JPH10199506A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH10199506A
JPH10199506A JP9002896A JP289697A JPH10199506A JP H10199506 A JPH10199506 A JP H10199506A JP 9002896 A JP9002896 A JP 9002896A JP 289697 A JP289697 A JP 289697A JP H10199506 A JPH10199506 A JP H10199506A
Authority
JP
Japan
Prior art keywords
lithium
iron
secondary battery
general formula
sulfur compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9002896A
Other languages
Japanese (ja)
Inventor
Masayuki Yoshio
芳尾真幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP9002896A priority Critical patent/JPH10199506A/en
Publication of JPH10199506A publication Critical patent/JPH10199506A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a new lithium secondary battery by employing a sulfur compound of iron expressed by a general formula Fe1-x S (0<=x<=1) composed of such components as FeS, FeS1+x , Fe2 S3 and FeS, etc., as a positive pole or a negative pole. SOLUTION: When a sulfur compound of iron expressed by a general formula Fe1-x S (0<=x<=1) is used as the positive pole of a lithium secondary battery, at least one kind is used, as a negative pole, out of either one of lithium metal, lithium alloy and a substance capable of storing/releasing lithium previously including such lithium as having lower oxidation/reduction potential than that of the iron sulfur compound in the general formula. In addition, when it is used in the negative pole, a substance capable of staring/releasing lithium previously including such lithium as having higher oxidation-reduction potential than that of an iron sulfur compound in the general formula is used in a positive pole. Thereby, it becomes possible that a discharge capacity per unit weight of positive pole active material is large and has a very high percentage discharge capacity even at the 20-th cycle can be maintained relative to the initial capacity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、硫化鉄を正極また
は負極に用いるリチウム二次電池に関するものであっ
て、詳しくは、一般式、Fe1-x S(0≦x<1)で表
される鉄の硫黄化合物を正極または負極に用いるリチウ
ム二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery using iron sulfide for a positive electrode or a negative electrode. More specifically, the present invention relates to a general formula, Fe 1-x S (0 ≦ x <1). The present invention relates to a lithium secondary battery using a sulfur compound of iron for a positive electrode or a negative electrode.

【0002】リチウム二次電池は、新型二次電池の中で
は最も有望な電池として位置付けられる電池である。
[0002] Lithium secondary batteries are batteries that are positioned as the most promising batteries among new type secondary batteries.

【0003】[0003]

【従来の技術】鉄化合物は、原料の鉄が資源的にも豊富
で且つ安価であることから、電極活物質への適用が古く
から試みられてきた。
2. Description of the Related Art Since iron compounds are abundant and inexpensive in terms of resources as raw materials, application to electrode active materials has been attempted for a long time.

【0004】例えば、鉄の硫黄化合物である二硫化鉄
(FeS2 )や硫化鉄(FeS)のリチウム一次電池へ
の適用の検討が挙げられる。
For example, studies have been made on the application of iron disulfide (FeS 2 ) and iron sulfide (FeS), which are sulfur compounds of iron, to lithium primary batteries.

【0005】FeS2 やFeSをリチウム一次電池の正
極に用いた場合、腐食性の問題が残るものの、他の正極
材料に比べて単位重量当たりの理論放電容量が大きいこ
とや、従来の水溶液系一次電池の電池電圧と互換性があ
ることから、FeS2 に関しては既にリチウム一次電池
用正極として実用化されている。
When FeS 2 or FeS is used for the positive electrode of a lithium primary battery, although the problem of corrosiveness remains, the theoretical discharge capacity per unit weight is larger than other positive electrode materials, and the conventional aqueous primary Because of the compatibility with the battery voltage of the battery, FeS 2 has already been put to practical use as a positive electrode for a lithium primary battery.

【0006】しかし、これまでの検討は、リチウム一次
電池用正極への適用に限定されたものであり、リチウム
二次電池の正極または負極としての検討は成されていな
かった。
However, the studies so far have been limited to the application to the positive electrode for a lithium primary battery, and no studies have been made on the positive electrode or the negative electrode of a lithium secondary battery.

【0007】この他、酸化鉄のリチウム二次電池負極へ
の適用が検討されている。
[0007] In addition, application of iron oxide to a negative electrode of a lithium secondary battery is being studied.

【0008】例えばFe2 3 やFe3 4 が例示され
るが、いずれも1サイクル目の不可逆容量が極めて大き
いことから、これまで実用化されるまでには至っていな
い。以上のように、原料の鉄が資源的にも豊富で且つ安
価であることから、電極活物質への適用が有望であるに
もかかわらず、実際の電池として鉄化合物が実用化され
たものは、リチウム一次電池用のFeS2 に限られてお
り、鉄化合物を用いた新しいリチウム二次電池の開発が
望まれている。
[0008] For example, Fe 2 O 3 and Fe 3 O 4 are exemplified, but none of them have been put to practical use until now, since the irreversible capacity in the first cycle is extremely large. As described above, despite the fact that iron as a raw material is abundant and inexpensive in terms of resources, despite its promising application to electrode active materials, those in which iron compounds have been put to practical use as actual batteries have It is limited to FeS 2 for lithium primary batteries, and development of new lithium secondary batteries using iron compounds is desired.

【0009】一方、リチウム電池は、軽量・小型でエネ
ルギー密度の高い高性能電池として、最近その重要性が
増しており、特に携帯電話やパーソナルコンピュータと
いったパーソナルユースの移動型小型機器の急速な普及
に伴い、これら機器の駆動電源としてリチウム二次電池
の開発が望まれている。
On the other hand, lithium batteries have recently become more important as lightweight, small-sized, high-performance batteries with high energy density. Particularly, with the rapid spread of portable small-sized devices for personal use such as mobile phones and personal computers. Accordingly, development of a lithium secondary battery as a drive power source for these devices has been desired.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、鉄化
合物を用いた新規なリチウム二次電池を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel lithium secondary battery using an iron compound.

【0011】[0011]

【課題を解決するための手段】本発明者は、鉄化合物を
用いた新規なリチウム二次電池を提案するために鋭意検
討を行った結果、一般式、Fe1-x S(0≦x<1)で
表される鉄の硫黄化合物が、リチウム二次電池の正極ま
たは負極に適用可能であり、正極または負極に用いるこ
とで、従来にはない新しいリチウム二次電池が構成可能
であることを見出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies to propose a new lithium secondary battery using an iron compound, and as a result, have found that the general formula, Fe 1-x S (0 ≦ x < The fact that the sulfur compound of iron represented by 1) can be applied to the positive electrode or the negative electrode of a lithium secondary battery, and that a novel lithium secondary battery that has never existed before can be constructed by using the positive electrode or the negative electrode. As a result, the present invention has been completed.

【0012】[0012]

【作用】以下、本発明を具体的に説明する。The present invention will be specifically described below.

【0013】本発明のリチウム二次電池には、一般式、
Fe1-x S(0≦x<1)で表される鉄の硫黄化合物を
用いる。
The lithium secondary battery of the present invention has a general formula:
An iron sulfur compound represented by Fe 1-x S (0 ≦ x <1) is used.

【0014】鉄の硫黄化合物としては、一般にFeS及
び不定比組成のFeS1+x と、Fe2 3 等の硫化鉄が
知られているが、本発明のリチウム二次電池に用いる鉄
の硫黄化合物としては、一般式、Fe1-x S(0≦x<
1)の関係を満たす化合物であれば特に制限されるもの
ではなく、上記3つのタイプの硫化鉄の少なくとも1種
類以上からなる混合物または複合物であっても良い。
As the sulfur compound of iron, FeS, FeS 1 + x having a non-stoichiometric composition, and iron sulfide such as Fe 2 S 3 are generally known, and the sulfur compound of iron used in the lithium secondary battery of the present invention is known. The compound represented by the general formula: Fe 1-x S (0 ≦ x <
The compound is not particularly limited as long as the compound satisfies the relation of 1), and may be a mixture or a composite of at least one of the above three types of iron sulfide.

【0015】一般式、Fe1-x S(0≦x<1)で表さ
れる鉄の硫黄化合物を構成する成分として例示されるF
eS、FeS1+x 、Fe2 3 及びFeS2 は以下に示
される性状を示す化合物である。
F is exemplified as a component constituting a sulfur compound of iron represented by the general formula, Fe 1-x S (0 ≦ x <1).
eS, FeS 1 + x , Fe 2 S 3 and FeS 2 are compounds having the following properties.

【0016】硫化鉄(II) は、純粋なFeSとFeS
1+x で表される不定比組成のいずれかの化合物である。
Iron (II) sulfide is composed of pure FeS and FeS
Any compound having a non-stoichiometric composition represented by 1 + x .

【0017】純粋なFeSは、還元鉄と蒸留イオウをと
を真空密閉容器中で1000℃で24時間熱してつくら
れる。また、鉄(II) 塩水溶液に硫化アンモニウムを加
えても得られる。その性状は無色ないし淡褐色の結晶で
ある。
Pure FeS is made by heating reduced iron and distilled sulfur in a vacuum sealed vessel at 1000 ° C. for 24 hours. It can also be obtained by adding ammonium sulfide to an aqueous iron (II) salt solution. Its properties are colorless to light brown crystals.

【0018】不定比組成のFeS1+x は、天然には磁硫
鉄鉱として産する化合物である。また、工業的には鉄粉
とイオウとをるつぼ中で融解してつくられ、その性状は
灰黒色片または塊状である。
Nonstoichiometric FeS 1 + x is a compound that naturally occurs as pyrrhotite. In addition, it is industrially produced by melting iron powder and sulfur in a crucible, and its properties are gray-black flakes or lumps.

【0019】不定比組成の化合物では、湿った状態で空
気中で酸化されてイオウを分離し、褐色の塩基性硫酸塩
となることがある。
A compound having a non-stoichiometric composition may be oxidized in the air in a wet state to separate sulfur and form a brown basic sulfate.

【0020】Fe2 3 は、鉄(III)塩溶液に硫化アン
モニウムを十分量加えると得られる黒色粉末で、湿った
空気中ではイオウを遊離して酸化物の水和物になること
がある。
Fe 2 S 3 is a black powder obtained by adding a sufficient amount of ammonium sulfide to an iron (III) salt solution, and may release sulfur in humid air to become a hydrate of an oxide. .

【0021】FeS2 は、鉱石としては、白鉄鉱(鉱物
名 marcasite)及び黄鉄鉱(鉱物名pyrite)として産出
するが、この内、電池として機能するのは、充填密度が
高く電子伝導性が良い、岩塩型の結晶構造を有する黄鉄
鉱である。黄鉄鉱は合成可能であるが、電池材料として
機能するのは天然に産出する鉱石から得られるもののみ
である。
FeS 2 is produced as ores as marcasite (mineral name: marcasite) and pyrite (mineral name: pyrite). Of these, the one that functions as a battery is that it has a high packing density and good electron conductivity. It is a pyrite having a rock salt type crystal structure. Although pyrite is synthesizable, it only functions as a battery material from naturally occurring ores.

【0022】本発明のリチウム電池に用いる、一般式、
Fe1-x S(0≦x<1)で表される鉄の硫黄化合物を
リチウム二次電池の電極に用いる場合には、特に制限さ
れるものではないが、通常のリチウム二次電池材料の前
処理として行われる加熱処理以外にも、予め加熱処理を
行った後に二次電池材料としての通常の加熱処理を行っ
ても良い。
A general formula used for the lithium battery of the present invention,
When an iron sulfur compound represented by Fe 1-x S (0 ≦ x <1) is used for an electrode of a lithium secondary battery, there is no particular limitation. In addition to the heat treatment performed as a pretreatment, a normal heat treatment as a secondary battery material may be performed after the heat treatment is performed in advance.

【0023】予め加熱処理を行う方法については、材料
組成が一般式、Fe1-x S(0≦x<1)の関係を維持
できる加熱処理であれば特に制限されるものではない。
The method of performing the heat treatment in advance is not particularly limited as long as the material composition can maintain the relationship represented by the general formula, Fe 1-x S (0 ≦ x <1).

【0024】本発明のリチウム二次電池において、一般
式、Fe1-x S(0≦x<1)で表される鉄の硫黄化合
物をリチウム二次電池の正極に用いる場合には、負極に
は、リチウム金属、リチウム合金、及び本発明の鉄の硫
黄化合物よりも酸化還元電位の低いリチウムを予め含有
したリチウムを吸蔵放出可能な物質のいづれか少なくと
も1種類以上を用いることが必要である。
In the lithium secondary battery of the present invention, when an iron sulfur compound represented by the general formula, Fe 1-x S (0 ≦ x <1) is used for the positive electrode of the lithium secondary battery, It is necessary to use at least one of lithium metal, a lithium alloy, and a substance capable of inserting and extracting lithium, which previously contains lithium having a lower oxidation-reduction potential than the sulfur compound of iron of the present invention.

【0025】また、本発明のリチウム二次電池におい
て、一般式、Fe1-x S(0≦x<1) で表される鉄の
硫黄化合物を負極に用いる場合には、正極には本発明の
鉄の硫黄化合物よりも酸化還元電位の高いリチウムを予
め含有したリチウムを吸蔵放出可能な物質を用いること
が必要である。
In the lithium secondary battery of the present invention, when an iron sulfur compound represented by the general formula Fe 1-x S (0 ≦ x <1) is used for the negative electrode, the positive electrode of the present invention It is necessary to use a lithium-containing substance capable of inserting and extracting lithium which has a higher oxidation-reduction potential than the iron sulfur compound.

【0026】リチウム合金としては、例えば、リチウム
/アルミニウム合金、リチウム/スズ合金、リチウム/
鉛合金等が例示される。
Examples of the lithium alloy include lithium / aluminum alloy, lithium / tin alloy, and lithium / tin alloy.
A lead alloy or the like is exemplified.

【0027】リチウムを予め含有したリチウムを吸蔵放
出可能な物質としては、特に制限されないが、LiMn
2 4 、LiMnO2 、LiCoO2 、LiNiO2
LiFeO2 及びこれら化合物の複合体等の含リチウム
遷移金属酸化物等の酸化物や、グラファイト、黒鉛等の
炭素質材料、FeO、Fe2 3 、Fe3 4 等の酸化
鉄、CoO、Co2 3 、Co3 4 等の酸化コバルト
に予めリチウムをドープした化合物が例示される。な
お、これらのリチウムを予め含有したリチウムを吸蔵放
出可能な物質は、その酸化還元電位によって、負極また
は正極への適用が制限される。
The substance capable of inserting and extracting lithium containing lithium in advance is not particularly limited.
2 O 4 , LiMnO 2 , LiCoO 2 , LiNiO 2 ,
Oxides such as lithium-containing transition metal oxides such as LiFeO 2 and composites of these compounds, carbonaceous materials such as graphite and graphite, iron oxides such as FeO, Fe 2 O 3 and Fe 3 O 4 , CoO and Co Examples include compounds in which cobalt oxide such as 2 O 3 and Co 3 O 4 is doped with lithium in advance. Note that application of these substances containing lithium in advance and capable of inserting and extracting lithium to the negative electrode or the positive electrode is restricted by the oxidation-reduction potential.

【0028】また、本発明のリチウム二次電池の電解質
は、特に制限されないが、例えば、炭酸プロピレン、炭
酸ジエチル、炭酸ジメチル等のカーボネート類や、スル
ホラン、ジメチルスルホキシド等のスルホラン類、γ−
ブチルラクトン等のラクトン類、ジメトキシエタン等の
エーテル類の少なくとも1種類以の有機溶媒中に、過塩
素酸リチウム、四フッ化ホウ酸リチウム、六フッ化リン
酸リチウム、トリフルオロメタンスルホン酸リチウム等
のリチウム塩の少なくとも1種類以上を溶解したもの
や、無機系及び有機系のリチウムイオン導電性の固体電
解質等を用いることができる。
The electrolyte of the lithium secondary battery of the present invention is not particularly limited. For example, carbonates such as propylene carbonate, diethyl carbonate, and dimethyl carbonate; sulfolane such as sulfolane and dimethyl sulfoxide;
Lactones such as butyl lactone, and ethers such as dimethoxyethane in at least one organic solvent, such as lithium perchlorate, lithium tetrafluoroborate, lithium hexafluorophosphate, lithium trifluoromethanesulfonate, etc. A solution in which at least one kind of lithium salt is dissolved, an inorganic or organic lithium ion conductive solid electrolyte, or the like can be used.

【0029】本発明の鉄化合物複合体を正極または負極
に用いて、図1に示す電池を構成した。
A battery shown in FIG. 1 was constructed using the iron compound composite of the present invention for a positive electrode or a negative electrode.

【0030】図中において、1:正極用リード線、2:
正極集電用メッシュ、3:正極、4:セパレータ、5:
負極、6:負極集電用メッシュ、7:負極用リード線、
8:容器、を示す。
In the drawing, 1: lead wire for positive electrode, 2:
Positive electrode collecting mesh, 3: Positive electrode, 4: Separator, 5:
Negative electrode, 6: negative electrode current collector mesh, 7: negative electrode lead wire,
8: Container.

【0031】以下に、本発明の具体例として実施例を示
すが、本発明はこれらの実施例により限定されるもので
はない。
Examples will be shown below as specific examples of the present invention, but the present invention is not limited by these examples.

【0032】[0032]

【実施例】【Example】

実施例1 [電池の構成]実施例1として、FeS(試薬1級)と
導電剤のポリテトラフルオロエチレンとアセチレンブラ
ックの混合物(商品名:TAB−2)を、重量比で2:
1の割合で混合した。混合物75mgを1ton/cm
2 の圧力で、20mmφのメッシュ(SUS 316)
上にペレット状に成型したのちに、200℃で5時間、
減圧乾燥処理を行った。これを、図1の3の正極に用い
て、図1の5の負極にはリチウム箔から切り取ったリチ
ウム片を用いて、電解液には六フッ化リン酸リチウムを
1mol/dm3 の濃度で溶解したエチレンカーボネー
トとジエチルカーボネートの体積比1:2の混合溶媒に
溶解したものを図1の4のセパレータに含浸させて、断
面積2.5cm2 の図1に示した電池を構成した。
Example 1 [Structure of Battery] In Example 1, a mixture of FeS (reagent first grade), polytetrafluoroethylene as a conductive agent and acetylene black (trade name: TAB-2) was used in a weight ratio of 2:
1 was mixed. 75 mg of the mixture is 1 ton / cm
At a pressure of 2 , 20mmφ mesh (SUS 316)
After being molded into a pellet on top, at 200 ° C for 5 hours,
A vacuum drying treatment was performed. This is used for the positive electrode in FIG. 1, the negative electrode in FIG. 1 is a lithium piece cut out of a lithium foil, and the electrolyte is lithium hexafluorophosphate at a concentration of 1 mol / dm 3 . A solution of ethylene carbonate and diethyl carbonate dissolved in a mixed solvent having a volume ratio of 1: 2 was impregnated into a separator shown in FIG. 1 to form a battery having a sectional area of 2.5 cm @ 2 shown in FIG.

【0033】[評価]上記方法で作成した電池を、0.
4mA/cm2 の一定電流で電池電圧が1.2Vまで放
電を行った。平坦な放電曲線を示し、正極活物質重量当
り400mAhの放電容量が得られ、20サイクル目で
も初期容量の80%の放電容量を維持していた。また、
1サイクル目の充放電クーロン効率は90%であった。
[Evaluation] The battery prepared by the above method was used in a
The battery was discharged at a constant current of 4 mA / cm 2 until the battery voltage reached 1.2 V. A flat discharge curve was shown, a discharge capacity of 400 mAh was obtained per weight of the positive electrode active material, and a discharge capacity of 80% of the initial capacity was maintained even at the 20th cycle. Also,
The charge / discharge coulomb efficiency in the first cycle was 90%.

【0034】実施例2 実施例2として、正極に予め大気中110℃の温度で1
2時間熱処理したものを用いた以外は実施例1と同様に
して電池を作成し評価を行った。初期、正極活物質重量
当り420mAhの放電容量が得られ、20サイクル目
でも初期容量の90%の放電容量を維持していた。ま
た、1サイクル目の充放電クーロン効率は85%であっ
た。
Example 2 As Example 2, a positive electrode was previously applied to the positive electrode at a temperature of 110 ° C. in air.
A battery was prepared and evaluated in the same manner as in Example 1, except that a battery heat-treated for 2 hours was used. Initially, a discharge capacity of 420 mAh per weight of the positive electrode active material was obtained, and the discharge capacity of 90% of the initial capacity was maintained even in the 20th cycle. The charge / discharge coulombic efficiency in the first cycle was 85%.

【0035】実施例3 実施例3として、正極に予め大気中220℃の温度で1
2時間熱処理したものを用いた以外は実施例1と同様に
して電池を作成し評価を行った。初期、正極活物質重量
当り450mAhの放電容量が得られ、20サイクル目
でも初期容量の70%の放電容量を維持していた。ま
た、1サイクル目の充放電クーロン効率は90%であっ
た。
Example 3 As Example 3, a positive electrode was previously applied to the positive electrode at a temperature of 220 ° C. in air.
A battery was prepared and evaluated in the same manner as in Example 1, except that a battery heat-treated for 2 hours was used. Initially, a discharge capacity of 450 mAh was obtained per weight of the positive electrode active material, and the discharge capacity was maintained at 70% of the initial capacity even at the 20th cycle. The charge / discharge coulombic efficiency in the first cycle was 90%.

【0036】実施例4 実施例3として、実施例1で正極に用いたFeSと導電
剤との混合物を図1の5の負極に用いて、図1の3の正
極には市販のリチウムマンガンスピネル(LiMn2
4 )を導電剤のポリテトラフルオロエチレンとアセチレ
ンブラックの混合物(商品名:TAB−2)を、重量比
で2:1の割合で混合し、混合物75mgを1ton/
cm2 の圧力で、20mmφのメッシュ(SUS 31
6)上にペレット状に成型したのちに、200℃で5時
間、減圧乾燥処理を行ったものを用いた以外は、実施例
1と同様な電池を構成し評価を行った。
Example 4 In Example 3, a mixture of FeS and a conductive agent used for the positive electrode in Example 1 was used for the negative electrode in FIG. 1, and a commercially available lithium manganese spinel was used in the positive electrode in FIG. (LiMn 2 O
4 ) was mixed with a mixture of a conductive agent, polytetrafluoroethylene and acetylene black (trade name: TAB-2) at a ratio of 2: 1 by weight, and 75 mg of the mixture was mixed with 1 ton /
At a pressure of 2 cm 2 , a mesh of 20 mmφ (SUS 31
6) A battery was formed and evaluated in the same manner as in Example 1 except that a pellet was formed thereon and then subjected to a vacuum drying treatment at 200 ° C. for 5 hours.

【0037】初期、正極活物質重量当り110mAhの
放電容量が得られ、20サイクル目でも初期容量の90
%の放電容量を維持していた。
Initially, a discharge capacity of 110 mAh per weight of the positive electrode active material was obtained.
% Discharge capacity was maintained.

【0038】比較例1 比較例1として、Fe2 3 を負極活物質に用いた以外
は、実施例4と同様な電池を構成し評価を行った。
Comparative Example 1 As Comparative Example 1, a battery was constructed and evaluated in the same manner as in Example 4 except that Fe 2 O 3 was used as the negative electrode active material.

【0039】初期、正極活物質重量当り50mAhの放
電容量しか得られず、20サイクル目では初期容量の5
0%しか維持していなかった。また、1サイクル目の充
放電クーロン効率は60%であった。
Initially, a discharge capacity of only 50 mAh was obtained per weight of the positive electrode active material.
Only 0% was maintained. The charge / discharge coulombic efficiency in the first cycle was 60%.

【0040】[0040]

【発明の効果】以上述べてきたとおり、一般式、Fe
1-x S(0≦x<1) で表される鉄の硫黄化合物をリチ
ウム二次電池の正極または負極に用いることで、新規な
リチウム二次電池が構成できる。新規なリチウム二次電
池を提案することは、産業上有益な知見である。
As described above, the general formula, Fe
By using a sulfur compound of iron represented by 1-xS (0 ≦ x <1) for a positive electrode or a negative electrode of a lithium secondary battery, a novel lithium secondary battery can be formed. Proposing a new lithium secondary battery is an industrially useful finding.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例及び比較例で構成した電池の実施態様を
示す断面図である。
FIG. 1 is a cross-sectional view showing an embodiment of a battery constituted by an example and a comparative example.

【符号の説明】[Explanation of symbols]

1 正極リード線 2 正極集電用メッシュ 3 正極 4 セパレータ 5 負極 6 負極集電用メッシュ 7 負極用リード線 8 容器 REFERENCE SIGNS LIST 1 positive electrode lead wire 2 positive electrode current collecting mesh 3 positive electrode 4 separator 5 negative electrode 6 negative electrode current collecting mesh 7 negative electrode lead wire 8 container

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一般式、Fe1-x S(0≦x<1)で表さ
れる鉄の硫黄化合物を正極または負極に用いるリチウム
二次電池。
1. A lithium secondary battery using a sulfur compound of iron represented by the general formula, Fe 1-x S (0 ≦ x <1) for a positive electrode or a negative electrode.
JP9002896A 1997-01-10 1997-01-10 Lithium secondary battery Pending JPH10199506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9002896A JPH10199506A (en) 1997-01-10 1997-01-10 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9002896A JPH10199506A (en) 1997-01-10 1997-01-10 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH10199506A true JPH10199506A (en) 1998-07-31

Family

ID=11542128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9002896A Pending JPH10199506A (en) 1997-01-10 1997-01-10 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH10199506A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598378A (en) * 2018-01-29 2018-09-28 齐鲁工业大学 A kind of lithium/anode material of lithium-ion battery Fe1-xThe preparation method of S/C

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598378A (en) * 2018-01-29 2018-09-28 齐鲁工业大学 A kind of lithium/anode material of lithium-ion battery Fe1-xThe preparation method of S/C
CN108598378B (en) * 2018-01-29 2020-10-02 齐鲁工业大学 Lithium/sodium ion battery negative electrode material Fe1-xPreparation method of S/C

Similar Documents

Publication Publication Date Title
Placke et al. Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density
RU2402842C2 (en) Electrolyte cell and method of its fabrication
US6007945A (en) Negative electrode for a rechargeable lithium battery comprising a solid solution of titanium dioxide and tin dioxide
JP3643825B2 (en) Organic electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4697382B2 (en) Nonaqueous electrolyte secondary battery
JPH1167270A (en) Nonaqueous electrolyte secondary battery
JPH11339850A (en) Lithium-ion secondary battery
JP4894313B2 (en) Nonaqueous electrolyte secondary battery
JPH06302320A (en) Nonaqueous electrolyte secondary battery
JP2005183632A (en) Electrochemical device and electric double layer capacitor or battery using the same
JP3451781B2 (en) Organic electrolyte secondary battery
JPH02148665A (en) Electrolyte for lithium secondary battery
JPH10162828A (en) Nonaqueous electrolyte battery, and manufacture thereof
JP2002260728A (en) Lithium secondary battery using nonaqueous electrolyte solution
JP2797693B2 (en) Non-aqueous electrolyte secondary battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JP2020053382A (en) Positive active material for potassium secondary battery and potassium secondary battery
JP3049973B2 (en) Non-aqueous electrolyte secondary battery
JPH10199506A (en) Lithium secondary battery
JP3451601B2 (en) Lithium battery
JPH10194748A (en) New iron compound complex and its production and use
JPH10199544A (en) Lithium primary battery
JPH03196467A (en) Secondary battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP2006040557A (en) Organic electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040921