JPH10205536A - Rotational loss measuring device of superconductive bearing part - Google Patents

Rotational loss measuring device of superconductive bearing part

Info

Publication number
JPH10205536A
JPH10205536A JP9008456A JP845697A JPH10205536A JP H10205536 A JPH10205536 A JP H10205536A JP 9008456 A JP9008456 A JP 9008456A JP 845697 A JP845697 A JP 845697A JP H10205536 A JPH10205536 A JP H10205536A
Authority
JP
Japan
Prior art keywords
rotating body
rotational
rotor
superconductor
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9008456A
Other languages
Japanese (ja)
Other versions
JP3735742B2 (en
Inventor
Hironori Kameno
浩徳 亀野
Yasuhiro Yukitake
康博 行竹
Ryoichi Takahata
良一 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP00845697A priority Critical patent/JP3735742B2/en
Publication of JPH10205536A publication Critical patent/JPH10205536A/en
Application granted granted Critical
Publication of JP3735742B2 publication Critical patent/JP3735742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure the rotational loss by supporting a rotor in the specified position by radial and axial magnetic bearing parts in the non-contact state, rotating the rotor by a rotational driving electric motor at the specified revolutions, stopping the electric motor, freely rotating the rotor, and detecting the change of the rotational speed. SOLUTION: A rotor 1 is supported in the specified position in the non-contact state by upper and lower radial magnetic bearing parts 3, 4 and an axial magnetic bearing part 5, and the rotor 1 is floated in relation to a fixed part A. The rotor 1 is rotated by an electric motor at the spevidied revolutions, the electric motor 6 is stopped, the rotational body 1 is freely rotated, the change of the rotational speed is detected by a rotational speed sensor 7, and the first rotational loss is found. At this time, cooling fluid is not supplied to a tank 18 of a superconductive bearing part 2, and a superconductor 19 in the tank 18 is exposed to the ordinary temperature. Next, cooling fluid is circulated in the tank 18, the superconductor 19 is cooled to the specified temperature, and the second rotational loss is found. The rotational loss of the superconductive bearing part can be found by the difference between both rotational losses.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、たとえば余剰電
力をフライホイールの運動エネルギに変換して貯蔵する
電力貯蔵装置に備えられている超電導軸受部の回転損失
測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotation loss measuring device for a superconducting bearing provided in a power storage device for storing, for example, surplus power into kinetic energy of a flywheel.

【0002】[0002]

【従来の技術】電力貯蔵装置として、鉛直状の回転体
と、回転体に固定状に設けられたフライホイールと、回
転体に設けられたロータ部および固定部に設けられてロ
ータ部の周囲に配置されたステータ部よりなる回転駆動
用電動機と、回転体に同心状にかつ固定状に設けられた
環状永久磁石部および永久磁石部と対向するように固定
部に配置された環状超電導体部よりなる超電導軸受部と
を備えたものが知られている(特開平4−370417
号参照)。
2. Description of the Related Art As a power storage device, a vertical rotating body, a flywheel fixedly provided on the rotating body, a rotor section provided on the rotating body, and a rotor section provided on a fixed section are provided around the rotor section. A rotary drive motor comprising a stator portion arranged, an annular permanent magnet portion provided concentrically and fixedly to the rotating body, and an annular superconductor portion arranged on the fixed portion so as to face the permanent magnet portion. (Japanese Patent Laid-Open No. Hei 4-370417).
No.).

【0003】このような電力貯蔵装置において、停電時
にフライホイールに貯蔵された運動エネルギを電気エネ
ルギとして効率良く取出すためには、超電導軸受部の回
転損失を小さくする必要がある。
In such a power storage device, in order to efficiently extract kinetic energy stored in a flywheel as electric energy at the time of a power failure, it is necessary to reduce the rotational loss of the superconducting bearing.

【0004】ところが、従来、超電導軸受部の回転損失
は明確化されておらず、また、十分な機能を有する回転
損失測定装置も存在しなかった。したがって、フライホ
イールに貯蔵された運動エネルギを電気エネルギとして
効率良く取出すための超電導軸受部における環状永久磁
石部および環状超電導体部の最適の仕様を決めるために
は、実際の電力貯蔵装置を運転し、電動機を停止させて
フライホイールに貯蔵された運動エネルギを電気エネル
ギとして取出す作業を、超電導軸受部における環状永久
磁石部および環状超電導体部の仕様を種々変更して行う
必要がある。その結果、作業が面倒であるという問題が
あった。
However, conventionally, the rotational loss of the superconducting bearing has not been clarified, and there has been no rotational loss measuring device having a sufficient function. Therefore, in order to determine optimal specifications of the annular permanent magnet portion and the annular superconductor portion in the superconducting bearing portion for efficiently extracting kinetic energy stored in the flywheel as electric energy, the actual power storage device must be operated. In addition, the operation of stopping the motor and extracting the kinetic energy stored in the flywheel as electric energy needs to be performed by variously changing the specifications of the annular permanent magnet portion and the annular superconductor portion in the superconducting bearing portion. As a result, there is a problem that the operation is troublesome.

【0005】そこで、本出願人は、鉛直状の回転体と、
回転体に同心状に取付けられた環状永久磁石部および永
久磁石部と対向するように固定部に取付けられた環状超
電導体部よりなる超電導軸受部と、超電導軸受部と軸方
向に離隔しかつ互いに異なる2つの高さ位置にそれぞれ
設けられて回転体の互いに直交する2つのラジアル方向
の位置を制御する制御型ラジアル方向磁気軸受部と、回
転体を固定部に対して非接触状態に浮上させる永久磁石
と、回転体に設けられたロータ部および固定部に設けら
れてロータ部の周囲に配置されたステータ部よりなる回
転駆動用電動機と、回転体の回転速度を検出する回転速
度センサとを備えている超電導軸受部の回転損失測定装
置を提案した(特開平8−86703号公報参照)。
Therefore, the present applicant has proposed a vertical rotating body,
A superconducting bearing portion comprising an annular permanent magnet portion attached concentrically to the rotating body and an annular superconductor portion attached to the fixed portion so as to face the permanent magnet portion; and a superconducting bearing portion axially separated from the superconducting bearing portion and mutually separated from each other. A control-type radial magnetic bearing portion that is provided at two different height positions and controls two radial positions of the rotating body orthogonal to each other, and a permanent that floats the rotating body in a non-contact state with respect to the fixed portion. A magnet, a rotation driving motor including a rotor portion provided on the rotating body and a stator portion provided on the fixed portion and arranged around the rotor portion, and a rotation speed sensor for detecting a rotation speed of the rotating body. (See Japanese Patent Application Laid-Open No. 8-86703).

【0006】この装置によれば、超電導軸受部を電力貯
蔵装置などの実際の装置に組み込む前に、超電導軸受部
の回転損失を求めて、超電導軸受部を構成する環状永久
磁石部および環状超電導体部の最適の設計仕様を決める
ことができる。
According to this device, before incorporating the superconducting bearing into an actual device such as a power storage device, the rotational loss of the superconducting bearing is determined to determine the annular permanent magnet portion and the annular superconductor constituting the superconducting bearing. It is possible to determine the optimal design specification of the section.

【0007】ところで、上記のような装置を使用して超
電導軸受部の回転損失を測定する場合、超電導部に負荷
する軸方向(鉛直方向)の荷重を広範囲に種々に変更し
て測定することが望まれる。
When the rotational loss of the superconducting bearing is measured by using the above-described apparatus, the axial (vertical) load applied to the superconducting part may be measured in a wide range. desired.

【0008】上記の装置では、永久磁石の上向きの反発
力により回転体を固定部に対して浮上させているため、
超電導軸受部に負荷することができる荷重は回転体の自
重以外に変化させることはできない。また、回転体の軸
方向の支持は永久磁石の反発力による受動型のものであ
るから、回転体に軸方向の振動が生じ、測定に誤差が生
じるおそれがある。
In the above device, since the rotating body is levitated with respect to the fixed portion by the upward repulsive force of the permanent magnet,
The load that can be applied to the superconducting bearing portion cannot be changed other than the weight of the rotating body. Further, since the rotating body is supported in the axial direction by the repulsive force of the permanent magnet, there is a possibility that the rotating body may be vibrated in the axial direction and an error may occur in the measurement.

【0009】[0009]

【発明が解決しようとする課題】この発明の目的は、上
記の問題を解決し、超電導軸受部の最適設計を行うため
に超電導軸受部に負荷する荷重を広範囲に種々に変更し
て超電導軸受部の回転損失を正確に測定できる装置を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to vary the load applied to the superconducting bearing in a wide range in order to optimally design the superconducting bearing. It is an object of the present invention to provide a device capable of accurately measuring the rotation loss of a motor.

【0010】[0010]

【課題を解決するための手段および発明の効果】この発
明による装置は、鉛直状の回転体と、回転体に同心状に
取付けられた環状永久磁石部および永久磁石部と対向す
るように固定部に取付けられた環状超電導体部よりなる
超電導軸受部と、超電導軸受部と軸方向に離隔しかつ互
いに異なる2つの高さ位置にそれぞれ設けられて回転体
の互いに直交する2つのラジアル方向の位置を制御する
制御型ラジアル方向磁気軸受部と、回転体を固定部に対
して非接触状態に浮上させる制御型アキシアル方向磁気
軸受部と、回転体に設けられたロータ部および固定部に
設けられてロータ部の周囲に配置されたステータ部より
なる回転駆動用電動機と、回転体の回転速度を検出する
回転速度センサとを備えているものである。
The apparatus according to the present invention comprises a vertical rotating body, an annular permanent magnet section concentrically mounted on the rotating body, and a fixed section facing the permanent magnet section. A superconducting bearing portion comprising an annular superconducting portion attached to the rotor, and two radial positions orthogonal to each other of the rotating body which are respectively provided at two different height positions axially separated from the superconducting bearing portion and mutually orthogonal. A control-type radial magnetic bearing for controlling, a control-type axial magnetic bearing for floating the rotating body in a non-contact state with respect to the fixed part, a rotor provided on the rotating body and a rotor provided on the fixed part And a rotation drive motor including a stator portion disposed around the portion, and a rotation speed sensor for detecting a rotation speed of the rotating body.

【0011】この装置において、次のようにして超電導
部の回転損失が測定される。
In this device, the rotation loss of the superconducting portion is measured as follows.

【0012】まず、上下2箇所のラジアル方向磁気軸受
部により回転体をラジアル方向(水平方向)の所定位置
に非接触支持するとともに、アキシアル方向磁気軸受部
により回転体をアキシアル方向(鉛直方向)の所定位置
に非接触支持して、固定部に対して回転体を非接触状態
に浮上させ、次いで、回転駆動用電動機を作動させて回
転体を所定の回転数で回転させる。その後、電動機を停
止させて回転体を自由回転させ、このときの回転速度変
化を回転速度センサで検出し、そのデータを用いて第1
の回転損失を求める。このとき、超電導軸受部の環状超
電導体部の超電導体は常温の常電導状態に保持され、超
電導軸受部は非作動状態になっている。
First, the rotating body is non-contactly supported at a predetermined position in the radial direction (horizontal direction) by two upper and lower radial magnetic bearing portions, and the rotating body is moved in the axial direction (vertical direction) by the axial magnetic bearing portion. The rotating body is floated in a non-contact state with respect to the fixed portion by supporting the rotating body in a non-contact state at a predetermined position, and then the rotating body is rotated at a predetermined rotation number by operating a rotation driving motor. After that, the motor is stopped and the rotating body is freely rotated. At this time, a change in the rotation speed is detected by a rotation speed sensor, and the first data is obtained by using the data.
The rotation loss of At this time, the superconductor of the annular superconductor portion of the superconducting bearing is kept in a normal conducting state at room temperature, and the superconducting bearing is in a non-operating state.

【0013】一方、上記と同様にラジアル方向磁気軸受
部とアキシアル方向磁気軸受部とで回転体を非接触状態
に浮上させた後、超電導軸受部の環状超電導体部の超電
導体を所定温度まで冷却して超電導状態に保持する。こ
の後、超電導軸受部の超電導体部の位置を軸方向に変動
させる。これにより、超電導軸受部は作動状態になる
が、回転体は制御型磁気軸受部によってラジアル方向お
よびアキシアル方向に非接触支持されている。次に、回
転駆動用電動機を作動させて回転体を上記と同じ回転数
で回転させる。その後、電動機を停止させて回転体を自
由回転させ、このときの回転速度変化を回転速度センサ
で検出し、そのデータを用いて第2の回転損失を求め
る。
On the other hand, in the same manner as described above, after the rotor is floated in a non-contact state by the radial magnetic bearing portion and the axial magnetic bearing portion, the superconductor of the annular superconductor portion of the superconducting bearing portion is cooled to a predetermined temperature. To maintain the superconducting state. Thereafter, the position of the superconductor portion of the superconducting bearing portion is changed in the axial direction. As a result, the superconducting bearing is brought into an operating state, but the rotating body is supported in a non-contact manner in the radial and axial directions by the control type magnetic bearing. Next, the rotation driving motor is operated to rotate the rotating body at the same rotation speed as described above. Thereafter, the electric motor is stopped and the rotating body is freely rotated. At this time, a change in rotation speed is detected by a rotation speed sensor, and a second rotation loss is obtained using the data.

【0014】そして、第2の回転損失から第1の回転損
失を減ずることにより、超電導軸受部の回転損失が求め
られる。
Then, the rotation loss of the superconducting bearing portion is obtained by subtracting the first rotation loss from the second rotation loss.

【0015】第2の回転損失を求める際、超電導軸受部
を作動状態にした後もアキシアル方向磁気軸受部をその
まま作動させており、回転体の重量はアキシアル方向磁
気軸受部によって支持されるので、超電導軸受部に負荷
される軸方向の荷重はほぼ零である。超電導軸受部の超
電導体部を下方または上方へ移動させれば、その移動量
により、超電導軸受部に負荷される荷重を回転体の自重
よりも大きくまたは小さくすることができる。したがっ
て、超電導軸受部に負荷する荷重を広範囲にわたって種
々に変更することができる。また、回転体の軸方向の位
置は制御型アキシアル方向磁気軸受部によって制御され
るので、回転体の軸方向の振動を小さくすることがで
き、したがって、正確な測定が可能になる。
When the second rotational loss is determined, the axial magnetic bearing is operated as it is even after the superconducting bearing is activated, and the weight of the rotating body is supported by the axial magnetic bearing. The axial load applied to the superconducting bearing is almost zero. If the superconductor portion of the superconducting bearing portion is moved downward or upward, the load applied to the superconducting bearing portion can be made larger or smaller than its own weight depending on the amount of movement. Therefore, the load applied to the superconducting bearing portion can be variously changed over a wide range. Further, since the axial position of the rotating body is controlled by the control type axial magnetic bearing, the axial vibration of the rotating body can be reduced, and thus accurate measurement can be performed.

【0016】この発明の装置によれば、超電導軸受部を
電力貯蔵装置などの実際の装置に組み込む前に、上記の
ように、超電導軸受部に負荷する荷重を広範囲に種々に
変更して超電導軸受部の回転損失を正確に求めることが
できる。このため、超電導軸受部を実際の装置に組み込
む前に、超電導軸受部を構成する環状永久磁石部および
環状超電導体部の最適の設計仕様を決めることができ、
従来のように、超電導軸受部を備えた実際の装置を、超
電導軸受部を構成する環状永久磁石部および環状超電導
体部の仕様を種々変更して運転する必要がないので、超
電導軸受部を構成する環状永久磁石部および環状超電導
体部の最適の仕様を決める作業が非常に簡単になる。
According to the device of the present invention, before the superconducting bearing is incorporated into an actual device such as a power storage device, the load applied to the superconducting bearing is changed over a wide range as described above. The rotation loss of the part can be determined accurately. Therefore, before incorporating the superconducting bearing into an actual device, it is possible to determine the optimal design specifications of the annular permanent magnet and the annular superconductor constituting the superconducting bearing,
Unlike the conventional case, it is not necessary to operate an actual device having a superconducting bearing portion by changing the specifications of the annular permanent magnet portion and the annular superconductor portion constituting the superconducting bearing portion in various ways. The work of determining the optimum specifications of the annular permanent magnet portion and the annular superconductor portion to be performed is greatly simplified.

【0017】[0017]

【発明の実施の形態】以下、図面を参照して、この発明
の実施形態について説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1は、この発明による超電導軸受部の回
転損失測定装置の1実施形態の全体概略構成を示してい
る。
FIG. 1 shows an entire schematic configuration of an embodiment of a rotation loss measuring device for a superconducting bearing according to the present invention.

【0019】回転損失測定装置は、鉛直軸状の回転体
(1) 、超電導軸受部(2) 、上下2組の制御型ラジアル方
向磁気軸受部(3)(4)、制御型アキシアル方向磁気軸受部
(5) 、回転駆動用電動機(6) および回転速度センサ(7)
を備えており、これらが固定部(A) を構成する上部ハウ
ジング(8) および下部ハウジング(9) の内部に配置され
ている。上部ハウジング(8) は上下に比較的長い鉛直円
筒状をなし、下部ハウジング(9) はそれより大径で上下
に比較的短い鉛直円筒状をなす。上下のハウジング(8)
(9)は、複数の部品を結合することにより一体状に形成
されている。
The rotation loss measuring device is a rotating member having a vertical axis.
(1), superconducting bearing part (2), upper and lower two control type radial magnetic bearing parts (3) (4), control type axial magnetic bearing part
(5), rotation drive motor (6) and rotation speed sensor (7)
These are arranged inside the upper housing (8) and the lower housing (9) constituting the fixed portion (A). The upper housing (8) has a vertically long vertical cylindrical shape, and the lower housing (9) has a larger diameter and a relatively short vertical cylindrical shape. Upper and lower housing (8)
(9) is formed integrally by combining a plurality of components.

【0020】なお、以下の説明において、アキシアル方
向の軸(鉛直軸)をZ軸、Z軸と直交する1つのラジア
ル方向の軸(水平軸)をX軸、Z軸およびX軸と直交す
るラジアル方向の軸(水平軸)をY軸とする。
In the following description, the axis in the axial direction (vertical axis) is the Z axis, and one axis in the radial direction (horizontal axis) orthogonal to the Z axis is the X axis, and the radial axis orthogonal to the Z axis and the X axis. The axis of the direction (horizontal axis) is the Y axis.

【0021】回転体(1) は上部ハウジング(8) 内の中心
に同心状に配置され、その下部が下部ハウジング(9) 内
に突出している。
The rotating body (1) is arranged concentrically in the center of the upper housing (8), and its lower part projects into the lower housing (9).

【0022】超電導軸受部(2) は、回転体(1) をラジア
ル方向およびアキシアル方向に非接触支持するためのも
のであり、回転体(1) の下部に同心状に取付けられた環
状永久磁石部(10)および永久磁石部(10)と対向するよう
に固定部(A) に取付けられた環状超電導体部(11)よりな
る。下部ハウジング(9) 内に突出した回転体(1) の下端
面に水平支持円板(12)が固定され、その下面に永久磁石
部(10)が着脱自在に固定されるようになっている。永久
磁石部(10)は、回転体(1) と同心になるように円板(12)
の下面に着脱自在に固定される鉛直円筒状の支持筒(13)
を備えており、支持筒(13)の内周に、上下複数の環状永
久磁石(14)が環状スペーサ(15)を介して配置され、支持
筒(13)の下端面に固定された環状係止部材(16)により固
定されている。たとえば、各永久磁石(14)は、軸方向の
両端面に磁極を有し、上下に隣接する永久磁石(14)の対
向する磁極が同極性となるように配置されている。この
場合、スペーサ(15)が鉄製ヨークであると、このヨーク
が磁極となる。また、永久磁石(14)は回転体(1) と同心
状に配置され、回転体(1) の回転軸心の周囲における永
久磁石(14)の磁束分布が回転体(1) の回転によって変化
しないようになされている。詳細な図示は省略したが、
固定部(A) の下部の適当箇所に、回転体(1)と同心の鉛
直な支持軸(17)が上下方向の位置の調整ができるように
設けられている。支持軸(17)の上部は下部ハウジング
(9) の底壁を貫通してその内部に入っており、この支持
軸(17)の上端面に超電導体部(11)が着脱自在に固定され
るようになっている。一方、支持軸(17)の下端面にロー
ドセル(図示略)を固定しておくと、このロードセルに
より、超電導軸受部(2) の負荷が測定できる。超電導体
部(11)は、回転体(1) と同心になるように支持軸(17)の
上端面に着脱自在に固定される環状の冷却タンク(18)を
備えている。タンク(18)は鉛直な二重円筒状をなし、そ
の上側の部分が永久磁石部(10)の永久磁石(14)の内側に
ラジアル方向にわずかな空隙をあけてはめられている。
永久磁石(14)に対向するタンク(18)の外側周壁の部分は
肉厚が薄くなっており、この部分の内側のタンク(18)内
に鉛直円筒状の第2種超電導体(19)が固定されている。
超電導体(19)は回転体(1) と同心になるように配置さ
れ、タンク(18)の薄い周壁と空隙を介して永久磁石(14)
とラジアル方向に対向している。超電導体(19)は、たと
えばイットリウム系超電導体、たとえばY1 Ba2 Cu
3 7-x からなるバルクの内部に常電導粒子(Y2 Ba
1Cu1 )を均一に混在させたものからなり、第2種超
電導状態が出現する環境下において、永久磁石(14)から
発せられる磁束侵入を拘束する性質を有するものであ
る。そして、超電導体(19)は、上記のように配置される
ことにより、永久磁石(14)の磁束が所定量侵入する離隔
位置であってかつ回転体(1) の回転によって侵入磁束の
分布が変化しない位置に配置されている。図示は省略し
たが、タンク(18)は適当な冷却装置に接続されており、
この冷却装置により、タンク(18)内をたとえば液体窒素
からなる冷却流体が循環させられ、タンク(18)内に満た
される冷却流体により超電導体(19)が冷却されるように
なっている。
The superconducting bearing portion (2) is for supporting the rotating body (1) in a non-contact manner in the radial direction and the axial direction, and is an annular permanent magnet mounted concentrically below the rotating body (1). An annular superconductor section (11) attached to the fixed section (A) so as to face the section (10) and the permanent magnet section (10). The horizontal support disk (12) is fixed to the lower end surface of the rotating body (1) projecting into the lower housing (9), and the permanent magnet part (10) is detachably fixed to the lower surface. . The permanent magnet part (10) is disc (12) concentric with the rotating body (1).
Vertical cylindrical support tube (13) detachably fixed to the lower surface of
A plurality of upper and lower annular permanent magnets (14) are arranged on the inner periphery of the support cylinder (13) via an annular spacer (15), and are fixed to a lower end surface of the support cylinder (13). It is fixed by a stop member (16). For example, each of the permanent magnets (14) has magnetic poles on both end surfaces in the axial direction, and is arranged such that the magnetic poles of the permanent magnets (14) vertically adjacent to each other have the same polarity. In this case, if the spacer (15) is an iron yoke, this yoke becomes a magnetic pole. The permanent magnet (14) is arranged concentrically with the rotating body (1), and the magnetic flux distribution of the permanent magnet (14) around the rotation axis of the rotating body (1) changes due to the rotation of the rotating body (1). Not to be done. Although detailed illustration is omitted,
A vertical support shaft (17) concentric with the rotating body (1) is provided at an appropriate position below the fixed portion (A) so that the position in the vertical direction can be adjusted. The upper part of the support shaft (17) is the lower housing
The superconductor section (11) is detachably fixed to the upper end surface of the support shaft (17) through the bottom wall of (9). On the other hand, if a load cell (not shown) is fixed to the lower end surface of the support shaft (17), the load on the superconducting bearing (2) can be measured by this load cell. The superconductor section (11) includes an annular cooling tank (18) removably fixed to the upper end surface of the support shaft (17) so as to be concentric with the rotating body (1). The tank (18) has a vertical double cylindrical shape, and its upper part is fitted inside the permanent magnet (14) of the permanent magnet part (10) with a slight gap in the radial direction.
A portion of the outer peripheral wall of the tank (18) facing the permanent magnet (14) is thinner, and a vertical cylindrical type 2 superconductor (19) is provided in the tank (18) inside the portion. Fixed.
The superconductor (19) is arranged concentrically with the rotating body (1), and the permanent magnet (14) passes through the thin peripheral wall of the tank (18) and the air gap.
And in the radial direction. The superconductor (19) is, for example, an yttrium-based superconductor, for example, Y 1 Ba 2 Cu
Normally conductive particles (Y 2 Ba) are contained in the bulk of 3 O 7-x
1 Cu 1 ) is uniformly mixed, and has a property of restraining the intrusion of magnetic flux emitted from the permanent magnet (14) in an environment in which the type 2 superconducting state appears. By arranging the superconductor (19) as described above, the distribution of the invading magnetic flux is at a separated position where the magnetic flux of the permanent magnet (14) invades by a predetermined amount and the rotation of the rotating body (1). It is located in a position that does not change. Although not shown, the tank (18) is connected to a suitable cooling device,
With this cooling device, a cooling fluid made of, for example, liquid nitrogen is circulated in the tank (18), and the superconductor (19) is cooled by the cooling fluid filled in the tank (18).

【0023】ラジアル方向磁気軸受部(3)(4)は、回転体
(1) を非接触支持するとともに回転体(1) の互いに直交
する2つのラジアル方向(X軸およびY軸方向)の位置
を制御するためのものであり、上部ハウジング(8) 内の
上下2箇所に設けられている。各ラジアル方向磁気軸受
部(3)(4)は、回転体(1) をX軸方向の両側から挟むよう
にハウジング(8) 内に固定されて回転体(1) をX軸方向
の両側に吸引する1対のX軸方向電磁石(20x) と、回転
体(1) をY軸方向の両側から挟むようにハウジング(8)
内に固定されて回転体(1) をY軸方向の両側に吸引する
1対のY軸方向電磁石(図示略)とを備えている。各ラ
ジアル方向磁気軸受部(3)(4)の電磁石(20x) の近傍に、
回転体(1) をX軸方向の両側から挟むようにハウジング
(8) に固定されて回転体(1) のX軸方向の変位を検出す
るX軸方向変位センサ(21x) と、回転体(1) をY軸方向
の両側から挟むようにハウジング(8) に固定されて回転
体(1) のY軸方向の変位を検出するY軸方向変位センサ
(図示略)とが設けられている。各ラジアル方向磁気軸
受部(3)(4)の各電磁石(20x) および各変位センサ(21x)
は図示しない制御装置に接続されており、この制御装置
から各電磁石(20x)に一定の定常電流と制御電流が供給
される。そして、制御装置は、各変位センサ(21x) の出
力信号に基づいて各電磁石(20x) に供給する制御電流の
大きさを制御し、これにより、各電磁石(20x) の磁気吸
引力が制御されて、回転体(1) のX軸およびY軸方向の
位置が制御される。なお、回転体(1) は、通常、ラジア
ル方向磁気軸受部(3)(4)により、ハウジング(8) の中心
に非接触支持される。
The radial magnetic bearings (3) and (4) are
(1) in a non-contact manner and for controlling the position of the rotating body (1) in two radial directions (X-axis and Y-axis directions) perpendicular to each other. It is provided in the place. The radial magnetic bearings (3) and (4) are fixed in the housing (8) so as to sandwich the rotating body (1) from both sides in the X-axis direction, and place the rotating body (1) on both sides in the X-axis direction. A pair of X-axis electromagnets (20x) to be attracted and a housing (8) sandwiching the rotating body (1) from both sides in the Y-axis direction
And a pair of Y-axis direction electromagnets (not shown) that are fixed inside and attract the rotating body (1) to both sides in the Y-axis direction. In the vicinity of the electromagnet (20x) of each radial magnetic bearing (3) (4),
Housing so that the rotating body (1) is sandwiched from both sides in the X-axis direction
An X-axis displacement sensor (21x) fixed to (8) and detecting the displacement of the rotating body (1) in the X-axis direction, and a housing (8) so as to sandwich the rotating body (1) from both sides in the Y-axis direction. And a Y-axis direction displacement sensor (not shown) for detecting the displacement of the rotating body (1) in the Y-axis direction. Each electromagnet (20x) and each displacement sensor (21x) in each radial magnetic bearing (3) (4)
Is connected to a control device (not shown), and a constant steady current and a control current are supplied to each electromagnet (20x) from the control device. Then, the control device controls the magnitude of the control current supplied to each electromagnet (20x) based on the output signal of each displacement sensor (21x), whereby the magnetic attraction force of each electromagnet (20x) is controlled. Thus, the position of the rotating body (1) in the X-axis and Y-axis directions is controlled. The rotating body (1) is normally supported in a non-contact manner at the center of the housing (8) by radial magnetic bearings (3) and (4).

【0024】アキシアル方向磁気軸受部(5) は、回転体
(1) のZ軸方向の位置を制御して、回転体(1) を固定部
(A) に対して非接触状態に浮上させるためのものであ
り、上部ハウジング(8) 内の上端部近傍に設けられてい
る。回転体(1) の上端部近傍に、水平な外向きフランジ
(22)が固定されている。アキシアル方向磁気軸受部(5)
は、フランジ(22)の外周寄りの部分をZ軸方向の両側か
ら挟むようにハウジング(8) 内に固定されて回転体(1)
をZ軸方向の両側に吸引する上下1対のZ軸方向電磁石
(23a)(23b)を備えている。ハウジング(8) 内の適当箇
所、たとえば上部に、回転体(1) のZ軸方向の変位を検
出するZ軸方向変位センサ(24)が設けられている。アキ
シアル方向磁気軸受部(5) の各電磁石(23a)(23b)および
Z軸方向変位センサ(24)は上記の制御装置に接続されて
おり、この制御装置から各電磁石(23a)(23b)に一定の定
常電流と制御電流が供給される。そして、制御装置は、
変位センサ(24)の出力信号に基づいて各電磁石(23a)(23
b)に供給する制御電流の大きさを制御し、これにより、
回転体(1) のZ軸方向の位置が制御される。
The axial direction magnetic bearing portion (5) includes a rotating body.
Control the position of (1) in the Z-axis direction and fix the rotating body (1)
This is for floating in a non-contact state with respect to (A), and is provided near the upper end in the upper housing (8). Near the upper end of the rotating body (1), a horizontal outward flange
(22) is fixed. Axial magnetic bearing (5)
The rotating body (1) is fixed inside the housing (8) so that the portion of the flange (22) near the outer circumference is sandwiched from both sides in the Z-axis direction.
A pair of upper and lower Z-axis electromagnets for attracting to both sides in the Z-axis direction
(23a) and (23b) are provided. A Z-axis direction displacement sensor (24) for detecting the displacement of the rotating body (1) in the Z-axis direction is provided at an appropriate location in the housing (8), for example, at the upper part. The electromagnets (23a) (23b) and the Z-axis direction displacement sensor (24) of the axial magnetic bearing (5) are connected to the above-mentioned control device, and the control device sends the electromagnets (23a) (23b) to the respective electromagnets (23a) (23b). A constant steady current and control current are supplied. And the control device:
Based on the output signal of the displacement sensor (24), each electromagnet (23a) (23
b) controlling the magnitude of the control current supplied to
The position of the rotating body (1) in the Z-axis direction is controlled.

【0025】電動機(6) は、回転体(1) を回転駆動する
ためのものであり、上下のラジアル方向磁気軸受部(3)
(4)の間の上部ハウジング(8) 内の中間部に設けられて
いる。この電動機(6) は、回転体(1) の外周部に設けら
れたロータ部(25)と、ハウジング(8) 内に固定されてロ
ータ部(25)の周囲に配置されたステータ部(26)とからな
る。
The electric motor (6) is for rotationally driving the rotating body (1), and includes upper and lower radial magnetic bearings (3).
It is provided in the middle part of the upper housing (8) between (4). The electric motor (6) has a rotor (25) provided on the outer periphery of the rotating body (1) and a stator (26) fixed in the housing (8) and arranged around the rotor (25). ).

【0026】上部ハウジング(8) 内の下側のZ軸方向電
磁石(23b) のケーシングの内周部および上部ハウジング
(8) の下端部近傍の内周部に、超電導軸受部(2) および
磁気軸受部(3)(4)(5) による支持がなくなったときに回
転体(1) を機械的に支持するためのタッチダウン軸受(2
7)(28)が取付けられている。
The inner peripheral portion of the casing of the lower Z-axis direction electromagnet (23b) in the upper housing (8) and the upper housing
Mechanically supports the rotating body (1) on the inner periphery near the lower end of (8) when the superconducting bearing (2) and magnetic bearings (3), (4), (5) are no longer supported Touch-down bearings for (2
7) (28) is installed.

【0027】回転速度センサ(7) は、回転体(1) の回転
速度を検出するためのものであり、ハウジング(8) 内の
適当箇所、たとえば上部に設けられている。
The rotational speed sensor (7) is for detecting the rotational speed of the rotating body (1), and is provided at an appropriate place in the housing (8), for example, at the upper part.

【0028】上記の装置において、超電導軸受部の回転
損失の測定はたとえば次のようにして行われる。
In the above apparatus, the measurement of the rotational loss of the superconducting bearing portion is performed, for example, as follows.

【0029】まず、上下のラジアル方向磁気軸受部(3)
(4)を作動させて回転体(1) をラジアル方向の所定位置
に非接触支持するとともに、アキシアル方向磁気軸受部
(5) を作動させ、回転体(1) をアキシアル方向の所定位
置に非接触支持して、固定部(A) に対して回転体(1) を
非接触状態に浮上させる。次いで、電動機(6) を作動さ
せて、回転体(1) を所定の回転数で回転させる。その
後、電動機(6) を停止させて回転体(1) を自由回転さ
せ、このときの回転速度変化を回転速度センサ(7) で検
出し、そのデータを用いて第1の回転損失を求める。こ
のとき、超電導軸受部(2) のタンク(18)には冷却流体を
供給しない。このため、タンク(18)内の超電導体(19)は
常温で、第2種超電導状態を出現しない常電導状態に保
持され、超電導軸受部(2) は支持力を発生しない非作動
状態になっている。したがって、超電導軸受部(2) に回
転損失は生じない。
First, upper and lower radial magnetic bearings (3)
By operating (4), the rotating body (1) is supported in a predetermined position in the radial direction in a non-contact manner, and the axial direction magnetic bearing
(5) is operated to support the rotating body (1) at a predetermined position in the axial direction in a non-contact manner, and to float the rotating body (1) in a non-contact state with respect to the fixed portion (A). Next, the electric motor (6) is operated to rotate the rotating body (1) at a predetermined number of revolutions. Thereafter, the motor (6) is stopped and the rotating body (1) is freely rotated. The change in the rotating speed at this time is detected by the rotating speed sensor (7), and the first rotation loss is obtained using the data. At this time, no cooling fluid is supplied to the tank (18) of the superconducting bearing (2). For this reason, the superconductor (19) in the tank (18) is maintained at normal temperature and in a normal conduction state where the second superconducting state does not appear, and the superconducting bearing (2) is in a non-operating state where no supporting force is generated. ing. Therefore, no rotation loss occurs in the superconducting bearing portion (2).

【0030】次に、上記と同様にラジアル方向磁気軸受
部(3)(4)とアキシアル方向磁気軸受部(5) とで回転体
(1) を非接触状態に浮上させた後、超電導軸受部(2) の
タンク(18)内に冷却流体を循環させ、タンク(18)内の超
電導体(19)を所定温度まで冷却して、第2種超電導状態
を出現する超電導状態に保持する。永久磁石(14)から発
せられる磁束が超電導体(19)の内部に侵入している状態
で、超電導体(19)を冷却(磁場冷却)して第2種超電導
状態にすると、超電導体(19)の内部に侵入していた磁束
の多くがそのまま超電導体(19)の内部に拘束されること
になる(ピンニング現象)。ここで、超電導体(19)はそ
の内部に常電導体粒子が均一に混在されたものであるた
め、超電導体(19)内部への侵入磁束の分布が一定とな
り、そのため、あたかも超電導体(19)に立設したピンに
永久磁石(14)が貫かれたようになる。これにより、超電
導軸受部(2) は、永久磁石(14)と超電導体(19)の相対的
位置が変動すれば力を発生する作動状態になる。したが
って、支持軸(17)を上方または下方へ移動すれば、それ
に応じて超電導軸受部(2) に一定の負荷を発生させるこ
とができる。この負荷は、支持軸(17)にロードセルを配
置しておけば計測できる。このとき、制御型磁気軸受部
(3)(4)(5) で全方向(X、Y、Z軸方向)全て制御して
いるので、回転体(1) はきわめて安定的に浮上した状態
でアキシアル方向およびラジアル方向に支持されること
になる。超電導軸受部(2) に一定の負荷を発生させたな
らば、電動機(6) を作動させて回転体(1) を上記と同じ
回転数で回転させる。その後、電動機(6) を停止させて
回転体(1) を自由回転させ、このときの回転速度変化を
回転速度センサ(7) で検出し、そのデータを用いて第2
の回転損失を求める。このとき、超電導体(19)に侵入し
た磁束は、磁束分布が回転体(1) の回転軸心に対して均
一で不変である限り、理想的には回転を妨げる抵抗とは
ならない。また、超電導軸受部(2) に損失があれば、そ
の分が加わっていることになる。
Next, similarly to the above, the radial magnetic bearing portions (3) and (4) and the axial magnetic bearing portion (5) are used to rotate the rotating body.
After floating (1) in a non-contact state, a cooling fluid is circulated in the tank (18) of the superconducting bearing (2), and the superconductor (19) in the tank (18) is cooled to a predetermined temperature. , The second superconducting state is maintained in the appearing superconducting state. When the superconductor (19) is cooled (magnetic field cooled) into the second type of superconducting state while the magnetic flux generated from the permanent magnet (14) has penetrated into the superconductor (19), the superconductor (19) Most of the magnetic flux that has penetrated into the inside of the superconductor (19) is restrained inside the superconductor (19) as it is (pinning phenomenon). Here, since the superconductor (19) is a mixture of normal conductor particles uniformly inside the superconductor (19), the distribution of magnetic flux penetrating into the superconductor (19) is constant, so that it is as if the superconductor (19) The permanent magnet (14) penetrates the pin set up in (). As a result, the superconducting bearing portion (2) enters an operating state in which a force is generated when the relative position between the permanent magnet (14) and the superconductor (19) changes. Therefore, if the support shaft (17) is moved upward or downward, a certain load can be generated on the superconducting bearing portion (2) accordingly. This load can be measured by disposing a load cell on the support shaft (17). At this time, the control type magnetic bearing
(3) Since all the directions (X, Y and Z axis directions) are controlled in (4) and (5), the rotating body (1) is supported in the axial and radial directions while being extremely stably levitated. Will be. When a certain load is generated in the superconducting bearing (2), the motor (6) is operated to rotate the rotating body (1) at the same rotational speed as described above. Thereafter, the motor (6) is stopped, and the rotating body (1) is freely rotated. A change in the rotating speed at this time is detected by the rotating speed sensor (7), and the second data is obtained by using the data.
The rotation loss of At this time, the magnetic flux that has entered the superconductor (19) does not ideally become a resistance that hinders rotation as long as the magnetic flux distribution is uniform and invariant with respect to the rotation axis of the rotating body (1). If there is a loss in the superconducting bearing (2), the loss is added.

【0031】そして、第2の回転損失から第1の回転損
失を減ずることにより、超電導軸受部(2) の回転損失が
求められる。ただし、このとき、第2の回転損失測定時
と第1の回転損失測定時に制御型磁気軸受部(3)(4)(5)
の制御条件が異なっている場合は、それによる損失分が
変化していることになるが、この値は計算により補正で
きる。
Then, by subtracting the first rotational loss from the second rotational loss, the rotational loss of the superconducting bearing portion (2) is obtained. However, at this time, at the time of the second rotation loss measurement and the first rotation loss measurement, the control type magnetic bearing part (3) (4) (5)
If the control conditions are different, it means that the loss due to the change has changed, but this value can be corrected by calculation.

【0032】上記のように第2の回転損失を求める際、
超電導軸受部(2) を作動状態にしたときは、回転体(1)
の重量はアキシアル方向軸受部(5) によって支持されて
いる。このようにアキシアル方向磁気軸受部(5) で回転
体(1) の重量を支持した状態では、アキシアル方向磁気
軸受部(5) は、全体として、上向きの磁気吸引力を発生
している。このような状態から、超電導軸受部(2) に負
荷させる荷重を徐々に大きくすれば、アキシアル方向磁
気軸受部(5) 全体の上向きの吸引力が徐々に小さくな
る。そして、アキシアル方向磁気軸受部(5) の上下の電
磁石(23a)(23b)の吸引力が互いに等しくなるとき、超電
導軸受部(2) に負荷させる荷重を回転体(1) の重量と等
しくすることができる。さらに、超電導軸受部(2) に負
荷させる荷重を回転体(1) の重量より大きくするまで支
持軸(17)を移動させることも可能である。このように、
アキシアル方向磁気軸受部(5) 全体の吸引力は変化する
ものの、超電導軸受部(2) に負荷する荷重を、回転体
(1) の重量以下またはそれを越える広い範囲にわたって
種々に変更することができ、このように超電導軸受部
(2) に負荷する荷重を変更した種々の状態において、超
電導軸受部(2) の回転損失を測定することができる。こ
のような超電導軸受部(2) の負荷の値はロードセルによ
り測定可能であるが、この値にともなってアキシアル方
向磁気軸受部(5) の吸引力が変化することになるので、
その吸引力を発生させている電磁石(23a)(23b)の制御電
流の変化量を計測し、この値を負荷に換算することも可
能である。この場合は、ロードセルは不要である。
As described above, when obtaining the second rotation loss,
When the superconducting bearing (2) is activated, the rotating body (1)
Is supported by an axial bearing (5). When the weight of the rotating body (1) is supported by the axial magnetic bearing portion (5), the axial magnetic bearing portion (5) generates an upward magnetic attraction force as a whole. In such a state, if the load applied to the superconducting bearing portion (2) is gradually increased, the upward attractive force of the entire axial direction magnetic bearing portion (5) gradually decreases. When the attractive forces of the upper and lower electromagnets (23a) and (23b) of the axial magnetic bearing (5) are equal to each other, the load applied to the superconducting bearing (2) is made equal to the weight of the rotating body (1). be able to. Further, the support shaft (17) can be moved until the load applied to the superconducting bearing portion (2) becomes larger than the weight of the rotating body (1). in this way,
Although the attractive force of the axial magnetic bearing (5) varies, the load applied to the superconducting bearing (2) is
(1) It can be variously changed over a wide range below or above the weight of the superconducting bearing part.
In various states where the load applied to (2) is changed, the rotational loss of the superconducting bearing (2) can be measured. The value of the load of such a superconducting bearing (2) can be measured by a load cell, but the attractive force of the axial magnetic bearing (5) changes with this value.
It is also possible to measure the amount of change in the control current of the electromagnets (23a) (23b) generating the attraction force, and convert this value into a load. In this case, no load cell is required.

【0033】また、回転体(1) のアキシアル方向の位置
は制御型アキシアル方向磁気軸受部(5) によって制御さ
れるので、回転体(1) の軸方向の振動を小さくすること
ができ、したがって、正確な測定が可能になる。
Further, since the axial position of the rotating body (1) is controlled by the control type axial magnetic bearing (5), the axial vibration of the rotating body (1) can be reduced. , Accurate measurement becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、この発明の実施形態を示す超電導軸受
部の回転損失測定装置の概略縦断面図である。
FIG. 1 is a schematic longitudinal sectional view of a rotation loss measuring device for a superconducting bearing unit according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

(1) 回転体 (2) 超電導軸受部 (3)(4) ラジアル方向磁気軸受部 (5) アキシアル方向磁気軸受部 (6) 回転駆動用電動機 (7) 回転速度センサ (10) 環状永久磁石部 (11) 環状超電導体部 (14) 永久磁石 (19) 超電導体 (25) ロータ部 (26) ステータ部 (A) 固定部 (1) Rotating body (2) Superconducting bearing (3) (4) Radial magnetic bearing (5) Axial magnetic bearing (6) Rotary drive motor (7) Rotation speed sensor (10) Annular permanent magnet (11) Annular superconductor part (14) Permanent magnet (19) Superconductor (25) Rotor part (26) Stator part (A) Fixed part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鉛直状の回転体と、回転体に同心状に取付
けられた環状永久磁石部および永久磁石部と対向するよ
うに固定部に取付けられた環状超電導体部よりなる超電
導軸受部と、超電導軸受部と軸方向に離隔しかつ互いに
異なる2つの高さ位置にそれぞれ設けられて回転体の互
いに直交する2つのラジアル方向の位置を制御する制御
型ラジアル方向磁気軸受部と、回転体を固定部に対して
非接触状態に浮上させる制御型アキシアル方向磁気軸受
部と、回転体に設けられたロータ部および固定部に設け
られてロータ部の周囲に配置されたステータ部よりなる
回転駆動用電動機と、回転体の回転速度を検出する回転
速度センサとを備えている超電導軸受部の回転損失測定
装置。
1. A superconducting bearing portion comprising a vertical rotating body, an annular permanent magnet portion concentrically attached to the rotating body, and an annular superconductor portion attached to a fixed portion to face the permanent magnet portion. A control-type radial magnetic bearing portion, which is provided at two different height positions axially separated from the superconducting bearing portion and controls two orthogonal radial directions of the rotating body, and a rotating body. For a rotational drive comprising a control type axial magnetic bearing part which floats in a non-contact state with respect to the fixed part, a rotor part provided on the rotating body and a stator part provided on the fixed part and arranged around the rotor part. A rotation loss measuring device for a superconducting bearing unit, comprising a motor and a rotation speed sensor for detecting a rotation speed of a rotating body.
JP00845697A 1997-01-21 1997-01-21 Superconducting bearing rotation loss measurement device Expired - Fee Related JP3735742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00845697A JP3735742B2 (en) 1997-01-21 1997-01-21 Superconducting bearing rotation loss measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00845697A JP3735742B2 (en) 1997-01-21 1997-01-21 Superconducting bearing rotation loss measurement device

Publications (2)

Publication Number Publication Date
JPH10205536A true JPH10205536A (en) 1998-08-04
JP3735742B2 JP3735742B2 (en) 2006-01-18

Family

ID=11693640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00845697A Expired - Fee Related JP3735742B2 (en) 1997-01-21 1997-01-21 Superconducting bearing rotation loss measurement device

Country Status (1)

Country Link
JP (1) JP3735742B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100794558B1 (en) 2006-10-31 2008-01-17 한국전력공사 Measurement method and automatic measurement device of rotational loss rof superconducting flywheel energy storage system
KR100976224B1 (en) 2008-10-29 2010-08-17 한국전력공사 Device for measuring loss of permanent magnet type rotating machine
CN103900739A (en) * 2012-12-28 2014-07-02 北京有色金属研究总院 Device and method for measuring large-grain block high-temperature superconductor and combination magnetic buoyancy of large-grain block high-temperature superconductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100794558B1 (en) 2006-10-31 2008-01-17 한국전력공사 Measurement method and automatic measurement device of rotational loss rof superconducting flywheel energy storage system
KR100976224B1 (en) 2008-10-29 2010-08-17 한국전력공사 Device for measuring loss of permanent magnet type rotating machine
CN103900739A (en) * 2012-12-28 2014-07-02 北京有色金属研究总院 Device and method for measuring large-grain block high-temperature superconductor and combination magnetic buoyancy of large-grain block high-temperature superconductor

Also Published As

Publication number Publication date
JP3735742B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
EP0526903B1 (en) Bearing device
JPH08178011A (en) Flywheel device
JP3665878B2 (en) Bearing device and starting method thereof
JPH10205536A (en) Rotational loss measuring device of superconductive bearing part
US20130207496A1 (en) System and method for performing magnetic levitation in an energy storage flywheel
JP4729702B2 (en) Non-contact bearing device using superconducting bearing
JPH08296645A (en) Magnetic bearing device
JP3353182B2 (en) Apparatus and method for measuring magnetic coercive force of superconductor
JP3928094B2 (en) Starting method of superconducting bearing device
JP3577559B2 (en) Flywheel equipment
JPS63210414A (en) Magnetic bearing device
JP3477524B2 (en) Rotation loss measurement method for superconducting bearings
JP2003329038A (en) Superconducting bearing device and power storage device
JP3663470B2 (en) Superconducting bearing device
JP3663472B2 (en) Permanent magnet bearing device and permanent magnet rotating device
JP3680231B2 (en) Control method for starting operation of superconducting magnetic bearing device
JP3622041B2 (en) Superconducting bearing device
JPH0674234A (en) Repulsion magnetic levitation type rotation device
JP2967446B2 (en) Bearing device
JPS61210290A (en) Magnetic bearing equipment of turbo-molecular pump
JP3632101B2 (en) Power storage device
JPH0694030A (en) Superconductive bearing device
JP2958598B2 (en) Power storage device
JPH11101232A (en) Bearing device, spindle motor and rotary body device
JPH0968224A (en) Superconducting bearing device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees