800℃で加熱して、
表8および表9に示すように炭素材層の量が活物質の
0.5、1、5、10、または15wt%相当の正極活
物質を得た。上記の正極活物質100gに、結着剤のポ
リフッ化エチレン樹脂4.0gを混合し、正極合剤とし
た。この正極合剤を用いて、実施例1と同様の方法で正
極を作製し、電池を組み立てた。実施例1と同様の方法
で高温保存試験を行った。表8および表9に、各電池の
保存1カ月後の容量維持率、および容量回復率を示す。
Embodiment 7 In this embodiment, a positive electrode using an active material provided with a carbon material layer on a surface layer will be described. LiMn 2 O 4 , LiMnO 2 , LiCo
O 2 , LiNiO 2 , or LiFeO 2 was used. In addition, pitch or benzene polymer polyparaphenylene was used as the organic material forming the carbon material layer. The positive electrode active material provided with the carbon material layer on the surface layer was produced as follows.
First, a predetermined amount of pitch dispersed in quinoline or polyparaphenylene dispersed or dissolved in dimethylformamide was mixed with a positive electrode active material and dried. After crushing this, it is heated at 800 ° C. in a nitrogen atmosphere,
As shown in Tables 8 and 9, a positive electrode active material was obtained in which the amount of the carbon material layer was equivalent to 0.5, 1, 5, 10, or 15 wt% of the active material. 4.0 g of a polyfluoroethylene resin as a binder was mixed with 100 g of the above positive electrode active material to prepare a positive electrode mixture. Using this positive electrode mixture, a positive electrode was produced in the same manner as in Example 1, and a battery was assembled. A high-temperature storage test was performed in the same manner as in Example 1. Tables 8 and 9 show the capacity retention rate and capacity recovery rate of each battery after one month of storage.

【0031】[0031]

【表8】 [Table 8]

【0032】[0032]

【表9】 [Table 9]

【0033】正極活物質の表層に炭素材層を設けた正極
を用いた電池は、いずれも実施例1の比較例で示した単
にアセチレンブラックを正極中に含有した電池に比べ
て、容量維持率および容量回復率が高くなった。ピッチ
を加熱して得られる易黒鉛化炭素あるいはポリパラフェ
ニレンを加熱して得られる難黒鉛化炭素のいずれにおい
ても効果が認められ、高温保存特性を改善することがで
きた。
The batteries using a positive electrode having a carbon material layer provided on the surface layer of the positive electrode active material all had a higher capacity retention ratio than the batteries containing only acetylene black in the positive electrode shown in the comparative example of Example 1. And the capacity recovery rate was higher. The effect was recognized in either graphitizable carbon obtained by heating the pitch or in non-graphitizable carbon obtained by heating the polyparaphenylene, and the high-temperature storage characteristics could be improved.

【0034】《実施例8》本実施例では、窒素を含有し
た炭素材層を正極活物質の表層に設けた正極について説
明する。正極活物質には、LiMn24、LiMn
2、LiCoO2、LiNiO2、またはLiFeO2
用いた。ジメチルホルムアミドに分散もしくは溶解させ
たポリアクリロニトリルまたはポリアニリンの所定量を
正極活物質に混合し、乾燥した。これを粉砕した後、窒
素雰囲気中において600〜1100℃に加熱して、表
10、11、12に示すように、窒素含有量が異なる炭
素材層の量が活物質の1、5、または15wt%相当の
正極活物質を得た。上記の正極活物質100gに、結着
剤のポリフッ化エチレン樹脂4.0gを添加混合し、正
極合剤とした。この正極合剤を用いて、実施例1と同様
の方法で正極を作製し、電池を組み立てた。実施例1と
同様の方法で高温保存試験を行った。表10、表11、
および表12に、各電池の保存1カ月後の容量維持率、
および容量回復率を示す。
Embodiment 8 In this embodiment, a positive electrode in which a carbon material layer containing nitrogen is provided on a surface layer of a positive electrode active material will be described. LiMn 2 O 4 , LiMn
O 2 , LiCoO 2 , LiNiO 2 , or LiFeO 2 was used. A predetermined amount of polyacrylonitrile or polyaniline dispersed or dissolved in dimethylformamide was mixed with the positive electrode active material and dried. After pulverization, the mixture was heated to 600 to 1100 ° C. in a nitrogen atmosphere, and as shown in Tables 10, 11, and 12, the amount of the carbon material layers having different nitrogen contents was 1, 5, or 15 wt. % Of a positive electrode active material was obtained. 4.0 g of a polyfluoroethylene resin as a binder was added to and mixed with 100 g of the above-mentioned positive electrode active material to prepare a positive electrode mixture. Using this positive electrode mixture, a positive electrode was produced in the same manner as in Example 1, and a battery was assembled. A high-temperature storage test was performed in the same manner as in Example 1. Table 10, Table 11,
And Table 12 shows the capacity retention rate of each battery after one month of storage,
And the capacity recovery rate.

【0035】[0035]

【表10】 [Table 10]

【0036】[0036]

【表11】 [Table 11]

【0037】[0037]

【表12】 [Table 12]

【0038】正極活物質の表層に、窒素を含有した炭素
材層を設けた正極を用いた電池は、実施例1、2で示し
た単に窒素を含む炭素材を混合した正極を用いた電池に
比べて、さらに容量維持率および容量回復率が高くな
り、高温保存特性の向上に効果があった。
The battery using the positive electrode in which the nitrogen-containing carbon material layer is provided on the surface layer of the positive electrode active material is the same as the battery using the positive electrode obtained by simply mixing the carbon material containing nitrogen shown in Examples 1 and 2. In comparison, the capacity retention rate and the capacity recovery rate were further increased, which was effective in improving the high-temperature storage characteristics.

【0039】《実施例9》本実施例では、硫黄を含有し
た炭素材層を正極活物質の表層に設けた正極について説
明する。正極活物質には、LiMn24、LiMn
2、LiCoO2、LiNiO2、またはLiFeO2
用いた。ジメチルホルムアミドに分散もしくは溶解させ
たチオフェン重合体の所定量を正極活物質に混合し、乾
燥した。これを粉砕後、窒素雰囲気中において600〜
1100℃に加熱して、表13、14、15に示すよう
に硫黄含有量が異なる炭素材層の量が活物質の1、5、
または15wt%相当の正極活物質を得た。上記の正極
活物質100gに、結着剤のポリフッ化エチレン樹脂
4.0gを混合し、正極合剤とした。この正極合剤を用
いて、実施例1と同様の方法で正極を作製し、電池を組
み立てた。実施例1と同様の方法で高温保存試験を行っ
た。表13、表14、および表15に、各電池の保存1
カ月後の容量維持率、および容量回復率を示す。
Embodiment 9 In this embodiment, a positive electrode in which a carbon material layer containing sulfur is provided on a surface layer of a positive electrode active material will be described. LiMn 2 O 4 , LiMn
O 2 , LiCoO 2 , LiNiO 2 , or LiFeO 2 was used. A predetermined amount of the thiophene polymer dispersed or dissolved in dimethylformamide was mixed with the positive electrode active material and dried. After pulverizing this, in a nitrogen atmosphere,
When heated to 1100 ° C., the amount of the carbon material layers having different sulfur contents as shown in Tables 13, 14, and 15 was changed to 1, 5,
Alternatively, a cathode active material equivalent to 15 wt% was obtained. 4.0 g of a polyfluoroethylene resin as a binder was mixed with 100 g of the above positive electrode active material to prepare a positive electrode mixture. Using this positive electrode mixture, a positive electrode was produced in the same manner as in Example 1, and a battery was assembled. A high-temperature storage test was performed in the same manner as in Example 1. Tables 13, 14 and 15 show the storage 1 of each battery.
The capacity maintenance rate after a month and the capacity recovery rate are shown.

【0040】[0040]

【表13】 [Table 13]

【0041】[0041]

【表14】 [Table 14]

【0042】[0042]

【表15】 [Table 15]

【0043】活物質の表層に、硫黄を含有した炭素材層
を設けた正極を用いた電池は、実施例3、4で示した単
に硫黄を含む炭素材を混合した正極を用いた電池に比べ
て、さらに容量維持率および容量回復率が高くなり、高
温保存特性の向上に効果があった。
The battery using the positive electrode provided with the carbon material layer containing sulfur on the surface layer of the active material is different from the battery using the positive electrode containing only the carbon material containing sulfur simply shown in Examples 3 and 4. As a result, the capacity retention rate and the capacity recovery rate were further increased, which was effective in improving the high-temperature storage characteristics.

【0044】《実施例10》本実施例では、酸素を含有
した炭素材層を正極活物質の表層に設けた正極について
説明する。正極活物質には、LiMn24、LiMnO
2、LiCoO2、LiNiO2、またはLiFeO2を用
いた。ジメチルホルムアミドに分散もしくは溶解させた
フラン重合体の所定量を正極活物質に混合し、乾燥し
た。これを粉砕後、窒素雰囲気中において600〜11
00℃に加熱して、表16、17、18に示すように酸
素含有量が異なる炭素材層の量が活物質の1、5、また
は15wt%相当の正極活物質を得た。上記の正極活物
質100gに結着剤のポリフッ化エチレン樹脂4.0g
を混合し、正極合剤とした。この正極合剤を用いて、実
施例1と同様の方法で正極を作製し、電池を組み立て
た。実施例1と同様の方法で高温保存試験を行った。表
16、表17、および表18に、各電池の保存1カ月後
の容量維持率、および容量回復率を示す。
Embodiment 10 In this embodiment, a positive electrode in which a carbon material layer containing oxygen is provided on a surface layer of a positive electrode active material will be described. LiMn 2 O 4 , LiMnO
2 , LiCoO 2 , LiNiO 2 , or LiFeO 2 was used. A predetermined amount of a furan polymer dispersed or dissolved in dimethylformamide was mixed with the positive electrode active material and dried. After pulverization, 600 to 11 in a nitrogen atmosphere.
By heating to 00 ° C., as shown in Tables 16, 17, and 18, a positive electrode active material was obtained in which the amount of carbon material layers having different oxygen contents was equivalent to 1, 5, or 15 wt% of the active material. 4.0 g of a polyfluoroethylene resin as a binder was added to 100 g of the above positive electrode active material.
Were mixed to obtain a positive electrode mixture. Using this positive electrode mixture, a positive electrode was produced in the same manner as in Example 1, and a battery was assembled. A high-temperature storage test was performed in the same manner as in Example 1. Tables 16, 17, and 18 show the capacity retention rate and capacity recovery rate of each battery after one month of storage.

【0045】[0045]

【表16】 [Table 16]

【0046】[0046]

【表17】 [Table 17]

【0047】[0047]

【表18】 [Table 18]

【0048】活物質の表層に、酸素を含有した炭素材層
を設けた正極を用いた電池は、実施例5、6で示した単
に酸素を含む炭素材を混合した正極を用いた電池に比べ
て、さらに容量維持率および容量回復率が高くなり、高
温保存特性に効果があった。
The battery using the positive electrode provided with the carbon material layer containing oxygen on the surface layer of the active material is different from the battery using the positive electrode containing only the carbon material containing oxygen shown in Examples 5 and 6. As a result, the capacity retention rate and the capacity recovery rate were further increased, and the high temperature storage characteristics were effective.

【0049】《実施例11》本実施例においては、加熱
により炭素化する有機物を混合した正極活物質を集電体
表面に形成する工程、およびこれを不活性雰囲気中で加
熱して前記有機物を炭素化する工程を有する正極の製造
法について検討した。正極活物質には、LiMn24
LiMnO2、LiCoO2、LiNiO2、またはLi
FeO2を用いた。正極は、以下のようにして作製し
た。まず、キノリンに分散もしくは溶解させたピッチの
所定量を上記正極活物質に混合し、この混合物をチタン
の芯材上に塗布した後、110℃で乾燥させた。また、
ジメチルホルムアミドに分散もしくは溶解させたポリパ
ラフェニレンの所定量を上記正極活物質に混合し、この
混合物をチタンの芯材上に塗布した後、110℃で乾燥
させた。こうして有機物を混合した活物質を塗着した極
板を窒素ガス気流中において700℃に加熱し、炭素材
層の量が活物質の5または10wt%相当の正極板を得
た。
Example 11 In this example, a step of forming a positive electrode active material mixed with an organic substance which is carbonized by heating on the surface of a current collector, and heating the same in an inert atmosphere to remove the organic substance A method for producing a positive electrode having a carbonization step was studied. LiMn 2 O 4 ,
LiMnO 2 , LiCoO 2 , LiNiO 2 , or Li
FeO 2 was used. The positive electrode was produced as follows. First, a predetermined amount of the pitch dispersed or dissolved in quinoline was mixed with the positive electrode active material, and the mixture was applied on a titanium core material, and then dried at 110 ° C. Also,
A predetermined amount of polyparaphenylene dispersed or dissolved in dimethylformamide was mixed with the positive electrode active material, and the mixture was applied on a titanium core material, and then dried at 110 ° C. The electrode plate coated with the active material mixed with the organic substance was heated to 700 ° C. in a nitrogen gas stream to obtain a positive electrode plate having a carbon material layer equivalent to 5 or 10 wt% of the active material.

【0050】上記の正極板11とリチウム箔からなる負
極板12とを微孔性ポリプロピレンフィルムからなるセ
パレ−タ13を介して渦巻状に捲回して電極群を構成し
た。この電極群をその上下それぞれにポリプロピレン製
の絶縁板16、17を配して電槽18に挿入し、電槽1
8の上部に段部を形成させた後、非水電解液として、1
モル/lの過塩素酸リチウムを溶解したエチレンカーボ
ネートとジエチレンカーボネートの体積比1:1の混合
溶液を注入し、正極端子20を有する封口板19で密閉
して円筒型電池を構成した。正極の芯材に接続された正
極リード14は正極端子20に、また負極の芯材に接続
された負極リード15は電槽の底部にそれぞれ連結され
ている。この電池は、負極の電気容量の方が大きく、電
池の容量は正極の容量で決まる。
The positive electrode plate 11 and the negative electrode plate 12 made of lithium foil were spirally wound via a separator 13 made of a microporous polypropylene film to form an electrode group. The electrode group is provided with insulating plates 16 and 17 made of polypropylene on its upper and lower sides, respectively, and inserted into a battery case 18.
After forming a step on the top of 8, a non-aqueous electrolyte
A mixed solution of ethylene carbonate and diethylene carbonate at a volume ratio of 1: 1 in which mol / l lithium perchlorate was dissolved was injected and sealed with a sealing plate 19 having a positive electrode terminal 20 to form a cylindrical battery. The positive electrode lead 14 connected to the positive electrode core is connected to the positive electrode terminal 20, and the negative electrode lead 15 connected to the negative electrode core is connected to the bottom of the battery case. In this battery, the electric capacity of the negative electrode is larger, and the capacity of the battery is determined by the capacity of the positive electrode.

【0051】これらの電池について高温保存試験を行っ
た。すなわち、20℃において、0.5mA/cm2
定電流で、LiCoO2またはLiNiO2を正極活物質
とする電池は4.2Vまで、LiMn24、LiMnO
2、またはLiFeO2を正極活物質とする電池は4.5
Vまでそれぞれ充電し、次いで3Vまで放電する充放電
を10サイクル繰り返した。次に、11サイクル目の充
電終了後、80℃で1カ月間保存した。この保存後20
℃の雰囲気に戻し、上記と同じ条件で放電した。ここ
で、容量維持率は次のように定義した。 容量維持率=[100×11サイクル目の放電電気量]
/[10サイクル目の放電電気量] また、保存終了後に充電を行い、その後の放電容量を評
価した。ここで、容量回復率を次のように定義した。 容量回復率=[100×12サイクル目の放電電気量]
/[10サイクル目の放電電気量] 上記のようにして求めた各電池の保存1カ月後の容量維
持率、および容量回復を、有機物にピッチを用いた場合
を表19に、また有機物にポリパラフェニレンを用いた
場合を表20にそれぞれ示す。
A high-temperature storage test was performed on these batteries. That is, at 20 ° C., at a constant current of 0.5 mA / cm 2 , a battery using LiCoO 2 or LiNiO 2 as a positive electrode active material has a LiMn 2 O 4 , LiMnO 2 up to 4.2 V.
2 or LiFeO 2 as a positive electrode active material is 4.5.
Each charge to V and then discharge to 3 V was repeated 10 cycles. Next, after completion of the eleventh charge, the battery was stored at 80 ° C. for one month. 20 after this storage
The temperature was returned to an atmosphere of ° C., and discharge was performed under the same conditions as above. Here, the capacity retention rate was defined as follows. Capacity retention rate = [discharged electricity amount at 100 × 11th cycle]
/ [Discharged electricity amount at 10th cycle] Further, after the storage was completed, charging was performed, and the subsequent discharge capacity was evaluated. Here, the capacity recovery rate was defined as follows. Capacity recovery rate = [discharged electricity amount at 100 × 12th cycle]
/ [Discharged electricity amount at 10th cycle] The capacity retention rate and capacity recovery after one month of storage of each battery determined as described above are shown in Table 19 for the case where pitch was used as the organic substance, and as polycrystalline for the organic substance. Table 20 shows the case where paraphenylene was used.

【0052】[0052]

【表19】 [Table 19]

【0053】[0053]

【表20】 [Table 20]

【0054】本実施例の電池においても、実施例1の比
較例で示した単にアセチレンブラックを正極中に混合し
た電池に比べて、容量維持率および容量回復率が高くな
った。ピッチを加熱して得られる易黒鉛化炭素およびポ
リパラフェニレンを加熱して得られる難黒鉛化炭素のい
ずれにおいても効果が認められ、高温保存特性を改善す
ることができた。
Also in the battery of this example, the capacity retention rate and the capacity recovery rate were higher than those of the battery obtained by simply mixing acetylene black in the positive electrode shown in the comparative example of Example 1. The effect was recognized in both the graphitizable carbon obtained by heating the pitch and the non-graphitizable carbon obtained by heating the polyparaphenylene, and the high-temperature storage characteristics could be improved.

【0055】《実施例12》本実施例においては、窒素
を含有した有機物を混合した正極活物質を集電体表面に
形成する工程、およびこれを不活性雰囲気中で加熱して
前記有機物を炭素化する工程を有する正極の製造法につ
いて検討した。正極活物質には、LiMn24、LiM
nO2、LiCoO2、LiNiO2、またはLiFeO2
を用いた。ジメチルホルムアミドに分散もしくは溶解さ
せたポリアクリロニトリルまたはポリアニリンの所定量
を上記正極活物質に混合し、この混合物をチタンの芯材
上に塗布した後、110℃で乾燥させた。この極板を窒
素ガス気流中において700℃に加熱して、窒素含有量
が19wt%の炭素材を活物質の5または10wt%相
当含む正極板を得た。実施例11と同様にして円筒形電
池を製造し、高温保存試験を行った。表21に、各電池
の1カ月後の容量維持率、および容量回復率を示す。
Example 12 In this example, a step of forming a positive electrode active material mixed with a nitrogen-containing organic substance on the surface of a current collector, and heating the same in an inert atmosphere to convert the organic substance to carbon A method for manufacturing a positive electrode having a process of forming a positive electrode was studied. LiMn 2 O 4 , LiM
nO 2 , LiCoO 2 , LiNiO 2 , or LiFeO 2
Was used. A predetermined amount of polyacrylonitrile or polyaniline dispersed or dissolved in dimethylformamide was mixed with the above positive electrode active material, and this mixture was applied on a titanium core material, and then dried at 110 ° C. This electrode plate was heated to 700 ° C. in a nitrogen gas stream to obtain a positive electrode plate containing a carbon material having a nitrogen content of 19 wt% corresponding to 5 or 10 wt% of the active material. A cylindrical battery was manufactured in the same manner as in Example 11, and a high-temperature storage test was performed. Table 21 shows the capacity maintenance rate and capacity recovery rate of each battery after one month.

【0056】[0056]

【表21】 [Table 21]

【0057】本実施例の電池においても、実施例2で示
した単に窒素を含む炭素材を混合した正極を用いた電池
に比べて、さらに容量維持率および容量回復率が高くな
り、高温保存特性の向上に効果があった。
Also in the battery of this embodiment, the capacity retention ratio and the capacity recovery ratio are higher than those of the battery using the positive electrode in which the carbon material containing only nitrogen is mixed as shown in Embodiment 2, and the high-temperature storage characteristics are obtained. Was effective in improving

【0058】《実施例13》本実施例においては、正極
活物質にあらかじめ混合する有機物として、硫黄を含有
した有機物を用いて、実施例11と同様の正極の製造法
について検討した。ジメチルホルムアミドに分散もしく
は溶解させたチオフェン重合体の所定量を正極活物質に
混合し、この混合物をチタンの芯材上に塗布した後、1
10℃で乾燥させた。この極板を窒素ガス気流中におい
て700℃に加熱し、硫黄含有量が25wt%の炭素材
を活物質の5または10wt%相当含む正極板を得た。
実施例11と同様にして円筒形電池を製造し、高温保存
試験を行った。表22に、各電池の1カ月後の容量維持
率、および容量回復率を示す。
Example 13 In this example, a method of manufacturing a positive electrode similar to that of Example 11 was studied using an organic substance containing sulfur as an organic substance to be mixed in advance with the positive electrode active material. A predetermined amount of a thiophene polymer dispersed or dissolved in dimethylformamide is mixed with a positive electrode active material, and the mixture is applied on a titanium core material.
Dried at 10 ° C. This electrode plate was heated to 700 ° C. in a nitrogen gas stream to obtain a positive electrode plate containing a carbon material having a sulfur content of 25 wt% corresponding to 5 or 10 wt% of the active material.
A cylindrical battery was manufactured in the same manner as in Example 11, and a high-temperature storage test was performed. Table 22 shows the capacity maintenance rate and capacity recovery rate of each battery after one month.

【0059】[0059]

【表22】 [Table 22]

【0060】本実施例の電池においても、実施例4で示
した単に硫黄を含む炭素材を混合した正極を用いた電池
に比べて、さらに容量維持率および容量回復率が高くな
り、高温保存特性の向上に効果があった。
Also in the battery of this embodiment, the capacity retention rate and the capacity recovery rate are higher than those of the battery using the positive electrode in which the carbon material containing only sulfur shown in Example 4 is mixed, and the high-temperature storage characteristics are obtained. Was effective in improving

【0061】《実施例14》本実施例においては、正極
活物質にあらかじめ混合する有機物として、酸素を含有
した有機物を用いて、実施例11と同様の正極の製造法
について検討した。ジメチルホルムアミドに分散もしく
は溶解させたフラン重合体の所定量を正極活物質に混合
し、この混合物をチタンの芯材上に塗布した後、110
℃で乾燥させた。この極板を窒素ガス気流中において7
00℃に加熱し、酸素含有量が15wt%の炭素材を活
物質の5または10wt%相当含む正極板を得た。実施
例11と同様にして円筒形電池を製造し、高温保存試験
を行った。表23に、各電池の1カ月後の容量維持率、
および容量回復率を示す。
Example 14 In this example, a method of manufacturing a positive electrode similar to that of Example 11 was examined using an organic substance containing oxygen as an organic substance to be mixed in advance with the positive electrode active material. A predetermined amount of a furan polymer dispersed or dissolved in dimethylformamide is mixed with a positive electrode active material, and the mixture is applied on a titanium core material.
Dry at ℃. This electrode plate is placed in a nitrogen gas flow for 7 minutes.
By heating to 00 ° C., a positive electrode plate containing a carbon material having an oxygen content of 15 wt% corresponding to 5 or 10 wt% of the active material was obtained. A cylindrical battery was manufactured in the same manner as in Example 11, and a high-temperature storage test was performed. Table 23 shows the capacity retention rate of each battery after one month,
And the capacity recovery rate.

【0062】[0062]

【表23】 [Table 23]

【0063】本実施例の電池においても、実施例6で示
した単に酸素を含む炭素材を混合した正極を用いた電池
に比べて、さらに容量維持率および容量回復率が高くな
り、高温保存特性の向上に効果があった。
Also in the battery of this embodiment, the capacity retention ratio and the capacity recovery ratio are higher than those of the battery using the positive electrode in which the carbon material containing only oxygen is mixed as shown in Embodiment 6, and the high-temperature storage characteristics are obtained. Was effective in improving

【0064】以上の実施例では、電解液として1モル/
lの過塩素酸リチウムを溶解したエチレンカーボネート
とジエチレンカーボネートの体積比1:1の混合溶液を
用いたが、この種非水電解質二次電池の電解質として知
られている、溶質として6フッ化燐酸リチウムやトリフ
ロロメタンスルフォン酸リチウム、ホウフッ化リチウ
ム、溶媒としてプロピレンカーボネート、エチレンカー
ボネート、ジメチルカーボネート、メチルエチルカーボ
ネートなどのカーボネート類、ガンマーブチロラクト
ン、酢酸メチルなどのエステル類、ジメトキシエタンや
テトラヒドロフランなどのエーテル類の単独または混合
溶媒を使用した電解液においても同様な効果が得られ
る。
In the above embodiment, 1 mol / mol of the electrolytic solution was used.
1 of lithium perchlorate dissolved in ethylene carbonate and diethylene carbonate at a volume ratio of 1: 1 was used, but this type of non-aqueous electrolyte secondary battery is known as an electrolyte, and the solute is hexafluorophosphoric acid. Lithium, lithium trifluoromethanesulfonate, lithium borofluoride, solvents such as propylene carbonate, ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate, etc .; esters such as gamma-butyrolactone, methyl acetate; ethers such as dimethoxyethane and tetrahydrofuran The same effect can be obtained in an electrolytic solution using a single or mixed solvent of the above.

【0065】[0065]

【発明の効果】以上述べたように、本発明によれば、高
エネルギー密度で高温保存特性に優れた非水電解質二次
電池を得ることができる。
As described above, according to the present invention, a non-aqueous electrolyte secondary battery having high energy density and excellent high-temperature storage characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に用いたコイン型電池の縦断面
略図である。
FIG. 1 is a schematic vertical sectional view of a coin-type battery used in an embodiment of the present invention.

【図2】本発明の他の実施例に用いた円筒型電池の縦断
面略図である。
FIG. 2 is a schematic longitudinal sectional view of a cylindrical battery used in another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 ケース 3 セパレータ 4 負極 5 ガスケット 6 封口板 11 正極 12 負極 13 セパレータ 14 正極リード板 15 負極リード板 16 上部絶縁板 17 下部絶縁板 18 電槽 19 封口板 20 正極端子 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Case 3 Separator 4 Negative electrode 5 Gasket 6 Sealing plate 11 Positive electrode 12 Negative electrode 13 Separator 14 Positive lead plate 15 Negative lead plate 16 Upper insulating plate 17 Lower insulating plate 18 Battery case 19 Sealing plate 20 Positive terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toyoguchi ▲ Yoshi ▼ Toku 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 充放電可能な正極、非水電解質、および
充放電可能な負極を具備し、前記正極が、0.5〜19
wt%の窒素、0.5〜35wt%の硫黄および0.5
〜25wt%の酸素からなる群より選択される少なくと
も一種の元素を含む(ただし、二種以上を含む場合は併
せて35wt%を限度とする)炭素材を含有することを
特徴とする非水電解質二次電池。
1. A chargeable / dischargeable positive electrode, a non-aqueous electrolyte, and a chargeable / dischargeable negative electrode, wherein the positive electrode is 0.5 to 19
wt% nitrogen, 0.5-35 wt% sulfur and 0.5 wt%
A non-aqueous electrolyte characterized by containing a carbon material containing at least one element selected from the group consisting of oxygen in an amount of up to 25 wt% (however, when two or more kinds are contained, the total is limited to 35 wt%). Rechargeable battery.
【請求項2】 充放電可能な正極、非水電解質、および
充放電可能な負極を具備し、前記正極の活物質表層の少
なくとも一部が、炭素材層、または0.5〜19wt%
の窒素、0.5〜35wt%の硫黄および0.5〜25
wt%の酸素からなる群より選択される少なくとも一種
の元素を含む(ただし、二種以上を含む場合は併せて3
5wt%を限度とする)炭素材層を含有することを特徴
とする非水電解質二次電池。
2. A chargeable / dischargeable positive electrode, a non-aqueous electrolyte, and a chargeable / dischargeable negative electrode, wherein at least a part of the active material surface layer of the positive electrode is a carbon material layer or 0.5 to 19 wt%.
Nitrogen, 0.5-35 wt% sulfur and 0.5-25
contains at least one element selected from the group consisting of wt.% oxygen (however, when two or more are contained,
A non-aqueous electrolyte secondary battery comprising a carbon material layer.
【請求項3】 正極活物質がLiMn24、LiMnO
2、LiCoO2、LiNiO2、およびLiFeO2から
なる群より選ばれる少なくとも一種である請求項1また
は2記載の非水電解質二次電池。
3. The cathode active material is LiMn 2 O 4 or LiMnO.
2, LiCoO 2, LiNiO 2, and at least one non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein selected from the group consisting of LiFeO 2.
【請求項4】 正極の前記炭素材の含有量が、正極活物
質の1〜15wt%相当である請求項1または2記載の
非水電解質二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the content of the carbon material in the positive electrode is equivalent to 1 to 15 wt% of the positive electrode active material.
【請求項5】 窒素、硫黄および酸素からなる群より選
択される少なくとも一種の元素を含有した有機物を正極
活物質に添加した後、不活性雰囲気下で加熱して前記有
機物を炭素化することを特徴とする非水電解質二次電池
用正極の製造方法。
5. An organic material containing at least one element selected from the group consisting of nitrogen, sulfur and oxygen is added to a positive electrode active material, and then heated under an inert atmosphere to carbonize the organic material. A method for producing a positive electrode for a non-aqueous electrolyte secondary battery.
【請求項6】 有機物、または窒素、硫黄および酸素か
らなる群より選択される少なくとも一種の元素を含有し
た有機物を正極活物質に添加する工程、前記有機物を添
加された正極活物質を正極集電体表面に形成する工程、
および不活性雰囲気中で加熱して前記有機物を炭素化す
る工程を有することを特徴とする非水電解質二次電池用
正極の製造方法。
6. A step of adding an organic substance or an organic substance containing at least one element selected from the group consisting of nitrogen, sulfur and oxygen to a positive electrode active material, and collecting the positive electrode active material to which the organic substance is added into a positive electrode current collector. Forming on the body surface,
And a step of heating in an inert atmosphere to carbonize the organic substance, the method for producing a positive electrode for a non-aqueous electrolyte secondary battery.
JP8170082A 1996-06-28 1996-06-28 Manufacture of nonaqueous electrolyte secondary battery and its positive electrode Pending JPH1021912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8170082A JPH1021912A (en) 1996-06-28 1996-06-28 Manufacture of nonaqueous electrolyte secondary battery and its positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8170082A JPH1021912A (en) 1996-06-28 1996-06-28 Manufacture of nonaqueous electrolyte secondary battery and its positive electrode

Publications (1)

Publication Number Publication Date
JPH1021912A true JPH1021912A (en) 1998-01-23

Family

ID=15898316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8170082A Pending JPH1021912A (en) 1996-06-28 1996-06-28 Manufacture of nonaqueous electrolyte secondary battery and its positive electrode

Country Status (1)

Country Link
JP (1) JPH1021912A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223022A (en) * 2000-02-08 2001-08-17 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
WO2009075289A1 (en) * 2007-12-10 2009-06-18 Sumitomo Osaka Cement Co., Ltd. Electrode material, method for producing the same, electrode, and battery
JP2013527829A (en) * 2010-04-21 2013-07-04 エルジー・ケム・リミテッド Lithium iron phosphate having olivine type crystal structure and lithium secondary battery using the same
JP2013528557A (en) * 2010-04-21 2013-07-11 エルジー・ケム・リミテッド Lithium iron phosphate having olivine crystal structure coated with carbon and lithium secondary battery using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223022A (en) * 2000-02-08 2001-08-17 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
WO2009075289A1 (en) * 2007-12-10 2009-06-18 Sumitomo Osaka Cement Co., Ltd. Electrode material, method for producing the same, electrode, and battery
JP2009140876A (en) * 2007-12-10 2009-06-25 Sumitomo Osaka Cement Co Ltd Electrode material, method for manufacturing the same, electrode, and battery
US8658316B2 (en) 2007-12-10 2014-02-25 Sumitomo Osaka Cement Co., Ltd. Electrode material, method for producing the same, electrode and battery
US9391330B2 (en) 2007-12-10 2016-07-12 Sumitomo Osaka Cement Co., Ltd. Electrode material, method for producing the same, electrode and battery
JP2013527829A (en) * 2010-04-21 2013-07-04 エルジー・ケム・リミテッド Lithium iron phosphate having olivine type crystal structure and lithium secondary battery using the same
JP2013528557A (en) * 2010-04-21 2013-07-11 エルジー・ケム・リミテッド Lithium iron phosphate having olivine crystal structure coated with carbon and lithium secondary battery using the same
US9812707B2 (en) 2010-04-21 2017-11-07 Lg Chem, Ltd. Carbon-coated lithium iron phosphate of olivine crystal structure and lithium secondary battery using the same

Similar Documents

Publication Publication Date Title
JP4657403B2 (en) Nonaqueous electrolyte secondary battery
US6528212B1 (en) Lithium battery
EP0627780B1 (en) Non-aqueous liquid electrolyte secondary cell
JPH08162153A (en) Nonaqueous solvent secondary battery
JP4429411B2 (en) Method for producing carbon material for lithium ion secondary battery
KR101064767B1 (en) Electrode active material having core-shell structure
JP3564756B2 (en) Non-aqueous electrolyte secondary battery
JP2965450B2 (en) Electrodes for non-aqueous electrolyte secondary batteries
JP2001015156A (en) Nonaqueous electrolyte battery
KR20000071371A (en) Non-Aqueous Electrolyte Battery
JPH1131513A (en) Nonaqueous electrolyte secondary battery
JP4560854B2 (en) Nonaqueous electrolyte secondary battery
JP3552377B2 (en) Rechargeable battery
JPH1021912A (en) Manufacture of nonaqueous electrolyte secondary battery and its positive electrode
JP4166295B2 (en) Non-aqueous electrolyte battery
JP3475530B2 (en) Non-aqueous electrolyte secondary battery
JPH0927317A (en) Nonaqueous electrolyte secondary battery and manufacture of its negative electrode
JP4085481B2 (en) battery
JP4942241B2 (en) Non-aqueous secondary battery
JP2001006684A (en) Nonaqueous electrolyte battery
JP3053672B2 (en) Manufacturing method of organic solvent secondary battery
US5629109A (en) Non-aqueous electrolyte secondary battery and method for producing anode therefor
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH11297354A (en) Nonaqueos electrolyte secondary battery
KR20020068783A (en) Method of Manufacturing Cathode And Energy Storage System Including The Same