JP4729702B2 - Non-contact bearing device using superconducting bearing - Google Patents

Non-contact bearing device using superconducting bearing Download PDF

Info

Publication number
JP4729702B2
JP4729702B2 JP2005052353A JP2005052353A JP4729702B2 JP 4729702 B2 JP4729702 B2 JP 4729702B2 JP 2005052353 A JP2005052353 A JP 2005052353A JP 2005052353 A JP2005052353 A JP 2005052353A JP 4729702 B2 JP4729702 B2 JP 4729702B2
Authority
JP
Japan
Prior art keywords
permanent magnet
main shaft
bearing
rotating
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005052353A
Other languages
Japanese (ja)
Other versions
JP2006234124A (en
Inventor
望充 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Original Assignee
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC filed Critical Kyushu Institute of Technology NUC
Priority to JP2005052353A priority Critical patent/JP4729702B2/en
Priority to PCT/JP2006/303372 priority patent/WO2006093033A1/en
Publication of JP2006234124A publication Critical patent/JP2006234124A/en
Application granted granted Critical
Publication of JP4729702B2 publication Critical patent/JP4729702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

本発明は、超電導軸受を用いた非接触軸受装置に関するものであり、例えば、病院での瞬時停電防止のための電力貯蔵用フライホイールや精密機器の軸受装置として利用されるものである。   The present invention relates to a non-contact bearing device using a superconducting bearing, and is used, for example, as a power storage flywheel for preventing an instantaneous power failure in a hospital or a bearing device for precision equipment.

電力の負荷平準化や電力の安定供給は、電力業界のみならず医療分野、精密機器分野等にとって重要である。そこで、現在、国家プロジェクトとして、超電導軸受を用いた電力貯蔵用フライホイールの開発が進められている。   Power load leveling and stable power supply are important not only for the electric power industry but also for the medical field and precision instrument field. Thus, as a national project, development of a flywheel for power storage using superconducting bearings is currently underway.

超電導体は、臨界温度以下において、マイスナー効果およびピン止め効果を有する。マイスナー効果とは、超電導体の示す完全反磁性のことを称し、ピン止め効果とは、超電導体内の磁界を固定する力を言う。この2つの効果を有する超電導体と永久磁石を対向させることにより、回転主軸を非接触保持する超電導軸受装置が開発されている。これによって、浮上体が平衡状態からずれた場合、磁力線がピン止めされているため復元力が働き元の位置に戻ろうとする。このように、超電導を利用した非接触浮上装置は、構造が簡単で安価な非接触浮上装置を実現させることができる。   The superconductor has a Meissner effect and a pinning effect below the critical temperature. The Meissner effect refers to the complete diamagnetism exhibited by the superconductor, and the pinning effect refers to the force that fixes the magnetic field in the superconductor. A superconducting bearing device has been developed that holds a rotating main shaft in a non-contact manner by making a superconductor having these two effects and a permanent magnet face each other. As a result, when the levitation body deviates from the equilibrium state, the restoring force works to return to the original position because the magnetic field lines are pinned. Thus, the non-contact levitation apparatus using superconductivity can realize a non-contact levitation apparatus that has a simple structure and is inexpensive.

しかし、回転主軸を回転させたときには、超電導軸受のラジアル剛性が小さいため、回転主軸の持つアンバランスまたはモータ等の外部から加わる外乱により、回転主軸は大きく振れ回る。そこで、超電導軸受のラジアル剛性を高めるために、ラジアル方向にも超電導体と永久磁石によるラジアル軸受を持つ超電導軸受装置が提案されている。   However, when the rotating main shaft is rotated, the radial rigidity of the superconducting bearing is small, so that the rotating main shaft shakes greatly due to unbalance of the rotating main shaft or external disturbance such as a motor. Therefore, in order to increase the radial rigidity of the superconducting bearing, a superconducting bearing device having a radial bearing composed of a superconductor and a permanent magnet in the radial direction has been proposed.

図11は、上記のようなラジアル軸受のラジアル剛性を高めることができるように提案された従来技術を説明する図である(特許文献1参照)。図示の超電導軸受装置は、回転主軸の軸方向両端部にはそれぞれ、第1の永久磁石が取付けられる。この取付けられた第1の永久磁石に対向するようにハウジングには、それぞれ第1の超電導体が取付けられる。また、回転主軸の外径側面には、モータロータが取付けられ、モータロータと対向するようにハウジング内面に、モータステータが取付けられる。さらに、図示の超電導軸受装置は、回転主軸の軸端部には、それぞれ円筒状の第2の永久磁石が取付けられる。これらの第2の永久磁石に対向するようにハウジングには、ブロック形状の第2の超電導体が配向性の方向と回転主軸の径方向を一致させて、取付けられる。   FIG. 11 is a diagram for explaining the conventional technique proposed so as to increase the radial rigidity of the radial bearing as described above (see Patent Document 1). In the illustrated superconducting bearing device, first permanent magnets are attached to both ends of the rotating main shaft in the axial direction. A first superconductor is attached to each housing so as to face the attached first permanent magnet. A motor rotor is attached to the outer diameter side surface of the rotating main shaft, and a motor stator is attached to the inner surface of the housing so as to face the motor rotor. Further, in the illustrated superconducting bearing device, a cylindrical second permanent magnet is attached to the shaft end of the rotating main shaft. A block-shaped second superconductor is attached to the housing so that these second permanent magnets are opposed to each other, with the orientation direction and the radial direction of the rotating spindle aligned.

これによって、超電導体を冷媒等を用いて臨界温度以下に冷却することで、超電導体のマイスナー効果およびピン止め効果により、回転主軸は非接触保持される。さらに、ハウジングに取付けられたモータステータを駆動することにより、回転主軸に取付けられたモータロータが回転駆動するため、回転主軸を回転させることができる。さらに、この超電導軸受装置は、回転主軸の上下両軸端部においてそれぞれ、超電導体の持つ配向性の方向とラジアル方向を一致させることにより、超電導体と永久磁石により形成されるラジアル軸受のラジアル剛性を高めることができ、回転部材のラジアル方向の振れを抑えることができる。   Thus, by cooling the superconductor to a critical temperature or lower using a refrigerant or the like, the rotating main shaft is held in a non-contact manner due to the Meissner effect and the pinning effect of the superconductor. Furthermore, by driving the motor stator attached to the housing, the motor rotor attached to the rotating spindle is driven to rotate, so that the rotating spindle can be rotated. Furthermore, this superconducting bearing device has a radial rigidity of a radial bearing formed by a superconductor and a permanent magnet by matching the orientation direction of the superconductor with the radial direction at both ends of the upper and lower shafts of the rotating main shaft. And can prevent the rotating member from swinging in the radial direction.

しかしながら、このような超電導軸受装置は、超電導体の持つ配向性の方向とラジアル方向の一致を、回転主軸の上下両軸端部のそれぞれにおいて達成する必要があるが、上下両軸端部の回転中心を一致させることは困難であり、回転中心がずれることによりエネルギーロスが生じていた。   However, in such a superconducting bearing device, it is necessary to achieve alignment between the orientation direction of the superconductor and the radial direction at each of the upper and lower shaft ends of the rotating main shaft. It is difficult to make the centers coincide with each other, and energy loss occurs due to the shift of the center of rotation.

図12は、従来技術による超電導軸受装置の別の例を示す図である。図11と同様に、発電電動機を構成するモータロータ、及び上下2つのフライホイールが固定された回転主軸は、非接触磁気軸受装置によって支持されている。この例において、非接触磁気軸受装置は、1個の超電導軸受と、2個のラジアル方向磁気軸受及び1個のアキシャル方向磁気軸受により構成されている。臨界温度以下に冷却する必要のある超電導軸受を、回転主軸下部に配置した1個のみにしている。ラジアル軸受のラジアル剛性を高めて、回転部材のラジアル方向の振れを抑えるために、2つのラジアル方向磁気軸受を用いると共に、回転主軸上部をアキシャル方向に支持するためのアキシャル方向磁気軸受を備えている。例示のような電磁石を利用した磁気軸受は、位置センサなどを用いて、電磁石に流す電流をフィードバック制御することにより、一定ギャップの非接触状態を保つことが可能となる。   FIG. 12 is a diagram showing another example of a superconducting bearing device according to the prior art. Similarly to FIG. 11, the motor rotor constituting the generator motor and the rotating main shaft to which the two upper and lower flywheels are fixed are supported by a non-contact magnetic bearing device. In this example, the non-contact magnetic bearing device is composed of one superconducting bearing, two radial magnetic bearings and one axial magnetic bearing. Only one superconducting bearing that needs to be cooled below the critical temperature is arranged at the lower part of the rotating spindle. In order to increase the radial rigidity of the radial bearing and suppress the radial deflection of the rotating member, two radial direction magnetic bearings are used, and an axial direction magnetic bearing for supporting the upper part of the rotating spindle in the axial direction is provided. . A magnetic bearing using an electromagnet as illustrated can maintain a non-contact state with a constant gap by performing feedback control of a current flowing through the electromagnet using a position sensor or the like.

しかしながら、回転主軸下部でアキシャル方向に支持しているアキシャル型超電導磁気軸受は、アキシャル方向に非接触保持するだけでなく、超電導体の臨界温度以下におけるピン止め効果により、回転主軸をラジアル方向にも保持しようとする力が作用する。図示の例は、このような超電導軸受による保持力に加えて、電磁石に流す電流を制御して、ラジアル方向磁気軸受の作用により、回転部材のラジアル方向の振れを抑えようとするために、両軸受の回転中心が一致せずに、エネルギーロスが生じていた。   However, the axial superconducting magnetic bearing supported in the axial direction below the rotating spindle not only keeps it in the axial direction but also keeps the rotating spindle in the radial direction due to the pinning effect below the critical temperature of the superconductor. A force to hold is applied. In the illustrated example, in order to control the current flowing in the electromagnet in addition to the holding force by such a superconducting bearing and to suppress the radial deflection of the rotating member by the action of the radial magnetic bearing, Energy loss occurred because the rotation centers of the bearings did not match.

これらの例に見られるように、従来の超電導軸受装置は、非接触軸受を用いた回転軸の浮上のために、永久磁石軸受、超電導軸受、電磁石を用いる制御軸受を併用して用いるが、いずれも回転損失、振動抑制などの問題を抱えている。また、超電導体を回転主軸の上下両軸端部のそれぞれに備えることは、冷却が困難となる。
特開平7−42737号公報
As seen in these examples, conventional superconducting bearing devices use a permanent magnet bearing, a superconducting bearing, and a control bearing using an electromagnet in combination for the purpose of levitation of a rotating shaft using a non-contact bearing. Also have problems such as rotational loss and vibration suppression. In addition, it becomes difficult to cool a superconductor provided at each of the upper and lower shaft ends of the rotating main shaft.
JP 7-42737 A

従来の超電導軸受装置は、併用して用いる複数の軸受のそれぞれの回転中心が異なるために、エネルギーロスが生じているという知見に基づき、本発明は、基本的には1点で支持することにより、回転損失、振動抑制などの問題を解決する簡単な構成の超電導軸受装置を提供することを目的としている。   The conventional superconducting bearing device is based on the knowledge that energy loss occurs because the rotation centers of the plurality of bearings used in combination are different, and the present invention basically supports at one point. An object of the present invention is to provide a superconducting bearing device having a simple configuration that solves problems such as rotational loss and vibration suppression.

また、本発明は、超電導体の冷却を容易にすることを目的としている。   Another object of the present invention is to facilitate cooling of the superconductor.

本発明の超電導軸受を用いた非接触軸受装置は、ハウジング側に取り付けられたモータステータと協働して発電電動機を構成するモータロータを固定する回転主軸を支持するために、回転主軸の上端部をラジアル方向に支持する位置決め用の永久磁石反発形磁気軸受と、ラジアル方向及びアキシャル方向の安定化を図る1つのみの超電導軸受とを備える。この超電導軸受は、回転主軸の下端部を支持する。   A non-contact bearing device using a superconducting bearing according to the present invention has an upper end portion of a rotating spindle for supporting a rotating spindle that fixes a motor rotor constituting a generator motor in cooperation with a motor stator mounted on a housing side. A permanent magnet repulsive magnetic bearing for positioning that is supported in the radial direction and only one superconducting bearing that stabilizes the radial direction and the axial direction are provided. This superconducting bearing supports the lower end portion of the rotating main shaft.

また、超電導軸受は、回転主軸の下端をラジアル方向に位置決めするために、回転主軸の下端外周面に固定された永久磁石と、これに対向してハウジングに取り付けられた超電導体によって構成され、さらに、回転主軸をアキシャル方向に支持する浮上用の永久磁石磁気軸受を備える。   The superconducting bearing is composed of a permanent magnet fixed to the outer peripheral surface of the lower end of the rotating main shaft and a superconductor attached to the housing so as to face the lower end of the rotating main shaft in order to position the lower end of the rotating main shaft in the radial direction. And a permanent magnet magnetic bearing for levitation that supports the rotating main shaft in the axial direction.

また、超電導軸受は、回転主軸を浮上させるように、回転主軸の下端に取り付けられた永久磁石と、それに対向して取り付けられるハウジング側の永久磁石及び超電導体によって構成され、かつ、ハウジング側の永久磁石は、ハウジングに取り付けられている超電導体に対して取り付けられている。このように配置した超電導体によって、回転主軸のラジアル方向及びアキシャル方向の安定化を図ることが可能となる。また、回転主軸下端に、位置決め用の永久磁石反発形磁気軸受を備えることができる。   The superconducting bearing is composed of a permanent magnet attached to the lower end of the rotating spindle, a permanent magnet on the housing side and a superconductor attached opposite to the rotating spindle so that the rotating spindle is levitated, and a permanent magnet on the housing side. The magnet is attached to a superconductor attached to the housing. The superconductor arranged in this way can stabilize the rotation main shaft in the radial direction and the axial direction. Further, a permanent magnet repulsive magnetic bearing for positioning can be provided at the lower end of the rotating main shaft.

本発明によれば、永久磁石の助けを借りて位置決めしつつ、ラジアル方向及びアキシャル方向の安定化を図る1つのみの超電導軸受を用いて、超電導軸受自身で回転軸の位置(ピン止め位置)を決めさせ、コマのように軸の支点を中心とした回転動作を行うものであるから、回転軸を安定に浮上させることができると共に、冷却が容易となる。   According to the present invention, using only one superconducting bearing that achieves stabilization in the radial and axial directions while positioning with the help of a permanent magnet, the position of the rotating shaft (pinning position) by the superconducting bearing itself. Since the rotation operation is performed around the fulcrum of the shaft like a frame, the rotation shaft can be stably floated and cooling is facilitated.

以下、例示に基づき、本発明を説明する。図1は、本発明に基づき構成した非接触軸受装置の構成の第1の例を示す図である。図示の非接触軸受装置は、通常のように、回転主軸に固定されたモータロータと、ハウジング側に取り付けられたモータステータからなる発電電動機、及び回転主軸に固定されたフライホイールを備えている。このような、回転主軸は、回転主軸の軸方向下側端部において、回転主軸をアキシャル方向に支持する浮上用の永久磁石磁気軸受装置が取り付けられている。さらに、回転主軸の下端には、回転主軸の下端部をラジアル方向に支持する位置決め用超電導軸受装置が備えられている。回転主軸の上端部には、回転主軸の上端部をラジアル方向に支持する位置決め用の永久磁石反発形磁気軸受が備えられている。   Hereinafter, the present invention will be described based on examples. FIG. 1 is a diagram showing a first example of the configuration of a non-contact bearing device configured according to the present invention. The non-contact bearing device shown in the drawing includes a motor rotor fixed to the rotating main shaft, a generator motor including a motor stator attached to the housing side, and a flywheel fixed to the rotating main shaft as usual. Such a rotating main shaft is attached with a levitation permanent magnet magnetic bearing device that supports the rotating main shaft in the axial direction at the lower end of the rotating main shaft in the axial direction. Furthermore, a positioning superconducting bearing device is provided at the lower end of the rotating main shaft to support the lower end portion of the rotating main shaft in the radial direction. A positioning permanent magnet repulsive magnetic bearing for supporting the upper end portion of the rotating main shaft in the radial direction is provided at the upper end portion of the rotating main shaft.

図2は、図1に示した各軸受装置の動作を説明するための概念図である。回転主軸の軸方向下側端部に取り付けられる浮上用の永久磁石磁気軸受装置は、回転主軸の下端とハウジング側にそれぞれ永久磁石が相対向して取り付けられている。さらに、回転主軸の下端に取り付けられる位置決め用の超電導軸受装置は、回転主軸の下端外周面に固定された永久磁石と、これに対向してハウジングに取り付けられた超電導体によって構成されて、ラジアル方向及びアキシャル方向の安定化を図る。回転主軸の上端部に取り付けられる位置決め用の永久磁石反発形磁気軸受は、回転主軸の上端外周面に固定された永久磁石と、該永久磁石に対向するようにハウジングに取り付けられる別の永久磁石とから構成される。   FIG. 2 is a conceptual diagram for explaining the operation of each bearing device shown in FIG. In the permanent magnet magnetic bearing device for levitation attached to the lower end portion in the axial direction of the rotation main shaft, permanent magnets are attached to the lower end of the rotation main shaft and the housing side so as to face each other. Furthermore, the superconducting bearing device for positioning attached to the lower end of the rotating main shaft is constituted by a permanent magnet fixed to the outer peripheral surface of the lower end of the rotating main shaft and a superconductor attached to the housing so as to be opposed thereto. And stabilize the axial direction. A permanent magnet repulsive magnetic bearing for positioning attached to the upper end of the rotating spindle includes a permanent magnet fixed to the outer peripheral surface of the upper end of the rotating spindle and another permanent magnet attached to the housing so as to face the permanent magnet. Consists of

このような構成により、ハウジングに取り付けられたモータステータを駆動することにより、回転主軸に取り付けられたモータロータが回転駆動するため、回転主軸を通常に回転させることができる。   With such a configuration, by driving the motor stator attached to the housing, the motor rotor attached to the rotating spindle is driven to rotate, so that the rotating spindle can be rotated normally.

このとき、超電導体を冷媒等を用いて臨界温度以下に冷却することで、超電導体のマイスナー効果およびピン止め効果により、回転主軸は非接触保持される。本発明は、超電導軸受自身で回転軸の位置(ピン止め位置)を決めさせて、コマのように軸の支点を中心とした回転動作を行う。また、永久磁石軸受を用いて回転軸の位置決めをさせると共に、永久磁石を用いてラジアル(半径)、スラスト(軸)各方向の剛性を最適化する。   At this time, by cooling the superconductor to a critical temperature or lower using a refrigerant or the like, the rotating main shaft is held in a non-contact manner due to the Meissner effect and the pinning effect of the superconductor. In the present invention, the position of the rotating shaft (pinning position) is determined by the superconducting bearing itself, and the rotating operation is performed around the fulcrum of the shaft like a top. Moreover, while positioning a rotating shaft using a permanent magnet bearing, the rigidity in each direction of radial (radius) and thrust (shaft) is optimized using a permanent magnet.

このように、本発明によれば、ラジアル方向及びアキシャル方向の安定化を図るように配置した1つのみの超電導軸受を用い、かつ永久磁石の助けを借りて位置決めすることにより、冷却を容易にすると共に、回転主軸を安定に浮上させることが可能となる。   Thus, according to the present invention, cooling is facilitated by using only one superconducting bearing arranged so as to stabilize the radial direction and the axial direction, and positioning with the help of a permanent magnet. In addition, the rotating main shaft can be stably levitated.

図3は、本発明を具体化する非接触軸受装置の構成の第2の例を説明する図である。回転主軸の上端部に取り付けられる位置決め用の永久磁石反発形磁気軸受は、図2に示した例と同じく、回転主軸の上端外周面に固定された永久磁石と、該永久磁石に対向するように取り付けられる別の永久磁石とから構成される。回転主軸の軸方向下側端部に取り付けられる浮上用の超電導軸受装置は、回転主軸の下端の永久磁石と、それに対向して取り付けられるハウジング側の永久磁石によって構成される。これら両永久磁石によって、回転主軸を浮上させることはできるが、回転主軸がラジアル方向に振れようとする力に抗して保持することはできない。回転主軸をラジアル方向の振れに対して保持するのは、ハウジング側の円筒形状永久磁石の周囲に配置した超電導体である。このハウジング側の超電導体は、安定ダンピング用のために取り付けられていて、それを臨界温度以下に冷却した際に生じるピン止め効果により、回転主軸を安定に保持する。   FIG. 3 is a diagram for explaining a second example of the configuration of the non-contact bearing device embodying the present invention. As in the example shown in FIG. 2, the positioning permanent magnet repulsive magnetic bearing attached to the upper end portion of the rotating spindle has a permanent magnet fixed on the outer peripheral surface of the upper end of the rotating spindle and faces the permanent magnet. Composed of another permanent magnet to be attached. The superconducting bearing device for levitation attached to the lower end portion in the axial direction of the rotating main shaft is constituted by a permanent magnet at the lower end of the rotating main shaft and a permanent magnet on the housing side attached to face the magnet. Although the rotary main shaft can be lifted by these permanent magnets, it cannot be held against the force that the rotary main shaft swings in the radial direction. It is a superconductor disposed around the cylindrical permanent magnet on the housing side that holds the rotation main shaft against radial deflection. This superconductor on the housing side is attached for stable damping, and stably holds the rotating main shaft by the pinning effect that occurs when it is cooled below the critical temperature.

このように、回転主軸に取り付けられた永久磁石に対向して設けられるハウジング側の永久磁石及びその周囲に配置した超電導体のマイスナー効果およびピン止め効果により、超電導体を冷媒等を用いて臨界温度以下に冷却することで、回転主軸は安定に非接触保持される。超電導軸受自身で回転軸の位置(ピン止め位置)を決めさせて、コマのように軸の支点を中心とした回転動作を行う。   In this way, the superconductor is cooled to a critical temperature using a refrigerant or the like by the Meissner effect and the pinning effect of the permanent magnet on the housing side facing the permanent magnet attached to the rotating spindle and the superconductor arranged around the permanent magnet. By cooling to the following, the rotating spindle is stably held in a non-contact manner. The superconducting bearing itself determines the position of the rotating shaft (pinning position) and rotates around the fulcrum of the shaft like a coma.

このように、ラジアル方向及びアキシャル方向の安定化を図るように永久磁石の周囲に超電導体を配置した1つのみの超電導軸受を用い、回転主軸上部で永久磁石磁気軸受装置を補助的に用いることにより、冷却を容易にすると共に、回転主軸を安定に浮上させることが可能となる。   As described above, only one superconducting bearing in which a superconductor is arranged around a permanent magnet is used so as to stabilize the radial direction and the axial direction, and the permanent magnet magnetic bearing device is supplementarily used at the upper part of the rotating spindle. As a result, cooling can be facilitated and the rotating spindle can be stably floated.

図4は、本発明を具体化する非接触軸受装置の構成の第3の例を説明する図である。回転主軸下端に、位置決め用の永久磁石反発形磁気軸受を備える点でのみ、上記の第2の例とは異なっている。超電導軸受自身で回転軸の位置(ピン止め位置)を決めさせることが可能となるが、さらに、位置決め用の永久磁石反発形磁気軸受を備えることにより、回転主軸をその下端部でより安定に位置決めすることができる。但し、回転主軸の位置(ピン止め位置)を決めるのは、超電導軸受である。   FIG. 4 is a diagram for explaining a third example of the configuration of the non-contact bearing device embodying the present invention. It differs from the above second example only in that a permanent magnet repulsive magnetic bearing for positioning is provided at the lower end of the rotating main shaft. The superconducting bearing itself can determine the position of the rotating shaft (pinning position). In addition, by providing a permanent magnet repulsive magnetic bearing for positioning, the rotating spindle can be positioned more stably at its lower end. can do. However, it is the superconducting bearing that determines the position of the rotating spindle (pinning position).

図3或いは図4において例示した超電導軸受について、さらに図5〜図7を参照して説明する。図5は、ハウジング側には、回転主軸に設けた永久磁石に対向して備えられる円筒形状の永久磁石と、それに対応する形状の凹みを設けてそこに永久磁石を収容した超電導体とから構成される。この構成は、図3或いは図4を参照して先に説明したものと同じである。   The superconducting bearing illustrated in FIG. 3 or FIG. 4 will be further described with reference to FIGS. FIG. 5 shows a cylindrical permanent magnet provided on the housing side so as to face the permanent magnet provided on the rotating main shaft, and a superconductor provided with a correspondingly shaped recess and containing the permanent magnet therein. Is done. This configuration is the same as that described above with reference to FIG. 3 or FIG.

図6は、超電導軸受の別の例を示す図である。ハウジング側には、回転主軸に設けた永久磁石に対向して備えられる円筒形状の永久磁石と、この永久磁石よりも高さ方向にも径方向にも大きくした凹みを設けてその凹みの底部中央に収容した超電導体とから構成される。   FIG. 6 is a diagram showing another example of a superconducting bearing. On the housing side, a cylindrical permanent magnet provided opposite to the permanent magnet provided on the rotating main shaft, and a recess larger than the permanent magnet both in the height direction and in the radial direction are provided, and the center of the bottom of the recess is provided. And a superconductor housed in the housing.

図7は、超電導軸受のさらに別の例を示す図である。ハウジング側に設けられる永久磁石は、中央の円筒形状永久磁石と、それと同心に配置されるリング状永久磁石とから構成される。超電導体には、これら永久磁石に対応した形状の凹みを設けて、そこに永久磁石を収容することにより、超電導軸受を構成している。   FIG. 7 is a view showing still another example of the superconducting bearing. The permanent magnet provided on the housing side includes a central cylindrical permanent magnet and a ring-shaped permanent magnet arranged concentrically therewith. A superconducting bearing is configured by providing a recess having a shape corresponding to these permanent magnets in the superconductor and accommodating the permanent magnets therein.

これら図5〜図7に例示したような構成の超電導体を冷媒等を用いて臨界温度以下に冷却することで、超電導軸受自身で回転軸の位置(ピン止め位置)を決めさせて、コマのように軸の支点を中心とした回転動作を行い、回転主軸は安定に非接触保持される。   By cooling the superconductor configured as illustrated in FIGS. 5 to 7 below the critical temperature using a refrigerant or the like, the position of the rotating shaft (pinning position) is determined by the superconducting bearing itself. Thus, the rotation operation is performed around the shaft fulcrum, and the rotation main shaft is stably held in a non-contact manner.

図8は、図1〜図4の非接触軸受装置に用いることのできる永久磁石反発形磁気軸受をさらに説明する図である。永久磁石反発形磁気軸受では、ロータ部永久磁石及びステータ部永久磁石から構成され、半径方向並進及びピッチング、ヨーイングは永久磁石の反発力により受動的に支持される。ここでは、ステータ部永久磁石を2段に構成して、その間に非磁性スペーサを挿入した例を示しているが、ステータ部永久磁石は1段に構成することも、より多段に形成することも可能である。   FIG. 8 is a view for further explaining a permanent magnet repulsive magnetic bearing that can be used in the non-contact bearing device of FIGS. The permanent magnet repulsive magnetic bearing is composed of a rotor part permanent magnet and a stator part permanent magnet, and the radial translation, pitching and yawing are passively supported by the repulsive force of the permanent magnet. Here, an example is shown in which the stator part permanent magnet is configured in two stages and a non-magnetic spacer is inserted between them, but the stator part permanent magnet may be configured in one stage or formed in more stages. Is possible.

図9及び図10は、それぞれアキシャル方向反発力、及びラジアル方向反発力を測定したグラフである。ロータ部永久磁石として、Nb-Fe-B(φ18×φ6×8)を1個と、ステータ部永久磁石としてNb-Fe-B(φ37×φ28×4.5)を2段にして、磁気軸受を構成した。ステータ部永久磁石間に非磁性スペーサを0〜3mmまで厚みを変えて挿入し、その時々のアキシャル方向反発力を測定した。また、1mmのスペーサを挿入して、軸方向に相対的に変位させて(δ=0,0.5,1)、その時々のラジアル方向反発力を測定した。   9 and 10 are graphs obtained by measuring the axial direction repulsive force and the radial direction repulsive force, respectively. The rotor part permanent magnet is one Nb-Fe-B (φ18 × φ6 × 8) and the stator part permanent magnet is Nb-Fe-B (φ37 × φ28 × 4.5) in two stages. Configured. A nonmagnetic spacer was inserted between the stator part permanent magnets with a thickness ranging from 0 to 3 mm, and the axial repulsive force was measured. Further, a 1 mm spacer was inserted and relatively displaced in the axial direction (δ = 0, 0.5, 1), and the radial radial repulsive force was measured.

これら結果から、ステータ部の永久磁石間に非磁性スペーサを挿入することで、平衡点付近の反発力を積極的に調整することが可能であることが分かる。   From these results, it can be seen that the repulsive force near the equilibrium point can be positively adjusted by inserting a nonmagnetic spacer between the permanent magnets of the stator portion.

本発明に基づき構成した非接触軸受装置の構成の第1の例を示す図である。It is a figure which shows the 1st example of a structure of the non-contact bearing apparatus comprised based on this invention. 図1に示した各軸受装置の動作を説明するための概念図である。It is a conceptual diagram for demonstrating operation | movement of each bearing apparatus shown in FIG. 本発明を具体化する非接触軸受装置の構成の第2の例を説明する図である。It is a figure explaining the 2nd example of composition of a non-contact bearing device which materializes the present invention. 本発明を具体化する非接触軸受装置の構成の第3の例を説明する図である。It is a figure explaining the 3rd example of composition of a non-contact bearing device which materializes the present invention. 超電導軸受の一例を示す図である。It is a figure which shows an example of a superconducting bearing. 超電導軸受の別の例を示す図である。It is a figure which shows another example of a superconducting bearing. 超電導軸受のさらに別の例を示す図である。It is a figure which shows another example of a superconducting bearing. 図1〜図4の非接触軸受装置に用いることのできる永久磁石反発形磁気軸受をさらに説明する図である。It is a figure which further demonstrates the permanent-magnet repulsion-type magnetic bearing which can be used for the non-contact bearing apparatus of FIGS. アキシャル方向反発力を測定したグラフである。It is the graph which measured the axial direction repulsive force. ラジアル方向反発力を測定したグラフである。It is the graph which measured radial direction repulsive force. ラジアル軸受のラジアル剛性を高めることができるように提案された従来技術を説明する図である。It is a figure explaining the prior art proposed so that the radial rigidity of a radial bearing can be improved. 従来技術による超電導軸受装置の別の例を示す図である。It is a figure which shows another example of the superconducting bearing apparatus by a prior art.

Claims (3)

ハウジング側に取り付けられたモータステータと協働して発電電動機を構成するモータロータを固定する回転主軸のための非接触軸受装置において、
回転主軸の下端部において、該下端部を非接触支持する1つのみの超電導軸受を備え、かつ、この1つのみの超電導軸受は、対向する回転主軸の下端側とハウジング側のいずれか一方に永久磁石を固定すると共に、他方において永久磁石に対向する超電導体を配置し、かつ、回転主軸をアキシャル方向に非接触支持する浮上用の永久磁石を回転主軸の下端側とハウジング側において互いに対向して配置し、
回転主軸の上端部において、該上端部をラジアル方向に非接触支持して補助的に位置決めする永久磁石反発形磁気軸受を備え、
超電導軸受自身で回転軸の位置を決めさせて、回転主軸の支点を中心とした回転動作を行うことから成る超電導軸受を用いた非接触軸受装置。
In a non-contact bearing device for a rotating main shaft for fixing a motor rotor constituting a generator motor in cooperation with a motor stator attached to a housing side,
At the lower end of the rotating main shaft, there is provided only one superconducting bearing that supports the lower end in a non-contact manner, and this only one superconducting bearing is provided on either the lower end side of the rotating main shaft or the housing side. A permanent magnet is fixed and a superconductor facing the permanent magnet is arranged on the other side, and a levitation permanent magnet that supports the rotating main shaft in a non-contact manner in the axial direction is opposed to the lower end side and the housing side of the rotating main shaft. And then place
A permanent magnet repulsive magnetic bearing for supporting and positioning the upper end portion in the radial direction in a non-contact manner at the upper end portion of the rotating spindle;
A non-contact bearing device using a superconducting bearing, in which the position of the rotating shaft is determined by the superconducting bearing itself and the rotating operation is performed around the fulcrum of the rotating main shaft.
前記超電導は、回転主軸の下端をラジアル方向に位置決めするために、回転主軸の下端外周面に固定された永久磁石対向してハウジングに取り付けられ請求項1に記載の超電導軸受を用いた非接触軸受装置。 The superconductor, use to position the lower end of the rotary spindle in the radial direction, the superconducting bearing according to face the permanent magnet fixed to the lower end outer peripheral surface of the rotating main shaft to claim 1 that is attached to the housing side Was a non-contact bearing device. 前記超電導体はハウジング側に取り付けられて、この超電導体に設けた凹み内に前記浮上用のハウジング側の永久磁石が取り付けられ、かつ、この超電導体と前記浮上用のハウジング側の永久磁石が、前記浮上用の回転主軸下端の永久磁石に対向している請求項1に記載の超電導軸受を用いた非接触軸受装置。
The superconductor is attached to the housing side, the levitation housing side permanent magnet is attached in a recess provided in the superconductor, and the superconductor and the levitation housing side permanent magnet are The non-contact bearing device using the superconducting bearing according to claim 1, which is opposed to a permanent magnet at a lower end of the floating main spindle for levitation .
JP2005052353A 2005-02-28 2005-02-28 Non-contact bearing device using superconducting bearing Active JP4729702B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005052353A JP4729702B2 (en) 2005-02-28 2005-02-28 Non-contact bearing device using superconducting bearing
PCT/JP2006/303372 WO2006093033A1 (en) 2005-02-28 2006-02-24 Non-contact bearing device using superconducting bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005052353A JP4729702B2 (en) 2005-02-28 2005-02-28 Non-contact bearing device using superconducting bearing

Publications (2)

Publication Number Publication Date
JP2006234124A JP2006234124A (en) 2006-09-07
JP4729702B2 true JP4729702B2 (en) 2011-07-20

Family

ID=36941064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005052353A Active JP4729702B2 (en) 2005-02-28 2005-02-28 Non-contact bearing device using superconducting bearing

Country Status (2)

Country Link
JP (1) JP4729702B2 (en)
WO (1) WO2006093033A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5504532B2 (en) * 2009-11-24 2014-05-28 国立大学法人九州工業大学 High speed rotating device
JP5548986B2 (en) * 2010-03-12 2014-07-16 公立大学法人高知工科大学 Vibration control mechanism in superconducting magnetic bearings and magnetic levitation equipment
CN101832335B (en) * 2010-05-25 2012-06-20 南京化工职业技术学院 Permanent magnet biased axial-radial magnetic bearing
JP7378175B1 (en) 2022-08-25 2023-11-13 王明正 maglev generator assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742737A (en) * 1993-07-30 1995-02-10 Ntn Corp Superconductive magnetic bearing device
JPH0791447A (en) * 1993-09-22 1995-04-04 Ntn Corp Superconductive magnetic bearing device
JPH08226444A (en) * 1995-02-21 1996-09-03 Kenzo Miya Oxide superconductive magnetic levitation device having magnetic levitation property regulating function
JPH08284956A (en) * 1995-04-11 1996-11-01 Seiko Epson Corp Super-conductive magnetic bearing device
JP2001343020A (en) * 2000-06-01 2001-12-14 Chubu Electric Power Co Inc Superconductive magnetic bearing and superconductive flywheel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219158A (en) * 1995-02-13 1996-08-27 Nippon Seiko Kk Magnetic bearing device
JPH11325075A (en) * 1998-05-13 1999-11-26 Sankyo Seiki Mfg Co Ltd Magnetic bearing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742737A (en) * 1993-07-30 1995-02-10 Ntn Corp Superconductive magnetic bearing device
JPH0791447A (en) * 1993-09-22 1995-04-04 Ntn Corp Superconductive magnetic bearing device
JPH08226444A (en) * 1995-02-21 1996-09-03 Kenzo Miya Oxide superconductive magnetic levitation device having magnetic levitation property regulating function
JPH08284956A (en) * 1995-04-11 1996-11-01 Seiko Epson Corp Super-conductive magnetic bearing device
JP2001343020A (en) * 2000-06-01 2001-12-14 Chubu Electric Power Co Inc Superconductive magnetic bearing and superconductive flywheel

Also Published As

Publication number Publication date
WO2006093033A1 (en) 2006-09-08
JP2006234124A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
DK173852B1 (en) Magnetic bearing of a rotor
US20080122308A1 (en) Method for Stabilizing a Magnetically Levitated Object
JP5140860B2 (en) Spherical bearing
Tang et al. Superconducting magnetic bearings and active magnetic bearings in attitude control and energy storage flywheel for spacecraft
US6603230B1 (en) Active magnetic bearing assembly using permanent magnet biased homopolar and reluctance centering effects
JP4729702B2 (en) Non-contact bearing device using superconducting bearing
KR20060121355A (en) Bearingless step motor
Tang et al. Low eddy loss axial hybrid magnetic bearing with gimballing control ability for momentum flywheel
US11804762B2 (en) Flywheel systems and flywheel bearing modules
JP5504532B2 (en) High speed rotating device
JP2008228535A (en) Flywheel energy storage device for stationary energy storage
JP3551537B2 (en) Flywheel equipment
KR20050110506A (en) Active control magnetic bearing
JP3735742B2 (en) Superconducting bearing rotation loss measurement device
JP2004003572A (en) Magnetic bearing and bearing device provided with it
KR100851646B1 (en) Superconducting flywheel
JP2003004041A (en) Fly wheel type super conductivity magnetic bearing and its system
Liu et al. Effect of AMB winding configurations on static and dynamic performances and power consumptions of the AMB-rotor system
JP2000266117A (en) Rotary magnetic damper
JP3663472B2 (en) Permanent magnet bearing device and permanent magnet rotating device
JPH10299772A (en) Bearing device
US12101007B2 (en) Flywheel systems and flywheel bearing modules
JP3577559B2 (en) Flywheel equipment
JP3385771B2 (en) Superconducting magnetic bearing device
Wimer et al. Dynamic modeling of an integrated flywheel energy storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150