JPH1020320A - Method for patterning transparent conductive film and substrate with transparent electrode - Google Patents

Method for patterning transparent conductive film and substrate with transparent electrode

Info

Publication number
JPH1020320A
JPH1020320A JP17689996A JP17689996A JPH1020320A JP H1020320 A JPH1020320 A JP H1020320A JP 17689996 A JP17689996 A JP 17689996A JP 17689996 A JP17689996 A JP 17689996A JP H1020320 A JPH1020320 A JP H1020320A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
transparent
substrate
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17689996A
Other languages
Japanese (ja)
Inventor
Satoru Takagi
悟 高木
Kazuo Sato
一夫 佐藤
Arinori Kawamura
有紀 河村
Masami Miyazaki
正美 宮崎
Hiromichi Nishimura
啓道 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP17689996A priority Critical patent/JPH1020320A/en
Publication of JPH1020320A publication Critical patent/JPH1020320A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Weting (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily and accurately pattern transparent conductive films of low specific resistance by forming desired patterns by using a specific resist on a substrate, then forming the transparent conductive films and peeling the unnecessary parts of the transparent conductive films together with the resist. SOLUTION: The desired resist patterns are formed by using the resist 9 soluble in an alkaline soln. or org. solvent on the substrate 1 which is a glass plate, etc. The transparent conductive films formed by alternately laminating transparent oxide layers 3, 4 and metallic layers 3 in (2n+1) layers (n>=1) in this order are thereafter formed on the substrate 1. The unnecessary parts of the transparent conductive films are peeled together with the resist 9 by the alkaline soln. or org. solvent. The transparent oxide layers 2, 4 are preferably the transparent oxide layers consisting essentially of indium oxide or zinc oxide. The metallic layers 3 are preferably the metallic layers consisting essentially of Ag.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、透明電導膜のパタ
ーニング方法と、該方法を用いて得られる電子ディスプ
レイ用として好適な透明電極付き基体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for patterning a transparent conductive film and a substrate with a transparent electrode suitable for use in an electronic display obtained by the method.

【0002】[0002]

【従来の技術】現在、液晶ディスプレイ(以下LCDと
称する)などの透明電極として、スズを含んだ酸化イン
ジウム膜(以下ITO膜と称する)が広く用いられてい
るが、一方でさらなる低抵抗の透明電極も要求されてい
る。特に、STN型のカラーLCDにおいては、その高
精細化、大画面化に伴い、液晶駆動用透明電極の線幅も
より細く、また長い形状のものが必要となり、シート抵
抗3Ω/□以下の極めて低抵抗の透明導電膜が必要とさ
れる。
2. Description of the Related Art At present, an indium oxide film containing tin (hereinafter referred to as an ITO film) is widely used as a transparent electrode of a liquid crystal display (hereinafter referred to as an LCD). Electrodes are also required. In particular, in the case of STN-type color LCDs, as the definition and size of the screen are increased, the line width of the transparent electrode for driving the liquid crystal is required to be thinner and longer, and the sheet resistance is extremely lower than 3Ω / □. A transparent conductive film having a low resistance is required.

【0003】しかし、従来のITO膜を用いた場合、こ
のシート抵抗を達成するためには、膜厚を300nm以
上にする必要があり、ITO膜の成膜コストが増加する
こと、電極パターニングの困難さが増加することなどの
問題が生じ、限界がある。
However, when a conventional ITO film is used, in order to achieve this sheet resistance, the film thickness must be 300 nm or more, which increases the cost of forming the ITO film and makes it difficult to pattern the electrodes. There is a problem such as an increase in the size, and there is a limit.

【0004】他方、低抵抗透明導電膜を容易に得る方法
としては、Agなどの金属層をITOなどの透明体層で
はさんだ透明体層/金属層/透明体層という構成が知ら
れているが、十分なパターニング性能が得られず、実用
化されていなかった。
On the other hand, as a method of easily obtaining a low-resistance transparent conductive film, a structure of a transparent layer / metal layer / transparent layer in which a metal layer such as Ag is sandwiched between transparent layers such as ITO is known. And sufficient patterning performance could not be obtained, and it had not been put to practical use.

【0005】すなわち、酸化物層と金属層の酸などのエ
ッチング液に対するエッチング特性が異なるために、金
属層のエッチング残渣が発生したり、シャープなエッジ
形状が得られない、十分なパターン寸法精度が実現でき
ない等の問題点があった。
That is, since the oxide layer and the metal layer have different etching characteristics with respect to an etching solution such as an acid, an etching residue of the metal layer is generated or a sharp edge shape cannot be obtained. There was a problem that it could not be realized.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来技術が
有していた前述の欠点を解決し、低比抵抗の透明導電膜
を容易に、しかも精度よくパターニングできる方法、お
よびその方法によって形成された低抵抗微細電極を有す
る透明電極付き基体の提供を目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned disadvantages of the prior art, and provides a method for easily and accurately patterning a transparent conductive film having a low specific resistance, and a method for forming the same by the method. It is an object of the present invention to provide a substrate with a transparent electrode having a low-resistance fine electrode formed as described above.

【0007】[0007]

【課題を解決するための手段】本発明は、基体上に、透
明酸化物層と金属層とがこの順に交互に(2n+1)層
(n≧1)積層されてなる透明導電膜のパターニング法
において、基体上に、アルカリ溶液または有機溶媒に可
溶なレジストを用いて所望のパターンを形成した後に、
前記透明導電膜を形成し、その後、アルカリ溶液あるい
は有機溶媒により該透明電導膜の不要な部分をレジスト
ごと剥離することを特徴とする透明導電膜のパターニン
グ方法を提供する。
According to the present invention, there is provided a method for patterning a transparent conductive film comprising a substrate and a transparent oxide layer and a metal layer alternately laminated in this order (2n + 1) layers (n ≧ 1). After forming a desired pattern on a substrate using a resist soluble in an alkaline solution or an organic solvent,
A method for patterning a transparent conductive film is provided, wherein the transparent conductive film is formed, and thereafter, unnecessary portions of the transparent conductive film are removed together with a resist using an alkali solution or an organic solvent.

【0008】本発明は、また、基体上に、透明酸化物層
と金属層とがこの順に交互に(2n+1)層(n≧1)
積層されてなる透明導電膜が形成された透明電極付き基
体において、前記透明導電膜が、前記のパターニング方
法によりパターニングされた透明導電膜であることを特
徴とする透明電極付き基体を提供する。
According to the present invention, a transparent oxide layer and a metal layer are alternately formed on a substrate in this order in a (2n + 1) layer (n ≧ 1).
A substrate with a transparent electrode, wherein the transparent conductive film is a transparent conductive film patterned by the patterning method, wherein the substrate has a transparent conductive film formed thereon.

【0009】図1に本発明の透明導電膜付き基体の3層
構成の断面模式図を示す。図2に代表的なカラー液晶デ
ィスプレイ用基板の断面模式図を示す。また、図3に
は、本発明のパターニング方法の模式手順を示す。
FIG. 1 is a schematic cross-sectional view of a three-layer structure of the substrate with a transparent conductive film of the present invention. FIG. 2 is a schematic cross-sectional view of a typical substrate for a color liquid crystal display. FIG. 3 shows a schematic procedure of the patterning method of the present invention.

【0010】1はカラーフィルタ付き基板などの基体、
2、4は透明酸化物層、3は金属層を示す。5はガラス
などの透明基板、6はカラー画素となるカラーフィルタ
層、7は透明樹脂保護層、8は無機中間膜層、9はアル
カリ溶液または有機溶媒に可溶なレジストを示す。
1 is a substrate such as a substrate with a color filter,
2, 4 are transparent oxide layers, and 3 is a metal layer. Reference numeral 5 denotes a transparent substrate such as glass, 6 denotes a color filter layer serving as a color pixel, 7 denotes a transparent resin protective layer, 8 denotes an inorganic intermediate film layer, and 9 denotes a resist soluble in an alkali solution or an organic solvent.

【0011】本発明における基体1としては、ガラス板
の他、樹脂製のフィルムや板も使用できる。また、図2
に示すようにガラス基板5上にカラー画素となるカラー
フィルタ層6を形成した基体、さらに、該カラーフィル
タ層上に、カラーフィルタ層を保護、平滑化するための
透明樹脂層7やこれら樹脂層と透明導電膜との密着性を
高めるためのシリカ、SiNX などの無機中間膜層8を
順次積層した基体を用いてもよい。
As the substrate 1 in the present invention, a resin film or plate can be used in addition to a glass plate. FIG.
As shown in FIG. 5, a base on which a color filter layer 6 serving as a color pixel is formed on a glass substrate 5, a transparent resin layer 7 for protecting and smoothing the color filter layer, it may be used sequentially laminated substrate an inorganic intermediate layer 8 of the silica, such as SiN X for increasing the adhesion between the transparent conductive film.

【0012】透明酸化物層2、4としては、電気抵抗が
低いという理由から、酸化インジウムまたは酸化亜鉛を
主成分とする透明酸化物層が好ましい。
As the transparent oxide layers 2, 4, a transparent oxide layer containing indium oxide or zinc oxide as a main component is preferable because of its low electric resistance.

【0013】特に、酸化インジウムを主成分とする膜と
しては、(In+Sn)に対してSnを0〜15原子%
含んだ酸化インジウム、また酸化亜鉛を主成分とする膜
としては、(亜鉛+添加金属)に対してGaやAlなど
の添加金属を0〜15原子%含んだ酸化亜鉛膜が好まし
い。
In particular, as a film containing indium oxide as a main component, Sn is contained in an amount of 0 to 15 atomic% with respect to (In + Sn).
As the film containing indium oxide or zinc oxide as a main component, a zinc oxide film containing 0 to 15 atomic% of an additional metal such as Ga or Al with respect to (zinc + addition metal) is preferable.

【0014】これら透明酸化物層のそれぞれの膜厚(幾
何学的膜厚)は、特に限定されないが、好ましい色調お
よびより高い可視光透過率を得るために、10〜200
nmが適当である。
The thickness (geometric thickness) of each of these transparent oxide layers is not particularly limited, but is preferably from 10 to 200 to obtain a preferable color tone and a higher visible light transmittance.
nm is appropriate.

【0015】金属層3としては、低い抵抗とより高い可
視光透過率が得られるという理由から、Agを主成分と
する金属層が好ましい。特に、Agの凝集現象を防止
し、耐久性の高いAg膜が得られるという理由から、
(Ag+Pd)に対して0.1〜5.0原子%のPdを
添加したAg層や、0.1〜3nmのPd膜とAg膜と
を積層させた層とすることが好ましい。また、該金属層
3の膜厚(幾何学的膜厚)は、3〜20nmが好まし
い。
As the metal layer 3, a metal layer containing Ag as a main component is preferable because a low resistance and a higher visible light transmittance can be obtained. In particular, since the Ag aggregation phenomenon is prevented and a highly durable Ag film can be obtained,
It is preferable to use an Ag layer in which 0.1 to 5.0 atomic% of Pd is added to (Ag + Pd) or a layer in which a Pd film having a thickness of 0.1 to 3 nm and an Ag film are laminated. The thickness (geometric thickness) of the metal layer 3 is preferably 3 to 20 nm.

【0016】かかる理由としては、金属層3の膜厚が3
nm未満では低いシート抵抗が得られず、20nm超過
では可視光透過率の低下をもたらすので好ましくない。
The reason is that the thickness of the metal layer 3 is 3
If it is less than nm, a low sheet resistance cannot be obtained, and if it exceeds 20 nm, the visible light transmittance is lowered, which is not preferable.

【0017】該透明導電膜のパターニング手段として
は、図3(a)に示すごとく、基体1上に所望のレジス
トパターンを形成した後に、該透明導電膜を形成し(図
3(b))、その後、図3(c)に示すごとくアルカリ
溶液または有機溶媒により該透明電導膜の不要な部分を
レジストごと剥離する。
As a means for patterning the transparent conductive film, as shown in FIG. 3A, after forming a desired resist pattern on the base 1, the transparent conductive film is formed (FIG. 3B). Thereafter, as shown in FIG. 3C, unnecessary portions of the transparent conductive film are removed together with the resist using an alkaline solution or an organic solvent.

【0018】レジストをエッチングのマスクとして用
い、酸性エッチング液により、透明導電膜の不要な部分
をエッチング除去する従来のパターニング法では、1)
エッチング速度などのエッチング特性が酸化物と金属で
は大きく異なること、2)透明導電膜とレジスト界面の
付着力も十分ではないことなどから、これらの特性を考
慮したエッチング液の組成、エッチング条件の最適化
は、非常に煩雑なものがあり、エッチング残渣が時折発
生し、歩留低下の要因となっていた。また、得られるパ
ターン精度も必ずしも十分なものではなかった。
In a conventional patterning method in which an unnecessary portion of a transparent conductive film is removed by etching with an acidic etchant using a resist as an etching mask, 1)
Since the etching characteristics such as the etching rate differ greatly between oxides and metals, and 2) the adhesive force between the transparent conductive film and the resist interface is not sufficient, the composition of the etching solution and the etching conditions are optimized in consideration of these characteristics. However, the production is very complicated, and an etching residue is occasionally generated, which causes a reduction in yield. Further, the obtained pattern accuracy is not always sufficient.

【0019】本発明においては、アルカリ溶液あるいは
有機溶媒に可溶なレジストを用い、かつ酸を用いずにア
ルカリ溶液または有機溶媒によりパターニングするた
め、前述の酸性エッチング液を用いた不具合が解消され
る。
In the present invention, since a resist soluble in an alkali solution or an organic solvent is used and patterning is carried out with an alkali solution or an organic solvent without using an acid, the above-mentioned disadvantages using an acidic etching solution can be solved. .

【0020】本発明において用いるアルカリ溶液あるい
は有機溶媒に可溶なレジストとしては、透明導電膜や基
体にダメージを与えないものであれば特に限定されず、
感光性材料を含んだノボラック樹脂などが挙げられる。
レジストは、例えば、エチレングリコールモノエチルエ
ーテルモノアセテートなどの有機溶媒に溶かして用いら
れる。
The resist used in the present invention that is soluble in an alkaline solution or an organic solvent is not particularly limited as long as it does not damage the transparent conductive film or the substrate.
A novolak resin containing a photosensitive material is exemplified.
The resist is used after being dissolved in an organic solvent such as ethylene glycol monoethyl ether monoacetate.

【0021】本発明においてパターニングするために用
いるアルカリ溶液としては、透明導電膜や基体にダメー
ジを与えないものであれば特に限定されず、NaOHを
溶液に対して0.5〜3重量%含んだアルカリ水溶液、
水酸化テトラメチルアンモニウムを溶液に対して2〜3
重量%含んだアルカリ水溶液や、O−ジクロルベンゼ
ン、フェノール、あるいはアルキルベンゼンスルホン酸
からなるアルカリ溶液などが挙げられる。
The alkaline solution used for patterning in the present invention is not particularly limited as long as it does not damage the transparent conductive film or the substrate, and contains 0.5 to 3% by weight of NaOH based on the solution. Alkaline aqueous solution,
Tetramethylammonium hydroxide is added to the solution 2-3 times.
An alkali aqueous solution containing a weight% or an alkaline solution composed of O-dichlorobenzene, phenol, or alkylbenzenesulfonic acid is exemplified.

【0022】本発明においてパターニングするために用
いる有機溶媒としては、透明導電膜や基体にダメージを
与えないものであれば特に限定されず、イソプロピルア
ルコール、ジメチルスルホキシド、エチレングリコー
ル、トリクレンなどの有機溶媒が挙げられる。
The organic solvent used for patterning in the present invention is not particularly limited as long as it does not damage the transparent conductive film or the substrate. Organic solvents such as isopropyl alcohol, dimethyl sulfoxide, ethylene glycol and trichlene are used. No.

【0023】また、レジストパターンの形成方法につい
ては、数μmオーダーの微細パターンが容易に得られる
フォトリソグラフィー法が好ましい。
As a method of forming a resist pattern, a photolithography method capable of easily obtaining a fine pattern on the order of several μm is preferable.

【0024】また、効率的にレジストの剥離を行うため
に、レジスト剥離の時に超音波振動を与えたり、柔らか
いブラシなどによりラビングしてもよい。
To remove the resist efficiently, ultrasonic vibration may be applied at the time of removing the resist, or rubbing may be performed with a soft brush or the like.

【0025】また、透明導電膜は、150℃以下の基板
温度で形成されることが好ましい。かかる理由として、
150℃以上の基板温度では、透明電導膜が緻密にな
り、レジスト剥離液の浸透を妨げ、レジストを容易に剥
離できなくなる他に、成膜の際にレジストの分解が起こ
り、透明導電膜の特性を低下させるためである。
Further, it is preferable that the transparent conductive film is formed at a substrate temperature of 150 ° C. or less. For this reason,
At a substrate temperature of 150 ° C. or higher, the transparent conductive film becomes dense, hinders the penetration of the resist stripping solution, and the resist cannot be easily stripped. It is for reducing.

【0026】以上のように、透明導電膜の成膜温度を1
50℃以下とすることで、レジスト剥離液の浸透性をよ
くしたり、また、剥離時に機械的な外力を加えることに
よって、より効果的に不要な部分の透明導電膜をレジス
トごと剥離することができ、1μm程度と寸法精度の非
常に高い電極パターンを容易に形成できる。
As described above, the temperature for forming the transparent conductive film is set to 1
By setting the temperature to 50 ° C. or lower, the permeability of the resist stripping solution is improved, or by applying a mechanical external force at the time of stripping, it is possible to more effectively strip the unnecessary portion of the transparent conductive film together with the resist. Thus, an electrode pattern having a very high dimensional accuracy of about 1 μm can be easily formed.

【0027】なお、透明導電膜は、低シート抵抗、高可
視光透過率、高耐久性を示すが、さらに特性を向上させ
るために、透明導電膜の成膜直後、あるいはレジストの
剥離後に100〜300℃の加熱処理を行ってもよい。
The transparent conductive film has low sheet resistance, high visible light transmittance and high durability. However, in order to further improve the characteristics, the transparent conductive film has a thickness of 100 to 100% immediately after forming the transparent conductive film or after removing the resist. A heat treatment at 300 ° C. may be performed.

【0028】[0028]

【実施例】ガラス基板5上に、カラーフィルタ層6、お
よびカラーフィルタの保護と平滑化のためのアクリル系
樹脂層保護層7、そしてシリカ中間層8があらかじめ形
成された基体1上に、ノボラック系樹脂からなるフォト
レジストを塗布し、通常のフォトリソグラフィー法によ
りライン幅130μm、スペース幅25μmとなるスト
ライプ状パターン9を形成した(図3(a))。
DESCRIPTION OF THE PREFERRED EMBODIMENTS On a glass substrate 5, a color filter layer 6, a protective layer 7 of an acrylic resin layer for protecting and smoothing the color filters, and a silica A photoresist made of a base resin was applied, and a stripe pattern 9 having a line width of 130 μm and a space width of 25 μm was formed by ordinary photolithography (FIG. 3A).

【0029】次いで、表1に示すような例1〜5の5種
類の構成の透明導電膜を直流スパッタリング法により、
基板加熱を行わずに形成した(図3(b))。
Next, five types of transparent conductive films of Examples 1 to 5 as shown in Table 1 were applied by DC sputtering.
It was formed without heating the substrate (FIG. 3B).

【0030】なお、表1において、熱処理「有り」の場
合は、透明導電膜形成後に、大気雰囲気で、250℃、
30分という条件で熱処理を行ったことを意味する。
In Table 1, in the case of "with heat treatment", after the formation of the transparent conductive film, the film was heated at 250.degree.
This means that the heat treatment was performed for 30 minutes.

【0031】その後、超音波振動を加えながら、NaO
Hの水溶液により、透明導電膜の不要な部分をレジスト
ごと剥離し、所望の電極パターンを形成した(図3
(c))。
Then, while applying ultrasonic vibration, NaO
Unnecessary portions of the transparent conductive film were stripped together with the resist with an aqueous solution of H to form a desired electrode pattern (FIG. 3).
(C)).

【0032】なお、ZnOを主成分とする膜は、Gaを
(Ga+Zn)に対して5原子%含むZnO焼結体ター
ゲットを用い、Arガス3mTorrの雰囲気下で成膜
した(GZO膜と称する)。
The film mainly composed of ZnO was formed using a ZnO sintered target containing 5 atomic% of Ga with respect to (Ga + Zn) under an atmosphere of Ar gas at 3 mTorr (referred to as a GZO film). .

【0033】In23 を主成分とする膜は、Snを
(Sn+In)に対して10原子%含むIn23 焼結
体ターゲットを用い、酸素を3%含んだArガス3mT
orrの雰囲気下で成膜した。
The film containing In 2 O 3 as a main component is an In 2 O 3 sintered target containing 10 atomic% of Sn (Sn + In), and an Ar gas containing 3% of oxygen and 3 mT
The film was formed under an atmosphere of orr.

【0034】金属膜は、Agターゲット、Pdターゲッ
ト、またはPdを(Pd+Ag)に対して1原子%含む
Ag合金ターゲットを用い、Arガス3mTorrの雰
囲気下で成膜した。
The metal film was formed in an atmosphere of Ar gas at 3 mTorr using an Ag target, a Pd target, or an Ag alloy target containing Pd at 1 atomic% with respect to (Pd + Ag).

【0035】それぞれの膜厚は、スパッタ電力およびス
パッタ時間により調整した。
Each film thickness was adjusted by the sputtering power and the sputtering time.

【0036】また、比較例(例6〜7)として、従来法
である上記透明導電膜を成膜した後に、フォトリソグラ
フィー法によりライン幅130μm、スペース幅25μ
mのストライプ状のレジストパターンを形成し、これを
マスクとして、塩化第二鉄を含んだ酸性水溶液により、
透明導電膜を透明導電膜をエッチング除去した。
As a comparative example (Examples 6 and 7), after forming the above-mentioned conventional transparent conductive film, a line width of 130 μm and a space width of 25 μm were formed by photolithography.
m is formed in a striped resist pattern, and using this as a mask, with an acidic aqueous solution containing ferric chloride,
The transparent conductive film was removed by etching the transparent conductive film.

【0037】これらのサンプルの抵抗(Ω/□)、波長
が550nmでの透過率を評価するとともにパターニン
グ性を評価し、表1にまとめた。パターニング性は、:
非常に良好で寸法精度1μm程度を○とし、寸法精度5
μm程度で一部エッチング残渣発生の場合を×とした。
The resistance (Ω / □) and the transmittance of these samples at a wavelength of 550 nm were evaluated, and the patterning property was evaluated. Patterning properties are:
Very good, dimensional accuracy of about 1 μm is marked as ○, dimensional accuracy of 5
When the etching residue was partially generated at about μm, it was evaluated as x.

【0038】本方法を用いた実施例1〜5では、スペー
ス部に透明導電膜の残渣は一切見られず、エッジ形状も
非常にシャープで、しかもパターン幅の寸法精度も1μ
m程度と良好なものが得られた。これに対し、例6〜7
ではエッジ形状はシャープなものが得られるが、一部に
エッチング残渣が発生したり、寸法精度が5μm程度と
より悪化した。
In Examples 1 to 5 using this method, no residue of the transparent conductive film was observed in the space portion, the edge shape was very sharp, and the dimensional accuracy of the pattern width was 1 μm.
As good as about m were obtained. In contrast, Examples 6-7
In this case, a sharp edge shape was obtained, but etching residues were partially generated, and the dimensional accuracy was further deteriorated to about 5 μm.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【発明の効果】本発明によれば、透明酸化物層と金属層
の積層体からなる低比抵抗の透明電導膜を、容易に、数
μmオーダーで微細電極加工することができる。
According to the present invention, a transparent conductive film having a low specific resistance composed of a laminate of a transparent oxide layer and a metal layer can be easily processed into a fine electrode on the order of several μm.

【0041】したがって、ガラス基板上はもちろんのこ
と、成膜温度の低いプラスチック製基板(耐熱温度10
0℃以下)やカラーLCD用のカラーフィルタ付き基板
上(耐熱温度250℃以下)に、3Ω/□以下の低抵抗
透明電極が提供可能となる。これにより液晶ディスプレ
イの高精細化、大画面化、表示品位の向上実現を容易に
することができる。
Therefore, not only on a glass substrate, but also on a plastic substrate having a low film forming temperature (heat resistant temperature of 10)
A low-resistance transparent electrode having a resistance of 3 Ω / □ or less can be provided on a substrate having a color filter for color LCD (less than 250 ° C.). As a result, it is possible to easily realize a higher definition, a larger screen, and an improved display quality of the liquid crystal display.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の係わる透明導電膜の断面模
式図
FIG. 1 is a schematic cross-sectional view of a transparent conductive film according to an embodiment of the present invention.

【図2】本発明に使用される代表的なカラー液晶ディス
プレイ用基板の断面模式図
FIG. 2 is a schematic cross-sectional view of a typical substrate for a color liquid crystal display used in the present invention.

【図3】本発明の実施形態に係わるパターニング方法の
工程模式図
FIG. 3 is a schematic process diagram of a patterning method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:基体 2:透明酸化物層 3:金属層 4:透明酸化物層 5:ガラス基板 6:カラーフィルタ層 7:樹脂保護層 8:シリカなどの無機中間膜層 9:レジスト 1: Base 2: transparent oxide layer 3: metal layer 4: transparent oxide layer 5: glass substrate 6: color filter layer 7: resin protective layer 8: inorganic intermediate layer such as silica 9: resist

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮崎 正美 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 (72)発明者 西村 啓道 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masami Miyazaki 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Inside the Central Research Laboratory Asahi Glass Co., Ltd. Central Research Laboratory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】基体上に、透明酸化物層と金属層とがこの
順に交互に(2n+1)層(n≧1)積層されてなる透
明導電膜のパターニング法において、基体上に、アルカ
リ溶液または有機溶媒に可溶なレジストを用いて所望の
パターンを形成した後に、前記透明導電膜を形成し、そ
の後、アルカリ溶液あるいは有機溶媒により該透明電導
膜の不要な部分をレジストごと剥離することを特徴とす
る透明導電膜のパターニング方法。
In a method for patterning a transparent conductive film comprising a transparent oxide layer and a metal layer alternately laminated in this order on a substrate (2n + 1) layers (n ≧ 1), an alkaline solution or After forming a desired pattern using a resist soluble in an organic solvent, the transparent conductive film is formed, and thereafter, unnecessary portions of the transparent conductive film are removed together with the resist using an alkali solution or an organic solvent. Method for patterning a transparent conductive film.
【請求項2】該透明導電膜の透明酸化物層が、酸化イン
ジウムまたは酸化亜鉛を主成分とする透明酸化物層であ
る請求項1の透明導電膜のパターニング方法。
2. The method according to claim 1, wherein the transparent oxide layer of the transparent conductive film is a transparent oxide layer containing indium oxide or zinc oxide as a main component.
【請求項3】該透明導電膜の金属層が、Agを主成分と
する金属層である請求項1または2の透明導電膜のパタ
ーニング方法。
3. The method according to claim 1, wherein the metal layer of the transparent conductive film is a metal layer containing Ag as a main component.
【請求項4】該透明導電膜が、150℃以下の基板温度
で形成された透明導電膜である請求項1〜3いずれか1
項の透明導電膜のパターニング方法。
4. The transparent conductive film according to claim 1, wherein said transparent conductive film is formed at a substrate temperature of 150 ° C. or lower.
The method for patterning a transparent conductive film according to the above item.
【請求項5】基体上に、透明酸化物層と金属層とがこの
順に交互に(2n+1)層(n≧1)積層されてなる透
明導電膜が形成された透明電極付き基体において、前記
透明導電膜が、請求項1〜4いずれか1項のパターニン
グ方法によりパターニングされた透明導電膜であること
を特徴とする透明電極付き基体。
5. The substrate with a transparent electrode, wherein a transparent conductive film is formed by laminating (2n + 1) layers (n ≧ 1) of a transparent oxide layer and a metal layer alternately in this order on the substrate. A substrate with a transparent electrode, wherein the conductive film is a transparent conductive film patterned by the patterning method according to claim 1.
JP17689996A 1996-07-05 1996-07-05 Method for patterning transparent conductive film and substrate with transparent electrode Pending JPH1020320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17689996A JPH1020320A (en) 1996-07-05 1996-07-05 Method for patterning transparent conductive film and substrate with transparent electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17689996A JPH1020320A (en) 1996-07-05 1996-07-05 Method for patterning transparent conductive film and substrate with transparent electrode

Publications (1)

Publication Number Publication Date
JPH1020320A true JPH1020320A (en) 1998-01-23

Family

ID=16021707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17689996A Pending JPH1020320A (en) 1996-07-05 1996-07-05 Method for patterning transparent conductive film and substrate with transparent electrode

Country Status (1)

Country Link
JP (1) JPH1020320A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506272A (en) * 2004-07-12 2008-02-28 グァンジュ インスティチュート オブ サイエンス アンド テクノロジー Flip-chip nitride-based light emitting device and method for manufacturing the same
JP2008507842A (en) * 2004-07-23 2008-03-13 グァンジュ インスティチュート オブ サイエンス アンド テクノロジー Top-emitting nitride-based light emitting device and method for manufacturing the same
KR100968809B1 (en) 2008-09-30 2010-07-08 한국전자통신연구원 METHOD OF FORMING ZnO NANO PATTERN
KR101273760B1 (en) * 2011-01-10 2013-06-12 경희대학교 산학협력단 Transparent electode, transparent antena and method for manufacturing the transparent electode

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506272A (en) * 2004-07-12 2008-02-28 グァンジュ インスティチュート オブ サイエンス アンド テクノロジー Flip-chip nitride-based light emitting device and method for manufacturing the same
US7872271B2 (en) 2004-07-12 2011-01-18 Samsung Led Co., Ltd. Flip-chip light emitting diodes and method of manufacturing thereof
US8202751B2 (en) 2004-07-12 2012-06-19 Samsung Led Co., Ltd. Flip-chip light emitting diodes and method of manufacturing thereof
JP2008507842A (en) * 2004-07-23 2008-03-13 グァンジュ インスティチュート オブ サイエンス アンド テクノロジー Top-emitting nitride-based light emitting device and method for manufacturing the same
US7880176B2 (en) 2004-07-23 2011-02-01 Samsung Led Co., Ltd. Top-emitting light emitting diodes and methods of manufacturing thereof
US8053786B2 (en) 2004-07-23 2011-11-08 Samsung Led Co., Ltd. Top-emitting light emitting diodes and methods of manufacturing thereof
JP2013065889A (en) * 2004-07-23 2013-04-11 Samsung Electronics Co Ltd Top emit type nitride-based light emitting element
KR100968809B1 (en) 2008-09-30 2010-07-08 한국전자통신연구원 METHOD OF FORMING ZnO NANO PATTERN
KR101273760B1 (en) * 2011-01-10 2013-06-12 경희대학교 산학협력단 Transparent electode, transparent antena and method for manufacturing the transparent electode

Similar Documents

Publication Publication Date Title
JPH1170610A (en) Transparent conductive film and formation of transparent electrode
US6221520B1 (en) Transparent conductive film and process for forming a transparent electrode
KR101323458B1 (en) Etchant composition for silver
TW201530238A (en) Conductive laminate, transparent conductive laminate with patterned wiring, and optical device
JP3031224B2 (en) Transparent conductive film
JP2007101622A (en) Display electrode film and manufacturing method of display electrode pattern
JP2017179594A (en) Laminated transparent conductive film, laminated wiring film, and production method of laminated wiring film
JP2011065393A (en) Conductive sheet, laminate conductive sheet and conductive pattern sheet, method for manufacturing laminate conducive sheet and method for manufacturing transparent antenna or transparent display or touch input sheet
JP2814155B2 (en) Method of forming ITO film pattern and method of manufacturing substrate for liquid crystal display element
JPH08509831A (en) A thin-film EL display that has a transition composition layer of a light-absorbing dark substance and is easy to see in daylight
CN104508608A (en) Method for manufacturing capacitive input device, capacitive input device, as well as image display device provided with same
JP6070675B2 (en) Method for producing transparent conductive substrate and touch panel sensor
JPH08509832A (en) Thin-film EL display with dark metal electrodes for easy viewing in daylight
JPH10241464A (en) Substrate with transparent conductive film and manufacture thereof
JPH1020320A (en) Method for patterning transparent conductive film and substrate with transparent electrode
JP2002246788A (en) Transparent electromagnetic radiation shielding material
JPH09232278A (en) Patterning method for transparent conductive film and substrate with transparent electrode
JP3684720B2 (en) Transparent conductive substrate for liquid crystal display and method for forming transparent electrode
JP3711650B2 (en) Patterning method for transparent conductive film and substrate with transparent electrode
JP2007220965A (en) Substrate with laminated structure and method of manufacturing same
JP2004333882A (en) Reflection type electrode substrate and method of manufacturing the same
JP3612321B2 (en) Insulating transparent substrate with laminated transparent electrodes
JP3078148B2 (en) Method for forming pattern of transparent conductive film
CN217902742U (en) Transparent conductive film and touch screen
JPH0117840Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041207