JP3141621B2 - Semiconductor substrate with dielectric isolation structure - Google Patents

Semiconductor substrate with dielectric isolation structure

Info

Publication number
JP3141621B2
JP3141621B2 JP05124568A JP12456893A JP3141621B2 JP 3141621 B2 JP3141621 B2 JP 3141621B2 JP 05124568 A JP05124568 A JP 05124568A JP 12456893 A JP12456893 A JP 12456893A JP 3141621 B2 JP3141621 B2 JP 3141621B2
Authority
JP
Japan
Prior art keywords
groove
substrate
isolation
dielectric isolation
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05124568A
Other languages
Japanese (ja)
Other versions
JPH06334029A (en
Inventor
一夫 松崎
温夫 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP05124568A priority Critical patent/JP3141621B2/en
Publication of JPH06334029A publication Critical patent/JPH06334029A/en
Application granted granted Critical
Publication of JP3141621B2 publication Critical patent/JP3141621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、モノリシックIC回路
などのに適用する誘電体分離構造を備えた半導体基板に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor substrate having a dielectric isolation structure applied to a monolithic IC circuit and the like.

【0002】[0002]

【従来の技術】一枚の半導体基板上に複数の能動素子,
受動素子が集積して形成されているモノリシックIC回
路では、素子領域(アイランド)の相互間を分離するた
めの技術として、PN接合分離法のほかに溝充填分離
法,誘電体分離法などの各種分離法が知られており、特
に誘電体分離法はPN接合分離法と比べて、極めて小さ
な分離容量と大きな分離耐圧,ラッチアップ防止効果,
および高集積密度化が得られることから多く採用されて
いる。
2. Description of the Related Art A plurality of active elements are mounted on a single semiconductor substrate.
In a monolithic IC circuit in which passive elements are integrally formed, various techniques, such as a trench filling isolation method and a dielectric isolation method, as well as a PN junction isolation method, are used to separate element regions (islands) from each other. Isolation methods are known. In particular, the dielectric isolation method has an extremely small isolation capacity and a large isolation withstand voltage, a latch-up prevention effect,
In addition, they are widely used because they can achieve high integration density.

【0003】また、誘電体分離構造を備えた半導体基板
(以下「誘電体分離基板」と呼称する)として、シリコ
ン酸化膜を挟んで二枚のシリコン基板を張り合わせた上
で、その片面に素子領域の周囲を囲んで前記シリコン酸
化膜に達する断面矩形状の分離溝をトレンチエッチング
により形成するとともに、該分離溝の溝内側面に酸化膜
を形成した後に、CVD法により分離溝内にポリシリコ
ン(多結晶シリコン)を埋め込み、さらに基板表面に堆
積したポリシリコンをエッチバック,研磨などにより除
去して平坦化した構成のものが知られている。
Further, as a semiconductor substrate having a dielectric isolation structure (hereinafter referred to as a “dielectric isolation substrate”), two silicon substrates are laminated with a silicon oxide film interposed therebetween, and an element region is formed on one surface thereof. A trench having a rectangular cross section which reaches the silicon oxide film around the periphery of the trench is formed by trench etching, an oxide film is formed on the inner side surface of the trench, and then a polysilicon ( There is known a configuration in which polycrystalline silicon is buried, and the polysilicon deposited on the substrate surface is removed by etching back, polishing, or the like, and planarized.

【0004】次に、前記誘電体分離基板の一般的な製造
方法を図3により説明する。図3(a)において、1は
半導体素子を作り込む単結晶シリコン基板、2は支持基
板としてのシリコン基板、3はシリコン基板1と2の間
に埋めこまれたシリコン酸化膜(SIO2 ) である。ま
ず、シリコン基板1に対し熱酸化により裏面側にシリコ
ン酸化膜3を形成する。続いてシリコン酸化膜3を介し
てシリコン基板1に支持基板となるシリコン基板2を重
ね合わせ、さらに熱処理を施してSOI(Silicon on I
nsulator) ウェハ4を形成した後に、シリコン基板1の
表面にエッチングマスク層(例えば二酸化シリコン,窒
化シリコン)5を形成し、かつ該マスク層に素子領域の
周囲を囲むようパターン設計した分離溝形成領域を窓開
けする。
Next, a general method of manufacturing the dielectric isolation substrate will be described with reference to FIG. In FIG. 3A, 1 is a single crystal silicon substrate for forming a semiconductor element, 2 is a silicon substrate as a support substrate, and 3 is a silicon oxide film (SIO 2 ) embedded between the silicon substrates 1 and 2. is there. First, a silicon oxide film 3 is formed on the back surface of the silicon substrate 1 by thermal oxidation. Subsequently, a silicon substrate 2 serving as a support substrate is superimposed on the silicon substrate 1 via the silicon oxide film 3 and further subjected to a heat treatment to perform SOI (Silicon on I
After forming the wafer 4, an etching mask layer (for example, silicon dioxide or silicon nitride) 5 is formed on the surface of the silicon substrate 1, and an isolation groove forming region is designed on the mask layer so as to surround the periphery of the element region. Open the window.

【0005】次に、図3(b)のように、エッチングマ
スク層5の窓開け部から反応性イオンエッチングなどに
よるトレンチエッチングを施してシリコン酸化膜3に達
する断面矩形状の分離溝6を形成し、続いて熱酸化によ
り、図3(c)のように分離溝6の溝内側壁にシリコン
酸化膜7を形成する。次に図3(d)のように、SOI
ウェハ4に対して減圧CVD法などによりシリコン基板
1の表面側からポリシリコン層8を堆積させて前記分離
溝6に充填させた後、続いてシリコン基板1の表面側に
エッチバックを施して基板表面のポリシリコン層8を除
去するとともに、さらにフッ酸洗浄により基板表面のシ
リコン酸化膜を除去する。これにより、図3(e)で示
すように、シリコン基板1にはシリコン酸化膜3,7お
よびポリシリコン層8で分離された素子領域(アイラン
ド)9が形成されることになる。なお、前記誘電体分離
基板に対しては、各素子領域8ごとにトランジスタ,ダ
イオードなどの素子を作り込み、さらに各素子間を相互
接続してモノリシックIC回路を構成する。
Next, as shown in FIG. 3 (b), a trench having a rectangular cross section reaching the silicon oxide film 3 is formed by performing trench etching such as reactive ion etching from a window opening of the etching mask layer 5. Then, a silicon oxide film 7 is formed on the inner wall of the isolation groove 6 by thermal oxidation as shown in FIG. Next, as shown in FIG.
After a polysilicon layer 8 is deposited on the wafer 4 from the surface side of the silicon substrate 1 by a low-pressure CVD method or the like and filled in the separation groove 6, the surface side of the silicon substrate 1 is subsequently etched back. While removing the polysilicon layer 8 on the surface, the silicon oxide film on the substrate surface is further removed by hydrofluoric acid cleaning. As a result, as shown in FIG. 3E, an element region (island) 9 separated by the silicon oxide films 3 and 7 and the polysilicon layer 8 is formed on the silicon substrate 1. In the dielectric isolation substrate, elements such as transistors and diodes are formed for each element region 8, and the elements are interconnected to form a monolithic IC circuit.

【0006】[0006]

【発明が解決しようとする課題】ところで、前記の誘電
体分離基板を製造する際に、従来の構成では分離溝6に
ポリシリコン層8を埋め込む場合に、その全周域を完全
に埋め尽くすにはポリシリコンを予想以上に堆積させな
ければならないといった問題がある。次に、このことを
図4,図5で説明する。すなわち、図4でSOIウェハ
4のシリコン基板1に形成した分離溝6に対し、減圧C
VD法によりポリシリコン層8を充填すると、シリコン
基板1の表面,分離溝6の側壁面に対してポリシリコン
層8は一様な成長速度で堆積していく。なお、図中のw
1 〜w4 はポリシリコン層8の経時的な成長を模式的に
表したものである。ここで、分離溝6の溝幅をW,溝深
さをDとすると、理想的にはポリシリコン層8の堆積厚
さがW/2になったところで分離溝6が完全に埋め尽く
され、かつ基板表面側での堆積層も平坦になる。
By the way, in manufacturing the above-mentioned dielectric isolation substrate, when the polysilicon layer 8 is buried in the isolation groove 6 in the conventional configuration, it is necessary to completely fill the entire peripheral area thereof. Has the problem that polysilicon must be deposited more than expected. Next, this will be described with reference to FIGS. That is, the pressure reduction C is applied to the separation groove 6 formed in the silicon substrate 1 of the SOI wafer 4 in FIG.
When the polysilicon layer 8 is filled by the VD method, the polysilicon layer 8 is deposited at a uniform growth rate on the surface of the silicon substrate 1 and the side wall surface of the separation groove 6. Note that w in the figure
1 to w4 schematically represent the growth of the polysilicon layer 8 over time. Here, assuming that the groove width of the separation groove 6 is W and the groove depth is D, the separation groove 6 is completely filled ideally when the deposition thickness of the polysilicon layer 8 becomes W / 2. In addition, the deposited layer on the substrate surface side becomes flat.

【0007】しかしながら、現実には基板表面の全体で
ポリシリコン層8を平坦にするためには、W/2を超え
る余分な堆積厚さが必要であり、その理由は次の点にあ
る。すなわち、従来の誘電体分離基板では、素子領域9
の周囲を囲む分離溝6が図5(a),(b)で示すように
直線溝を組合わせた方形状パターンで形成されており、
(a)における分離溝6のコーナ部,および(b)にお
ける溝の交差部では、分離溝6の対角溝幅WC が他の直
線部の溝幅Wと比べて略1.4倍になる。このために、C
VD法によりポリシリコン層8を堆積させていく過程
で、堆積層厚さをW/2としただけでは、前記した分離
溝6のコーナ部,交差部を完全に埋め尽くすことができ
ず、分離溝6の全周域を全て完全に埋め尽くすにはW/
2の堆積厚さを超えてさらに余分にポリシリコンを堆積
させる必要がある。しかも、このようにポリシリコンを
余分に堆積させることは、材料の使用量が増すほか、後
処理として行うエッチバック工程にも影響して基板の平
坦化を困難にするし、ひいては製造コストをアップさせ
る要因にもなる。
However, actually, in order to flatten the polysilicon layer 8 over the entire surface of the substrate, an extra deposition thickness exceeding W / 2 is required, for the following reasons. That is, in the conventional dielectric isolation substrate, the element region 9
Is formed in a square pattern combining linear grooves as shown in FIGS. 5A and 5B.
Corner of the isolation groove 6 in (a), and the intersections of the grooves in (b), the diagonal groove width W C of the separation groove 6 is 1.4 times approximately than the groove width W of the other linear portion Become. For this, C
In the process of depositing the polysilicon layer 8 by the VD method, if the thickness of the deposited layer is simply set to W / 2, the corners and the intersections of the above-mentioned separation grooves 6 cannot be completely filled, and To completely fill the entire circumference of the groove 6, W /
It is necessary to deposit extra polysilicon beyond the deposition thickness of 2. In addition, this extra deposition of polysilicon increases the amount of material used and also affects the etch-back process performed as a post-process, making it difficult to planarize the substrate, and thus increasing the manufacturing cost. It can also be a factor.

【0008】本発明は上記の点にかんがみなされたもの
であり、その目的は、分離溝の形成パターンを改良する
ことにより、CVD法により分離溝にポリシリコンを埋
め込む際に必要最小限の堆積厚さで分離溝を過不足なく
埋め尽くせることができるようにした誘電体分離基板を
提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and an object of the present invention is to improve a formation pattern of an isolation groove so that a minimum deposition thickness required when polysilicon is embedded in the isolation groove by a CVD method. Accordingly, it is an object of the present invention to provide a dielectric isolation substrate capable of completely filling the isolation grooves.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の誘電体分離基板においては、素子領域の相
互間に形成した分離溝を、その全周域で同じ溝幅に形成
するものとする。そして、その具体的な構成としては、
分離溝のコーナ部を溝の内周と外周が同心円になる円弧
状の溝パターンで形成するものとする。
In order to achieve the above-mentioned object, in the dielectric isolation substrate of the present invention, the isolation grooves formed between the element regions are formed to have the same groove width over the entire peripheral area. Shall be. And, as a specific configuration,
The corner portion of the separation groove is formed by an arc-shaped groove pattern in which the inner and outer circumferences of the groove are concentric.

【0010】また、前記構成においては、分離溝を各素
子領域ごとに独立して形成し、かつ分離溝で分離された
素子領域の相互間にダミー領域を形成して実施する。
In the above structure, the separation groove is formed independently for each element region, and a dummy region is formed between the element regions separated by the separation groove .

【0011】[0011]

【作用】上記の構成によれば、分離溝に対しCVD法に
よりポリシリコンを堆積させて溝を充填する過程で、堆
積厚さが溝幅の1/2厚に達するとコーナ部を含めた分
離溝の全周域が完全にポリシリコン層で埋め尽くされる
とともに、シリコン基板の表面に堆積したポリシリコン
層も平坦化し、分離溝に対するポリシリコンの充填が過
不足なく行われることになる。また、特に分離溝を各素
子領域ごとに独立して形成し、かつ分離溝で分離された
素子領域の相互間にダミー領域を形成することにより、
分離溝同士が交差し合うのを避けることができる。
According to the above structure, in the process of depositing polysilicon in the separation groove by the CVD method and filling the groove, when the deposition thickness reaches half the groove width, the separation including the corner portion is performed. The entire circumference of the trench is completely filled with the polysilicon layer, and the polysilicon layer deposited on the surface of the silicon substrate is also flattened, so that the isolation trench is filled with polysilicon properly and sufficiently. In particular, by forming isolation grooves independently for each element region, and forming a dummy region between the element regions separated by the isolation groove,
The separation grooves can be prevented from intersecting with each other.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。なお、図示例の誘電体分離基板は図3で説明した
製造方法で製作される。まず、図1において、素子領域
8の周囲を囲んでSOIウェハ4のシリコン基板にトレ
ンチエッチングした分離溝6は、直線状の溝部と円弧状
パターンを呈するコーナ溝部を連ねて形成されており、
その溝幅は全周域で同じ溝幅Wとなるように設計されて
いる。すなわち、分離溝6のコーナ部においては、素子
領域9の内側から見た溝内周(曲率半径r1)と溝外周
(曲率半径r2)とが同心円であり、かつ曲率半径r1 と
r2 との差r2 −r1 が直線部と同じ溝幅Wになるよう
定めてある。
Embodiments of the present invention will be described below with reference to the drawings. The illustrated dielectric isolation substrate is manufactured by the manufacturing method described with reference to FIG. First, in FIG. 1, an isolation groove 6 trench-etched in the silicon substrate of the SOI wafer 4 around the periphery of the element region 8 is formed by connecting a linear groove and a corner groove exhibiting an arc-shaped pattern.
The groove width is designed to be the same groove width W in the entire peripheral area. That is, at the corner of the separation groove 6, the inner periphery (curvature radius r1) and the outer periphery (curvature radius r2) of the groove as viewed from the inside of the element region 9 are concentric circles, and the difference between the curvature radii r1 and r2. r2 -r1 is determined so as to have the same groove width W as the linear portion.

【0013】かかる構成により、図3で説明したよう
に、CVD法によってポリシリコン層8を堆積させて分
離溝6を埋め込む過程で、図4で述べたように溝幅Wに
対してポリシリコン層8の堆積厚さがW/2に達したと
ころで、分離溝6が過不足なく完全に埋め尽くされると
ともに、シリコン基板の表面に堆積したポリシリコン層
も平坦化さるようになる。
With this configuration, as described with reference to FIG. 3, in the process of depositing the polysilicon layer 8 by the CVD method and burying the isolation trench 6, the polysilicon layer 8 has a width corresponding to the trench width W as described with reference to FIG. When the deposition thickness of 8 reaches W / 2, the separation groove 6 is completely filled with no excess or shortage, and the polysilicon layer deposited on the surface of the silicon substrate also becomes flat.

【0014】また、図2は前記実施例を発展させた応用
実施例を示すものであり、SOIウェハ4に対して素子
領域9を碁盤目状に配列して形成する場合に、各素子領
域9ごとに分離溝6を独立して形成し、素子領域9の相
互間には分離溝6を隔ててダミー領域10を形成するよ
うにしている。この分離溝パターンによれば、分離溝同
士が交差し合うことが避けられ、図5(b)で述べたよ
うな不具合が生じるのを回避できる。
FIG. 2 shows an applied embodiment obtained by developing the above-described embodiment. When the element regions 9 are arranged in a grid pattern on the SOI wafer 4, each element region 9 is formed. Separation grooves 6 are formed independently for each device, and dummy regions 10 are formed between the element regions 9 with the separation grooves 6 interposed therebetween. According to this separation groove pattern, it is possible to prevent the separation grooves from intersecting with each other, and it is possible to avoid the problem described above with reference to FIG.

【0015】[0015]

【発明の効果】以上述べたように、本発明によれば、誘
電体分離基板に形成した素子間の分離溝に対して、CV
D法により溝内にポリシリコンを充填する際に、必要最
小限の堆積厚さで分離溝の全周域を過不足なく平坦に埋
め尽くすことができる。したがって、分離溝の埋め込み
工程の合理化に加えて、製造コストの低減化が図れるな
ど、実用的価値の高い誘電体分離構造を備えた半導体基
板を提供することができる。
As described above, according to the present invention, the CV is applied to the isolation groove between the elements formed on the dielectric isolation substrate.
When the trench is filled with polysilicon by the method D, the entire peripheral area of the isolation trench can be completely and evenly filled with a minimum necessary deposition thickness. Therefore, it is possible to provide a semiconductor substrate having a dielectric isolation structure having a high practical value, such as a reduction in manufacturing cost as well as a rationalization of the step of embedding the isolation groove.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による誘電体分離基板の部分平
面図
FIG. 1 is a partial plan view of a dielectric isolation substrate according to an embodiment of the present invention.

【図2】本発明の応用実施例による誘電体分離基板の部
分平面図
FIG. 2 is a partial plan view of a dielectric isolation substrate according to an application example of the present invention.

【図3】誘電体分離基板の一般的な製造方法の説明図で
あり、(a)〜(e)は製造工程順に表した誘電体分離
基板の断面図
FIGS. 3A to 3E are explanatory views of a general method for manufacturing a dielectric isolation substrate, and FIGS. 3A to 3E are cross-sectional views of the dielectric isolation substrate shown in the order of the manufacturing process.

【図4】誘電体分離基板の分離溝に対し、CVD法によ
り溝をポリシリコンで充填する際の堆積厚さの経時的な
成長を模式的に表した図
FIG. 4 is a diagram schematically showing a temporal growth of a deposition thickness when a trench is filled with polysilicon by a CVD method with respect to a separation trench of a dielectric isolation substrate.

【図5】従来における誘電体分離基板に形成した分離溝
のパターンを表す図であって、(a)は分離溝のコーナ
部の平面図、(b)は分離溝の交差部の部分平面図
5A and 5B are diagrams illustrating a pattern of a separation groove formed in a conventional dielectric separation substrate, wherein FIG. 5A is a plan view of a corner portion of the separation groove, and FIG. 5B is a partial plan view of an intersection of the separation groove.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 シリコン基板(支持基板) 3 シリコン酸化膜 4 SOIウェハ 6 分離溝 7 溝内側壁のシリコン酸化膜 8 ポリシリコン 9 素子領域 10 ダミー領域 Reference Signs List 1 silicon substrate 2 silicon substrate (supporting substrate) 3 silicon oxide film 4 SOI wafer 6 isolation groove 7 silicon oxide film on inner wall of groove 8 polysilicon 9 element region 10 dummy region

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−330765(JP,A) 特開 平4−127148(JP,A) 特開 平1−187944(JP,A) 特開 平3−62946(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/762 H01L 27/12 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-4-330765 (JP, A) JP-A-4-127148 (JP, A) JP-A-1-187944 (JP, A) JP-A-3- 62946 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01L 21/762 H01L 27/12

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シリコン酸化膜を挟んで二枚のシリコン基
板を張り合わせ、かつその片面に素子領域の周囲を囲ん
で前記シリコン酸化膜に達する断面矩形状の分離溝を形
成するとともに、該分離溝の溝内側面に酸化膜を形成し
た上でCVD法により溝内を埋め尽くすようにポリシリ
コンを堆積し、さらに基板表面に堆積したポリシリコン
を除去して平坦化した誘電体分離構造を備えた半導体基
板において、前記分離溝をその全周域で同じ溝幅に形成
し、分離溝のコーナ部を、溝の内周と外周が同心円にな
る円弧状の溝パターンで形成し、分離溝を各素子領域ご
とに独立して形成し、かつ分離溝で仕切られた素子領域
の相互間にダミー領域を形成したことを特徴とする誘電
体分離構造を備えた半導体基板。
1. A semiconductor device comprising: a silicon oxide film sandwiched between two silicon substrates; and a separation groove having a rectangular cross section reaching the silicon oxide film surrounding one side of an element region on one surface thereof; An oxide film is formed on the inner surface of the groove, and polysilicon is deposited so as to completely fill the groove by a CVD method, and furthermore, the polysilicon deposited on the substrate surface is removed to provide a planarized dielectric isolation structure. In the semiconductor substrate, the separation groove is formed to have the same groove width over the entire circumference thereof, and the corner portion of the separation groove is formed such that the inner circumference and the outer circumference of the groove are concentric.
The groove is formed in an arc-shaped groove pattern.
Element regions formed independently of each other and separated by isolation grooves
A semiconductor substrate provided with a dielectric isolation structure , wherein a dummy region is formed between the semiconductor substrates.
JP05124568A 1993-05-27 1993-05-27 Semiconductor substrate with dielectric isolation structure Expired - Fee Related JP3141621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05124568A JP3141621B2 (en) 1993-05-27 1993-05-27 Semiconductor substrate with dielectric isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05124568A JP3141621B2 (en) 1993-05-27 1993-05-27 Semiconductor substrate with dielectric isolation structure

Publications (2)

Publication Number Publication Date
JPH06334029A JPH06334029A (en) 1994-12-02
JP3141621B2 true JP3141621B2 (en) 2001-03-05

Family

ID=14888706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05124568A Expired - Fee Related JP3141621B2 (en) 1993-05-27 1993-05-27 Semiconductor substrate with dielectric isolation structure

Country Status (1)

Country Link
JP (1) JP3141621B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101745125B1 (en) * 2015-08-24 2017-06-09 계지현 variable bag

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5431638B2 (en) * 2006-10-27 2014-03-05 ローム株式会社 Semiconductor integrated circuit
CN102627252B (en) * 2012-04-19 2014-12-10 西北工业大学 Novel trench isolation groove for filling trench
CN110880502B (en) * 2018-09-05 2022-10-14 无锡华润上华科技有限公司 Semiconductor structure and motor driving device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101745125B1 (en) * 2015-08-24 2017-06-09 계지현 variable bag

Also Published As

Publication number Publication date
JPH06334029A (en) 1994-12-02

Similar Documents

Publication Publication Date Title
JP2974211B2 (en) SOI semiconductor device
US5930648A (en) Semiconductor memory device having different substrate thickness between memory cell area and peripheral area and manufacturing method thereof
US5888864A (en) Manufacturing method of DRAM Cell formed on an insulating layer having a vertical channel
JPH08116037A (en) Soi trench structure and its preparation
JP2831745B2 (en) Semiconductor device and manufacturing method thereof
JPH07326664A (en) Filling method of dielectric isolation trench of wafer
JPS614269A (en) Semiconductor structure and method of producing same
US6150696A (en) Semiconductor substrate and method of fabricating semiconductor device
US5326715A (en) Method for forming a field oxide film of a semiconductor device
KR100432774B1 (en) Method for producing a semiconductor layer structure having a planarized surface and the use thereof in the manufacture of bipolar transistors and drams
JP3363420B2 (en) Method of manufacturing patterned silicon-on-insulator substrate with self-aligned trench
JP3120275B2 (en) Method for manufacturing SOI substrate
JP3141621B2 (en) Semiconductor substrate with dielectric isolation structure
JPH0883837A (en) Semiconductor device and manufacture thereof
JPH03234042A (en) Semiconductor device and its manufacture
JP3258210B2 (en) Embedded device isolation substrate and method of manufacturing the same
JPS63207169A (en) Semiconductor storage device and manufacture thereof
JPS59167029A (en) Manufacture of semiconductor device
JPS61133641A (en) Manufacture of semiconductor device
JPH08195436A (en) Contact hole formation of semiconductor element
JPH04199632A (en) Soi wafer and manufacture thereof
JPH02209747A (en) Manufacture of semiconductor device
JPH11214503A (en) Manufacture of semiconductor device
JPH06334027A (en) Manufacture of semiconductor substrate with dielectric isolation structure
JPS62145864A (en) Memory cell structure for dynamic semiconductor memory and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees