JPH10209270A - Dielectric separation semiconductor substrate and its manufacture - Google Patents

Dielectric separation semiconductor substrate and its manufacture

Info

Publication number
JPH10209270A
JPH10209270A JP771397A JP771397A JPH10209270A JP H10209270 A JPH10209270 A JP H10209270A JP 771397 A JP771397 A JP 771397A JP 771397 A JP771397 A JP 771397A JP H10209270 A JPH10209270 A JP H10209270A
Authority
JP
Japan
Prior art keywords
semiconductor
wafer
single crystal
separation groove
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP771397A
Other languages
Japanese (ja)
Inventor
Satoru Nomoto
了 野本
Hirotoshi Naito
博年 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP771397A priority Critical patent/JPH10209270A/en
Publication of JPH10209270A publication Critical patent/JPH10209270A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the cost of a dielectric separation semiconductor substrate by reducing the peripheral section of the substrate on which no rotating element can be arranged, and to improve the degree of integration of rotating elements on the substrate and, at the same time, to make the substrate usable at a middle of withstand voltage by vertically digging separating grooves which separate semiconductor crystals from each other by dry etching, etc., regardless of the faces of the crystals. SOLUTION: A single-crystal Si wafer 10 carrying an N<+> buried layer 11 on its surface is separated into many single-crystal Si chips 18, by closely adhering a masking material 14 for trench having separating groove forming windows 12 to the upper surface of the wafer 10, and digging separating grooves 16 into the wafer 10 by dry etching. After an oxide film 20 is formed on the internal surfaces of the grooves 16 and surfaces of the chips 18, the grooves 16 are filled up by depositing Si 22 by the low-pressure CVD method. Then, the surface of the poly-Si 22 is polished to a flat surface, and the wafer 10 is stuck to a supporting substrate 26 composed of a single-crystal Si wafer carrying an oxide film 20 on the surface with the polished surface on the downside by turning over the wafer 10. Therefore, each single-crystal semiconductor chip 18 has a bottom face composed of the defective surface resulting from the formation of the separating grooves and top face composed of an active surface on the opposite side of the defective surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は誘電体分離半導体基
板およびその製造方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a dielectric isolation semiconductor substrate and a method of manufacturing the same.

【0002】[0002]

【従来の技術】誘電体分離半導体基板は、分離耐圧が大
きく、かつ分離容量の小さな半導体集積回路素子を得る
ため、半導体ウエハから分離溝によって複数個の半導体
単結晶を分離して裏打ちした基板である。従来、誘電体
分離半導体基板としては、EPIC法が知られており、
これは半導体単結晶ウエハ表面を酸化処理し、フォトエ
ッチング技術により窓開けし、熱酸化膜をマスクとし
て、ケミカルエッチングして分離溝を形成するものであ
る。
2. Description of the Related Art In order to obtain a semiconductor integrated circuit device having a large separation withstand voltage and a small separation capacity, a dielectric isolation semiconductor substrate is a substrate which is backed by separating a plurality of semiconductor single crystals from a semiconductor wafer by a separation groove. is there. Conventionally, an EPIC method has been known as a dielectric isolation semiconductor substrate.
In this method, a surface of a semiconductor single crystal wafer is oxidized, a window is opened by a photoetching technique, and chemical etching is performed using a thermal oxide film as a mask to form a separation groove.

【0003】しかし、この方法によるときは、図3に示
すように分離溝16の側面は(111)面またはこれに
等価な面になるため、斜めに広がり半導体単結晶18の
表面露出面はその厚さの約1.4倍程度になる。そのた
め、耐圧限度を上げるため、分割した半導体単結晶18
の厚みを厚くすると、大きさもそれに比例して大きくな
り、表面露出部の周辺部に回路素子の配置できない余分
な部分が増えて、回路素子の集積度が上がらなくなると
共にチップ面積が大きくなりコスト高となる。
However, according to this method, as shown in FIG. 3, since the side surface of the isolation groove 16 is a (111) plane or a plane equivalent thereto, it extends obliquely and the exposed surface of the semiconductor single crystal 18 is It is about 1.4 times the thickness. Therefore, in order to raise the breakdown voltage limit, the divided semiconductor single crystal 18
When the thickness is increased, the size also increases proportionately, and extra parts where circuit elements cannot be arranged around the surface exposed portion increase, so that the degree of integration of circuit elements does not increase and the chip area increases, resulting in high cost. Becomes

【0004】また、この方式では半導体単結晶18の側
面および底面に半導体多結晶層22が付着しているの
で、熱膨張係数に大きな差があり、熱酸化、フォトエッ
チング、拡散などにより、回路素子を形成する際に、誘
電体分離基板が反ったり、熱歪みで割れたりするという
難点がある。
In this method, since the semiconductor polycrystalline layer 22 is adhered to the side and bottom surfaces of the semiconductor single crystal 18, there is a large difference in thermal expansion coefficient. However, there is a problem that the dielectric isolation substrate is warped or cracked due to thermal strain when forming the substrate.

【0005】そのため、図5に示すSODIC法では、
半導体多結晶層22の代わりに、セラミック層やガラス
層28を用いており、また図4に示すDIW法では半導
体多結晶層22を薄くし、接着剤30を介して半導体単
結晶18と同質の支持基板26を接着している。しかし
ながら、前記のいずれの場合にも、ケミカルエッチング
により分離溝16を形成するものであるため、分離溝1
6が斜めに広がり半導体単結晶の表面露出面はその厚さ
の約1.4倍程度になることは避けられず、チップ面積
が大きくなりコスト高となることには変わりはない。
[0005] Therefore, in the SODIC method shown in FIG.
A ceramic layer or a glass layer 28 is used in place of the semiconductor polycrystalline layer 22. In the DIW method shown in FIG. 4, the semiconductor polycrystalline layer 22 is thinned and is made of the same material as the semiconductor single crystal 18 via an adhesive 30. The support substrate 26 is bonded. However, in any of the above cases, since the separation groove 16 is formed by chemical etching, the separation groove 1 is formed.
6 is obliquely spread and the surface exposed surface of the semiconductor single crystal is inevitably about 1.4 times as thick as its thickness, and the chip area and the cost are still increased.

【0006】以上に述べた誘導体分離半導体基板は、切
り出された半導体単結晶18の厚みが50μm以上であ
って、数百V程度の高耐圧のものであるが、分離耐圧が
30〜50Vで良い低耐圧用の誘電体分離半導体基板と
しては、図6に示す貼り合わせSOI方式がある。この
SOI法は絶縁層32を介してSi単結晶基板からなる
支持基板26を貼り合わせたも後、ガスエッチングを用
いて縦に比較的浅い分離溝16を掘り、酸化分離して多
結晶を埋め込み、研磨平坦化したものである。
In the above-described derivative-separated semiconductor substrate, the cut-out semiconductor single crystal 18 has a thickness of 50 μm or more and has a high withstand voltage of about several hundred volts. As a dielectric isolation semiconductor substrate for low withstand voltage, there is a bonded SOI method shown in FIG. In this SOI method, after a support substrate 26 made of a Si single crystal substrate is bonded via an insulating layer 32, a relatively shallow separation groove 16 is dug vertically by using gas etching, and polycrystals are buried by oxidation separation. Polished and flattened.

【0007】[0007]

【発明が解決しようとする課題】このように分離耐圧の
高いDIW法では、耐圧限度を上げるため、分割した半
導体単結晶の厚みを厚くすると、ケミカルエッチングに
より分離溝を形成するものであるため、分離溝が斜めに
広がり、表面露出部の周辺部に回路素子の配置できない
余分な部分が増えて、回路素子の集積度が上がらなくな
ると共にチップ面積が大きくなりコスト高となる。
In the DIW method having a high isolation breakdown voltage as described above, in order to increase the breakdown voltage limit, if the thickness of the divided semiconductor single crystal is increased, the isolation trench is formed by chemical etching. Separation grooves are spread obliquely, and extra portions where circuit elements cannot be arranged increase around the surface exposed portion. As a result, the degree of integration of the circuit elements cannot be increased, and the chip area increases and the cost increases.

【0008】一方、SOI法では、分離溝が縦に彫られ
るので、DIW法のように分離溝が斜めになり、表面露
出部の周辺部に回路素子の配置できない余分な部分が増
える、といったような問題点はないが、ドライエッチン
グを用いるため分離溝をあまり深くすると、分離した半
導体単結晶の表面活性部に欠陥が出やすく、分離溝をあ
まり深くできないという問題点があり、50〜150V
程度の中耐圧の誘電体分離基板に対する需要に応じるこ
とができない。
On the other hand, in the SOI method, since the separation groove is vertically sculpted, the separation groove becomes oblique as in the DIW method, and an extra portion where a circuit element cannot be arranged around the surface exposed portion increases. However, if the isolation groove is too deep because dry etching is used, there is a problem that the surface active portion of the separated semiconductor single crystal is likely to have defects, and the isolation groove cannot be made too deep.
It is not possible to meet the demand for a medium-breakdown voltage dielectric isolation substrate.

【0009】本発明は従来の誘電体分離半導体基板の前
記のごとき問題点を解決するためになされたものであっ
て、回路素子を配置できない周縁部を少なくしチップを
小型化し、回路素子の集積度を向上してコストダウンを
図ると共に、50〜150V程度の中耐圧で用いること
のできる誘電体分離半導体基板およびその製造方法を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems of the conventional dielectric isolation semiconductor substrate, and has reduced the peripheral portion where the circuit element cannot be arranged, reduced the size of the chip, and integrated the circuit element. It is an object of the present invention to provide a dielectrically isolated semiconductor substrate which can be used at a medium withstand voltage of about 50 to 150 V and a method of manufacturing the same, while improving the degree of cost reduction.

【0010】[0010]

【課題を解決するための手段】発明者等は分離溝を彫る
ためケミカルエッチングを用いると、分離溝が斜めにな
り、表面露出部の周辺部に回路素子の配置できない余分
な部分が増えるため、分離溝の形成にはドライエッチン
グを採用した。しかし、ドライエッチングにより耐電圧
を上げるため分離溝を深くすると、表面欠陥の問題は避
けられない。そこで、深いドライエッチングのため生じ
る表面欠陥を解決するため鋭意研究を進めた。その結
果、表面欠陥層を下にしドライエッチングの影響のない
分離溝の底の部分を表面活性層とすることを着想し本発
明を完成した。
When the present inventors use chemical etching to carve a separation groove, the separation groove becomes oblique, and an extra portion where a circuit element cannot be arranged around the surface exposed portion increases. Dry etching was used to form the separation groove. However, if the isolation groove is deepened to increase the withstand voltage by dry etching, the problem of surface defects cannot be avoided. Accordingly, intensive studies have been made to solve the surface defects caused by deep dry etching. As a result, the present invention was completed with the idea that the surface defect layer was placed below and the bottom portion of the separation groove which was not affected by dry etching was used as the surface active layer.

【0011】本発明の請求項1の誘電体分離半導体基板
は、四周に設けられた縦の分離溝により分離された半導
体単結晶と、前記半導体単結晶の前記分離溝側側面と底
面に設けられた酸化被膜と、前記分離溝と前記底面に充
填された半導体多結晶層と、前記半導体多結晶層に接着
された支持基板とからなり、前記半導体単結晶は、前記
分離溝形成の際に生じた欠陥面側を底面側としその反対
面を表面の活性面としたことを要旨とする。
According to a first aspect of the present invention, there is provided a dielectric isolation semiconductor substrate provided on a semiconductor single crystal separated by vertical isolation grooves provided on four sides, and on a side surface and a bottom surface of the semiconductor single crystal on the isolation groove side. An oxide film, a semiconductor polycrystal layer filled in the separation groove and the bottom surface, and a support substrate adhered to the semiconductor polycrystal layer, and the semiconductor single crystal is formed when the separation groove is formed. The gist is that the defective surface side is the bottom surface side and the opposite surface is the active surface.

【0012】本発明の請求項2の誘電体分離半導体基板
の製造方法は、トレンチ用のマスク材に分離溝形成用の
窓を明け半導体ウエハに密着する工程と、前記半導体ウ
エハに密着したマスク上からドライエッチングを施し前
記半導体ウエハに縦に分離溝を掘り多数の半導体単結晶
に分離する工程と、前記分離された前記半導体単結晶の
表面と前記分離溝側側面に酸化被膜を形成する工程と、
前記分離溝に半導体多結晶を充填すると共に前記半導体
単結晶の上に半導体多結晶層を積み上げる工程と、積み
上げた前記半導体多結晶層を平坦に研削し該研削した面
に支持基板を貼り合わせる工程と、前記半導体ウエハ側
を前記分離溝に形成された前記酸化被膜が露出するまで
研削する工程とからなることを要旨とする。
According to a second aspect of the present invention, there is provided a method of manufacturing a dielectrically isolated semiconductor substrate, comprising the steps of: forming a window for forming a separation groove in a mask material for a trench; and bringing the window into close contact with the semiconductor wafer; A step of applying dry etching to dig a separation groove vertically in the semiconductor wafer to separate it into a large number of semiconductor single crystals, and forming an oxide film on the surface of the separated semiconductor single crystal and the side face of the separation groove. ,
Filling the isolation trench with semiconductor polycrystal and stacking a semiconductor polycrystal layer on the semiconductor single crystal; and grinding the stacked semiconductor polycrystal layer flat and bonding a support substrate to the ground surface. And grinding the semiconductor wafer side until the oxide film formed in the separation groove is exposed.

【0013】本発明の請求項1の誘電体分離半導体基板
は、半導体単結晶を分離する分離溝を結晶面に関係なく
ドライエッチング等により縦に掘ったので、半導体単結
晶の表面露出部に、回路素子を配置できない周縁部が少
なくなり、チップを小型化でき、回路素子の集積度を向
上してコストダウンを図ることができる。また、ドライ
エッチング等で深い分離溝を形成しても、分離溝形成の
際に生じた欠陥面側を底面側としその反対面を表面の活
性面としたので、従来より厚い半導体単結晶体を分離で
き、誘電体分離半導体基板の耐電圧を低電圧から中電圧
に向上することができる。
According to the first aspect of the present invention, the isolation trench for separating the semiconductor single crystal is dug vertically by dry etching or the like regardless of the crystal plane. The number of peripheral portions where circuit elements cannot be arranged is reduced, the size of the chip can be reduced, the degree of integration of the circuit elements can be improved, and the cost can be reduced. Also, even if a deep isolation groove is formed by dry etching or the like, the defect surface generated during the formation of the isolation groove is defined as the bottom surface and the opposite surface is defined as the active surface. Separation can be performed, and the dielectric strength of the dielectric isolation semiconductor substrate can be improved from a low voltage to a medium voltage.

【0014】本発明の請求項2の誘電体分離半導体基板
の製造方法は、トレンチ用のマスク材に分離溝形成用の
窓を明け半導体ウエハに密着する工程により、半導体ウ
エハを多数の半導体単結晶チップに分離する分離溝の位
置決めができる。前記半導体ウエハに密着したマスク上
からドライエッチングを施し前記半導体ウエハに縦に分
離溝を掘り多数の半導体単結晶に分離する工程と、前記
分離された前記半導体単結晶の表面と前記分離溝側側面
に酸化被膜を形成する工程により、半導体ウエハから四
周に縦の分離溝を有する多数の半導体単結晶チップが分
離される。
According to a second aspect of the present invention, there is provided a method for manufacturing a dielectrically isolated semiconductor substrate, comprising the steps of forming a window for forming an isolation groove in a mask material for a trench, and bringing the semiconductor wafer into close contact with a semiconductor wafer. Positioning of the separation groove for separating into chips can be performed. A step of performing dry etching from above the mask in close contact with the semiconductor wafer to dig a separation groove in the semiconductor wafer vertically to separate the semiconductor wafer into a large number of semiconductor single crystals, and a surface of the separated semiconductor single crystal and a side surface on the separation groove side In the step of forming an oxide film on the substrate, a large number of semiconductor single crystal chips having vertical separation grooves on four sides are separated from the semiconductor wafer.

【0015】前記分離溝に半導体多結晶を充填すると共
に前記半導体単結晶の上に半導体多結晶層を積み上げる
工程により、分離溝が埋められると共に半導体単結晶が
半導体多結晶層で裏打ち補強される。この際、狭く深い
分離溝をポリSi等で埋めるため配向性のない縦型減圧
CVD技術を用いることが好ましい。配向性がないため
常圧CVDのようにポリSiを厚く積む必要がなく、せ
いぜい研磨代を含めて10〜20μmのポリSiを積め
ば良いからである。次いで、積み上げた前記半導体多結
晶層を平坦に研削し支持基板を貼り合わせる工程により
分割された半導体単結晶チップは支持基板に取り付けら
れる。前記半導体ウエハ側を前記分離溝に形成した前記
酸化被膜が露出するまで研削する工程により、分離溝形
成の際に生じた欠陥面側を底面側としその反対面を表面
の活性面とした従来より厚い半導体単結晶体を分離でき
る。
By filling the isolation trench with a semiconductor polycrystal and stacking a semiconductor polycrystal layer on the semiconductor single crystal, the isolation trench is filled and the semiconductor single crystal is reinforced with a semiconductor polycrystal layer. At this time, it is preferable to use a vertical low-pressure CVD technique having no orientation in order to fill the narrow and deep isolation groove with poly-Si or the like. This is because there is no orientation, so that it is not necessary to stack poly-Si thickly as in normal pressure CVD, and it is sufficient to deposit poly-Si of 10 to 20 μm including a polishing allowance at most. Next, the semiconductor single crystal chip divided by the step of grinding the stacked semiconductor polycrystalline layers flat and attaching a support substrate is attached to the support substrate. By grinding the semiconductor wafer side until the oxide film formed in the separation groove is exposed, a defect surface generated at the time of formation of the separation groove is defined as a bottom surface and the opposite surface is defined as an active surface. A thick semiconductor single crystal can be separated.

【0016】[0016]

【発明の実施の形態】本発明の実施の形態を以下図面に
従って説明する。図1(a)(b)(c)および図2
(d)(e)(f)は、本発明方法の工程を説明する誘
電体分離半導体基板の断面図である。図1(a)に示す
ように、表面にN+埋め込み層11を有するSi単結晶
ウエハ10の上に、分離溝形成用の窓12を明けたトレ
ンチ用のマスク材14を密着し、図1(b)に示すよう
にドライエッチングにより幅2〜3μm深さ15〜25
μmの分離溝16を形成し、多数のSi単結晶チップ1
8を分離し、マスク材14を除去した。
Embodiments of the present invention will be described below with reference to the drawings. 1 (a), 1 (b), 1 (c) and 2
(D) (e) (f) is sectional drawing of the dielectric isolation semiconductor substrate explaining the process of this invention method. As shown in FIG. 1A, a mask material 14 for a trench having a window 12 for forming a separation groove is adhered onto a Si single crystal wafer 10 having an N + buried layer 11 on the surface thereof, and FIG. As shown in b), the width is 2-3 μm and the depth is 15-25 by dry etching.
μm separating grooves 16 are formed, and a large number of Si single crystal chips 1 are formed.
8, and the mask material 14 was removed.

【0017】次いで、図1(c)に示すように、分離溝
16内面およびSi単結晶チップ18の表面に酸化被膜
20を形成し、減圧CVD法によりポリSi22を積み
上げ、分離溝を埋めると共にSi単結晶18上にポリS
i22を10〜20μm積み上げた。
Next, as shown in FIG. 1 (c), an oxide film 20 is formed on the inner surface of the separation groove 16 and the surface of the Si single crystal chip 18, and poly-Si 22 is stacked by a low pressure CVD method to fill the separation groove and to form the Si film. Poly S on single crystal 18
i22 was stacked 10 to 20 μm.

【0018】続いて、図2(d)に示すように積み上げ
たポリSi22の表面を平坦に研磨し、図2(e)に示
すように、ポリSi22の研磨面を反転して下にし、表
面に酸化被膜20を有するSi単結晶ウエハからなる支
持基板26の上に貼り合わせ熱処理して接着した。最後
に図2(f)に示すように、上になったSi単結晶ウエ
ハ10側からSi単結晶10を、分離溝16の酸化被膜
20が露出するまで研磨して製品を完成した。完成した
本実施例の誘導体分離半導体基板に回路素子を実装し、
耐電圧を測定したところ、100Vにまで向上した。
Subsequently, the surface of the poly-Si 22 stacked as shown in FIG. 2D is polished flat, and the polished surface of the poly-Si 22 is turned down as shown in FIG. And a heat treatment for bonding on a support substrate 26 made of a Si single crystal wafer having an oxide film 20. Finally, as shown in FIG. 2 (f), the Si single crystal 10 was polished from the upper side of the Si single crystal wafer 10 until the oxide film 20 of the separation groove 16 was exposed to complete the product. Mount the circuit element on the completed derivative-separated semiconductor substrate of the present embodiment,
When the withstand voltage was measured, it was improved to 100V.

【0019】[0019]

【発明の効果】本発明の請求項1の誘電体分離半導体基
板は、半導体単結晶を分離する分離溝を結晶面に関係な
くドライエッチング等により縦に掘ったので、半導体単
結晶の表面露出部に、回路素子を配置できない周縁部が
少なくなり、チップを小型化でき、回路素子の集積度を
向上してコストダウンを図ることができる。また、ドラ
イエッチング等で深い分離溝を形成しても、分離溝形成
の際に生じた欠陥面側を底面側としその反対面を表面の
活性面としたので、従来より厚い半導体単結晶体を分離
でき、誘電体分離半導体基板の耐電圧を低電圧から中電
圧に向上することができる。本発明の請求項2の誘電体
分離半導体基板の製造方法は、半導体ウエハに密着した
マスク上からドライエッチングを施し前記半導体ウエハ
に縦に分離溝を掘り多数の半導体単結晶に分離するの
で、回路素子を配置できない周縁部が少ない多数の半導
体単結晶チップが分離される。支持基板に貼り合わされ
た前記半導体ウエハを反転し前記半導体ウエハ側を前記
酸化被膜が露出するまで研削する工程により、分離溝形
成の際に生じた欠陥面側を底面側としその反対面を表面
の活性面とした従来より厚い半導体単結晶体を分離でき
る。
According to the first aspect of the present invention, the isolation trench for separating the semiconductor single crystal is dug vertically by dry etching or the like irrespective of the crystal plane. In addition, the number of peripheral portions where the circuit elements cannot be arranged is reduced, the size of the chip can be reduced, the degree of integration of the circuit elements can be improved, and the cost can be reduced. Also, even if a deep isolation groove is formed by dry etching or the like, the defect surface generated during the formation of the isolation groove is the bottom surface and the opposite surface is the active surface. Separation can be performed, and the dielectric strength of the dielectric isolation semiconductor substrate can be improved from a low voltage to a medium voltage. In the method of manufacturing a dielectrically isolated semiconductor substrate according to claim 2 of the present invention, dry etching is performed on a mask that is in close contact with a semiconductor wafer, and a vertical separation groove is dug into the semiconductor wafer to separate a large number of semiconductor single crystals. A large number of semiconductor single crystal chips having a small number of peripheral portions where elements cannot be arranged are separated. A step of inverting the semiconductor wafer bonded to a support substrate and grinding the semiconductor wafer side until the oxide film is exposed, the defect surface generated at the time of forming the separation groove as the bottom surface and the opposite surface as the surface. It is possible to separate a thicker semiconductor single crystal than the conventional active surface.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造工程を示す断面図である。FIG. 1 is a sectional view showing a manufacturing process of the present invention.

【図2】本発明の製造工程を示す断面図である。FIG. 2 is a cross-sectional view illustrating a manufacturing process of the present invention.

【図3】従来のEPIC法で製造した誘電体分離半導体
の断面図である。
FIG. 3 is a cross-sectional view of a dielectric isolation semiconductor manufactured by a conventional EPIC method.

【図4】従来のDIW法で製造した誘電体分離半導体の
断面図である。
FIG. 4 is a cross-sectional view of a dielectric isolation semiconductor manufactured by a conventional DIW method.

【図5】従来のSODIC法で製造した誘電体分離半導
体の断面図である。
FIG. 5 is a cross-sectional view of a dielectric isolation semiconductor manufactured by a conventional SODIC method.

【図6】従来のSOI法で製造した誘電体分離半導体の
断面図である。
FIG. 6 is a sectional view of a dielectric isolation semiconductor manufactured by a conventional SOI method.

【符号の説明】[Explanation of symbols]

10・・・・・Si単結晶ウエハ 11・・・・・埋め込み層 14・・・・・マスク材 16・・・・・分離溝 18・・・・・Si単結晶チップ 20・・・・・酸化膜 22・・・・・ポリSi 26・・・・・支持基板 28・・・・・ボロンガラス 10 ... Si single crystal wafer 11 ... Buried layer 14 ... Mask material 16 ... Separation groove 18 ... Si single crystal chip 20 ... Oxide film 22 ... Poly Si 26 ... Support substrate 28 ... Boron glass

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 四周に設けられた縦の分離溝により分離
された半導体単結晶と、前記半導体単結晶の前記分離溝
側側面と底面に設けられた酸化被膜と、前記分離溝と前
記底面に充填された半導体多結晶層と、前記半導体多結
晶層に接着された支持基板とからなり、前記半導体単結
晶は、前記分離溝形成の際に生じた欠陥面側を底面側と
しその反対面を表面の活性面としたことを特徴とする誘
電体分離半導体基板。
A semiconductor single crystal separated by vertical separation grooves provided on four sides; an oxide film provided on a side surface and a bottom surface of the semiconductor single crystal on the separation groove side; A semiconductor polycrystal layer filled and a support substrate adhered to the semiconductor polycrystal layer, wherein the semiconductor single crystal has a defect surface generated at the time of forming the separation groove as a bottom surface and a surface opposite thereto. A dielectrically isolated semiconductor substrate characterized by having an active surface.
【請求項2】 トレンチ用のマスク材に分離溝形成用の
窓を明け半導体ウエハに密着する工程と、前記半導体ウ
エハに密着したマスク上からドライエッチングを施し前
記半導体ウエハに縦に分離溝を掘り多数の半導体単結晶
に分離する工程と、前記分離された前記半導体単結晶の
表面と前記分離溝側側面に酸化被膜を形成する工程と、
前記分離溝に半導体多結晶を充填すると共に前記半導体
単結晶の上に半導体多結晶層を積み上げる工程と、積み
上げた前記半導体多結晶層を平坦に研削し該研削した面
に支持基板を貼り合わせる工程と、前記半導体ウエハ側
を前記分離溝に形成された前記酸化被膜が露出するまで
研削する工程とからなることを特徴とする誘電体分離半
導体基板の製造方法。
2. A step of opening a window for forming a separation groove in a mask material for a trench and closely contacting the semiconductor wafer, and performing dry etching on the mask in close contact with the semiconductor wafer to dig a vertical separation groove in the semiconductor wafer. A step of separating into a number of semiconductor single crystals, and a step of forming an oxide film on the surface of the separated semiconductor single crystal and the side surface of the separation groove,
Filling the isolation trench with semiconductor polycrystal and stacking a semiconductor polycrystal layer on the semiconductor single crystal; and grinding the stacked semiconductor polycrystal layer flat and bonding a support substrate to the ground surface. And a step of grinding the semiconductor wafer side until the oxide film formed in the separation groove is exposed.
JP771397A 1997-01-20 1997-01-20 Dielectric separation semiconductor substrate and its manufacture Pending JPH10209270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP771397A JPH10209270A (en) 1997-01-20 1997-01-20 Dielectric separation semiconductor substrate and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP771397A JPH10209270A (en) 1997-01-20 1997-01-20 Dielectric separation semiconductor substrate and its manufacture

Publications (1)

Publication Number Publication Date
JPH10209270A true JPH10209270A (en) 1998-08-07

Family

ID=11673392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP771397A Pending JPH10209270A (en) 1997-01-20 1997-01-20 Dielectric separation semiconductor substrate and its manufacture

Country Status (1)

Country Link
JP (1) JPH10209270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010668A (en) * 2006-06-29 2008-01-17 Denso Corp Laminated-substrate manufacturing method, and laminated substrate manufactured by same method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010668A (en) * 2006-06-29 2008-01-17 Denso Corp Laminated-substrate manufacturing method, and laminated substrate manufactured by same method

Similar Documents

Publication Publication Date Title
JP2685819B2 (en) Dielectric isolated semiconductor substrate and manufacturing method thereof
JPH07263541A (en) Dielectric separation substrate and manufacture thereof
JP2001237403A (en) Method of manufacturing semiconductor device and ultrathin type semiconductor device
JPH0799239A (en) Semiconductor device and manufacture thereof
EP0455087B1 (en) Method of forming a silicon wafer with a chip separating structure and single crystal layer sections
JPH05226305A (en) Manufacture of laminated wafer
JPS6354740A (en) Manufacture of integrated circuit substrate
JPH10209270A (en) Dielectric separation semiconductor substrate and its manufacture
JP3175619B2 (en) Semiconductor substrate manufacturing method
JP3141621B2 (en) Semiconductor substrate with dielectric isolation structure
JP2678218B2 (en) Bonded substrate and manufacturing method thereof
JPH0758675B2 (en) Method for manufacturing substrate in semiconductor device
JPH0555357A (en) Manufacture of semiconductor device
JP3165735B2 (en) Semiconductor substrate manufacturing method
JPH10261706A (en) Manufacturing method of dielectric separation substrate
JP2681420B2 (en) Method for manufacturing dielectric substrate
JPS61133641A (en) Manufacture of semiconductor device
JPS61144036A (en) Semiconductor device and manufacture thereof
JPH0430449A (en) Manufacture of semiconductor integrated device
JPS6362252A (en) Manufacture of dielectric isolation substrate
JPH0212854A (en) Manufacture of dielectric isolated semiconductor integrated circuit substrate
JPH04356961A (en) Semiconductor substrate and manufacture thereof
JPS6248040A (en) Insulator isolated substrate and manufacture thereof
JPH05190658A (en) Manufacture of dielectric-isolation type wafer
JPH0613455A (en) Manufacture of dielectric isolated wafer