JPH10195668A - Production of two-layer flexible substrate - Google Patents

Production of two-layer flexible substrate

Info

Publication number
JPH10195668A
JPH10195668A JP35787696A JP35787696A JPH10195668A JP H10195668 A JPH10195668 A JP H10195668A JP 35787696 A JP35787696 A JP 35787696A JP 35787696 A JP35787696 A JP 35787696A JP H10195668 A JPH10195668 A JP H10195668A
Authority
JP
Japan
Prior art keywords
layer
copper
thickness
film
copper plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35787696A
Other languages
Japanese (ja)
Inventor
Yukihiro Tamiya
幸広 田宮
Noriyuki Saeki
典之 佐伯
Takehiko Sakurada
毅彦 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP35787696A priority Critical patent/JPH10195668A/en
Publication of JPH10195668A publication Critical patent/JPH10195668A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a defectless two-layer flexible substrate free from wiring part defect caused by pin holes and excellent in adhesive property of an under metallic layer to an electroless plated film in a two-layer flexible wired board production by applying dry plating method, electroless plating method and electric copper plating method on the substrate. SOLUTION: The under metallic layer is formed directly on one surface or both surfaces of an insulating material film without interposing an adhesive layer and a copper conductive layer having a prescribed thickness is formed on the under metallic layer. The under metallic layer is composed of a coating layer formed by dry plating method using at least one kind selected from a group composed of nickel, a copper-nickel alloy, chromium and chromium oxide and a copper coating film layer formed on the coating film layer by dry plating method. Next, after a primary electric copper plated film layer is formed on the under metallic layer, an electroless copper plated film layer is formed as an intermediate metallic layer on the primary electric copper plated film layer and the copper conductive layer having 5-18μm thickness is formed on the insulating material film finally by forming a secondary electric copper plated film layer on the intermediate metallic layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は2層フレキシブル基
板の製造方法に関し、より具体的には、絶縁体フィルム
上に乾式めっき法、無電解銅めっき法および電気銅めっ
き法を採用して銅導体層を形成するに際し、より健全で
密着性の高い導体層を容易に形成し得るような2層フレ
キシブル基板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a two-layer flexible substrate, and more specifically, to a method for manufacturing a copper conductor by employing a dry plating method, an electroless copper plating method and an electrolytic copper plating method on an insulating film. The present invention relates to a method for manufacturing a two-layer flexible substrate which can easily form a conductor layer having higher soundness and higher adhesion when forming a layer.

【0002】[0002]

【従来の技術】フレキシブル配線板を作製するために用
いられる基板は、絶縁体フィルム上に接着剤を用いて導
体層となる銅箔を貼り合わせた3層フレキシブル基板
と、該絶縁体フィルム上に接着剤を用いることなしに乾
式めっき法または湿式めっき法により直接銅導体層を形
成した2層フレキシブル基板とに大別される。
2. Description of the Related Art A substrate used for manufacturing a flexible wiring board is composed of a three-layer flexible substrate in which a copper foil serving as a conductor layer is bonded on an insulating film using an adhesive, and a three-layer flexible substrate is formed on the insulating film. It is roughly classified into a two-layer flexible substrate in which a copper conductor layer is directly formed by a dry plating method or a wet plating method without using an adhesive.

【0003】そして、3層フレキシブル基板を用いる場
合には、サブトラクティブ法によって基盤上に所望の配
線パターンを形成することにより3層フレキシブル配線
板を製造することができ、2層フレキシブル基板を用い
る場合には、サブトラクティブ法またはアディティブ法
によって基板上に所望の配線パターンを形成することに
より2層フレキシブル配線板を製造することができる
が、一般には製造方法が簡単で、低コストで製造するこ
とができる3層フレキシブル基板の使用が主流を占めて
いた。
When a three-layer flexible substrate is used, a three-layer flexible wiring board can be manufactured by forming a desired wiring pattern on a substrate by a subtractive method. The two-layer flexible wiring board can be manufactured by forming a desired wiring pattern on a substrate by a subtractive method or an additive method. However, in general, the manufacturing method is simple and can be manufactured at low cost. The use of a three-layer flexible substrate that can be used has been dominant.

【0004】ところで、近年の電子機器の高密度化に伴
なって配線板における配線幅も狭ピッチのものが求めら
れるようになってきている。しかし、3層フレキシブル
配線板の場合には基板の絶縁体フィルム上に形成した銅
導体層をエッチングして配線部の形成を行うに際して、
配線部の側面がエッチングされる、いわゆるサイドエッ
チングを生ずるために配線部の断面形状が裾広がりの台
形になりやすく、従って配線部間の電気的絶縁性を確保
するまでエッチングを行うと配線ピッチ幅が広くなり過
ぎてしまうために、従来一般的に使用されている35μ
m厚さの銅箔を貼り合わせた基板を用いる限り配線板に
おける配線部の狭ピッチ化を行うには限界があった。
[0004] With the recent increase in the density of electronic devices, wiring boards having a narrower wiring width have been required. However, in the case of a three-layer flexible wiring board, when forming a wiring part by etching a copper conductor layer formed on an insulating film of a substrate,
Since the side surface of the wiring portion is etched, so-called side etching occurs, the cross-sectional shape of the wiring portion tends to be a trapezoid with a wide skirt. Therefore, if the etching is performed until the electrical insulation between the wiring portions is secured, the wiring pitch width Becomes too wide, so that 35 μm conventionally used generally is used.
As long as a substrate to which a copper foil having a thickness of m is bonded is used, there is a limit in reducing the pitch of the wiring portion in the wiring board.

【0005】このため、従来の35μm厚銅箔張り合わ
せ基板に代えて18μm厚さ以下の薄い銅箔張り合わせ
基板を使用し、サイドエッチングによる裾広がりの幅を
小さくして配線板における配線部の狭ピッチ化を図る試
みがなされた。しかし、このような薄肉の銅箔は剛性が
小さいためにハンドリング性が悪く、そのため銅箔にア
ルミニウムキャリアなどの補強材を貼り合わせて剛性を
高くした後、該銅箔と絶縁体フィルムの貼り合わせを行
い、しかる後再びアルミニウムキャリアを除去しなけれ
らないので作業性が悪いという問題があった。
For this reason, a thin copper foil bonded substrate having a thickness of 18 μm or less is used in place of the conventional copper foil bonded substrate having a thickness of 35 μm, the width of the skirt spread by side etching is reduced, and the narrow pitch of the wiring portion in the wiring board is reduced. Attempts were made to make it more sophisticated. However, such a thin copper foil has low rigidity, and thus has poor handling properties. Therefore, after bonding a reinforcing material such as an aluminum carrier to the copper foil to increase the rigidity, bonding the copper foil to an insulating film is performed. After that, the aluminum carrier must be removed again, so that the workability is poor.

【0006】またこのような薄い銅箔では、膜厚のばら
つきやピンホールや亀裂の発生などによる被膜欠陥が増
加するなどの製造技術上の問題もあるし、さらに、銅箔
が薄くなればなるほどその製造が困難となり、製造価格
が高くなって3層フレキシブル配線板のコストメリット
が失われてしまう結果となった。殊に最近においては、
厚さ10数μm以下、数μm程度の銅箔を使用しなくて
は製造できないような狭幅で、狭ピッチの配線部を有す
る配線板への要求が強まるに至り、3層フレキシブル基
板を用いる配線板は、上記したように技術的な問題もさ
ることながら、製造コスト上からも問題があった。
[0006] Further, such a thin copper foil has problems in manufacturing technology such as an increase in film defects due to variations in film thickness and generation of pinholes and cracks, and further, the thinner the copper foil, the more it becomes. The production becomes difficult, the production price increases, and the cost advantage of the three-layer flexible wiring board is lost. Especially recently,
The demand for a wiring board having a wiring section with a narrow width and a narrow pitch, which cannot be manufactured without using a copper foil having a thickness of 10 μm or less and about several μm, has become stronger, and a three-layer flexible substrate is used. The wiring board has problems not only in terms of technical problems as described above but also in terms of manufacturing cost.

【0007】そこで、接着剤を施すことなく直接絶縁体
フィルム上に銅被覆を形成することができる2層フレキ
シブル基板を用いた2層フレキシブル配線板が注目され
るに至った。該2層フレキシブル基板は接着剤なしで直
接絶縁体フィルム上に銅導体層を形成するものであり、
従って基板自体の厚さを薄くすることができる上に、被
着させる銅導体被膜の厚さも任意の厚さに調整すること
ができるという利点を有する。そして、このような2層
フレキシブル基板を製造する場合には、絶縁体フィルム
上に廉価に均一な厚さの銅導体層を形成するための手段
として通常は電気銅めっき法が採用されるが、そのため
には、電気銅めっき被膜を施す絶縁体フィルムの上に薄
膜の下地金属層を形成して表面全面に導電性を付与し、
その上に電気銅めっき処理を行なうのが一般的である。
Accordingly, attention has been paid to a two-layer flexible wiring board using a two-layer flexible substrate capable of forming a copper coating directly on an insulator film without applying an adhesive. The two-layer flexible substrate directly forms a copper conductor layer on an insulator film without an adhesive,
Therefore, there is an advantage that the thickness of the substrate itself can be reduced, and the thickness of the copper conductor film to be applied can be adjusted to an arbitrary thickness. When manufacturing such a two-layer flexible substrate, an electrolytic copper plating method is usually employed as a means for forming a copper conductor layer having a uniform thickness at a low cost on an insulator film. To do so, a thin base metal layer is formed on the insulator film on which the electrolytic copper plating film is applied, and conductivity is imparted to the entire surface,
In general, an electrolytic copper plating process is performed thereon.

【0008】ところで、絶縁体フィルム上に薄膜の下地
金属層を得るためには、真空蒸着法、イオンプレーティ
ング法などの乾式めっき法を使用するのが一般的である
が、このような乾式めっき法で得られる被膜層には、通
常数十μm〜数百μmの大きさのピンホールが多数発生
するので、下地金属層には往々にしてピンホールによる
絶縁体フィルム露出部分を生ずることになる。
In order to obtain a thin base metal layer on an insulator film, it is common to use a dry plating method such as a vacuum deposition method or an ion plating method. In the coating layer obtained by the method, a large number of pinholes having a size of usually several tens μm to several hundreds μm are generated, so that the underlying metal layer often has an exposed portion of the insulator film due to the pinholes. .

【0009】従来、一般にこの種のフレキシブル配線板
においては、配線に必要な銅の導電性被膜の厚さは20
〜35μmが適当であるとされていたが、このようなか
なりの厚さの銅被膜を従来一般に行われているような電
気銅めっき法によって得ようとする場合には、電気銅め
っき法による銅被膜は基板に対して垂直方向のみならず
水平方向にも成長するので、上記した絶縁体フィルム面
におけるピンホールの露出にに基づく欠陥はめっき被膜
中に埋没し、ピンホールの存在による配線部の欠陥を生
ずることは少なかった。
Conventionally, in a flexible wiring board of this type, the thickness of a conductive copper film required for wiring is generally 20 times.
Although it was considered that a thickness of about 35 μm was appropriate, when a copper film having such a considerable thickness is to be obtained by an electrolytic copper plating method which is generally performed conventionally, a copper film formed by an electrolytic copper plating method is required. Since the film grows not only in the vertical direction but also in the horizontal direction with respect to the substrate, the defect based on the exposure of the pinhole on the surface of the insulating film is buried in the plating film, and the wiring portion due to the presence of the pinhole is damaged. There were few defects.

【0010】しかしながら、本発明において指向するよ
うな狭ピッチの配線部を持ったフレキシブル配線板を得
ようとする場合には、前述したように配線部形成のため
の銅被膜の厚さは18μm以下、理想的には5μm程度
の極めて薄い厚さとしなければならないので、電気銅め
っき法によってこのような薄い銅被膜を得ようとすると
被膜の水平方向への成長量が不足し、上記したピンホー
ルによる欠陥を埋めることができず、配線部に欠陥を生
ずる恐れが多々あった。
However, in order to obtain a flexible wiring board having a wiring section of a narrow pitch as directed in the present invention, as described above, the thickness of the copper film for forming the wiring section is 18 μm or less. Ideally, the thickness should be extremely thin, about 5 μm. Therefore, if an attempt is made to obtain such a thin copper film by the electrolytic copper plating method, the growth amount of the film in the horizontal direction is insufficient, and the above-described pinholes The defect could not be filled, and there was a possibility that a defect might occur in the wiring portion.

【0011】この状況を、下地金属層を形成した絶縁体
フィルム上に所望の厚さの銅導体層を形成した2層フレ
キシブル基板を用いて、例えばサブトラクティブ法によ
って2層フレキシブル配線板の製造を行う場合を例にと
って説明すると、配線部パターンの形成は次の工程で行
われる。 (1)該銅導体層上に、配線部のみがマスキングされ非
配線部の銅導体層が露出するような所望の配線部パター
ンを有するレジスト層を設ける、(2)露出している銅
導体層を化学エッチング処理により除去する、(3)最
後にレジスト層を剥離除去する。従って、銅導体層の厚
さを例えば5μmというように極めて薄く形成した基板
を使用して、例えば配線幅40μm、配線ピッチ80μ
mというような狭配線幅、狭配線ピッチの配線板を製造
する場合には、乾式めっき処理によって基板の下地金属
層に生じているピンホールのうち、粗大なものは大きさ
が数十μm乃至数百μmのオーダーに達するために、5
μm程度の厚さの電気銅めっき被膜を形成したのでは、
ピンホールによる絶縁体フィルム露出部分を殆ど埋める
ことができないので、この露出部分、つまり導体層の欠
落部分が配線部にかかり、配線部は該ピンホールの位置
で欠落して配線欠陥となるか、そうでなくても配線部の
密着不良を招く原因となるのである。
[0011] This situation can be solved by, for example, manufacturing a two-layer flexible wiring board by a subtractive method using a two-layer flexible substrate in which a copper conductor layer having a desired thickness is formed on an insulating film on which a base metal layer is formed. To explain the case where the process is performed as an example, the formation of the wiring portion pattern is performed in the following step. (1) A resist layer having a desired wiring portion pattern is provided on the copper conductor layer such that only the wiring portion is masked and the non-wiring portion copper conductor layer is exposed. (2) The exposed copper conductor layer (3) Finally, the resist layer is peeled off. Therefore, using a substrate in which the thickness of the copper conductor layer is extremely thin, for example, 5 μm, the wiring width is 40 μm, and the wiring pitch is 80 μm.
In the case of manufacturing a wiring board having a narrow wiring width and a narrow wiring pitch such as m, among the pinholes formed in the base metal layer of the substrate by dry plating, the coarse ones have a size of several tens μm to 5 to reach the order of several hundred μm
After forming an electrolytic copper plating film with a thickness of about μm,
Since the exposed portion of the insulator film due to the pinhole can hardly be filled, the exposed portion, that is, the missing portion of the conductor layer is applied to the wiring portion, and the wiring portion is missing at the position of the pinhole and becomes a wiring defect, Otherwise, it may cause poor adhesion of the wiring portion.

【0012】上記した問題を解決する方法として、絶縁
体フィルム上に乾式めっき法で下地金属層として形成し
た上に、さらに中間金属層として無電解めっきによる銅
被覆層を施してピンホールによる絶縁体フィルムの露出
部分を被覆する方法が提案されている。しかし、この方
法によるときは。確かにある程度ピンホールによる絶縁
体フィルムの露出部分をなくすることはできるが、一方
において、無電解銅めっき処理に用いられるめっき液や
これを行うために行われるアルカリ性の前処理液など
が、既に形成されている大小さまざまなピンホール部分
から絶縁体フィルムと下地金属層との間に浸透し、これ
が下地金属層の密着性、ひいてはその後に形成される電
気銅めっきによる導体層の密着性を阻害する原因となる
ので十分な解決策にはならなかった。
As a method for solving the above-mentioned problem, a base metal layer is formed on an insulator film by a dry plating method, and a copper coating layer is further provided as an intermediate metal layer by electroless plating to form an insulator by a pinhole. Methods have been proposed for coating exposed portions of the film. But when using this method. Certainly, the exposed portion of the insulator film due to pinholes can be eliminated to some extent, but on the other hand, the plating solution used for the electroless copper plating process and the alkaline pretreatment solution used to perform this process have already been used. It penetrates between the insulator film and the underlying metal layer from the large and small pinholes that are formed, which inhibits the adhesion of the underlying metal layer and, subsequently, the adhesion of the conductor layer formed by the subsequent copper plating. It was not a sufficient solution because it would cause

【0013】[0013]

【発明が解決しようとする課題】本発明は、乾式めっき
法および無電解めっき法並びに電気銅めっき法を使用し
たフレキシブル配線板の製造における上記した問題点を
解決し、絶縁体フィルム上に乾式めっき処理によって下
地金属層を形成するに際して生ずるピンホールに起因す
る銅導体部の欠落がなく、かつ下地金属層と無電解めっ
き層との密着性の優れたフレキシブル配線板の製造方法
を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the production of flexible wiring boards using dry plating, electroless plating and electrolytic copper plating, and provides dry plating on an insulating film. Provided is a method for producing a flexible wiring board which is free from copper conductor portions caused by pinholes generated when forming a base metal layer by processing and has excellent adhesion between the base metal layer and the electroless plating layer. It is the purpose.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
の本発明は、絶縁体フィルムの片面または両面に、接着
剤を介さずに直接下地金属層を形成し、該下地金属層上
に所望の厚さの銅導体層を形成する2層フレキシブル基
板の製造方法において、絶縁体フィルム上に下地金属層
をニッケル、銅−ニッケル合金、クロム、クロム酸化物
からなる群から選ばれた少なくとも1種を用い乾式めっ
き法により形成された被膜層と該被膜層上にさらに形成
された乾式めっき法による銅被膜層の2層により形成
し、次に該下地金属層上に一次電気銅めっき被膜層を形
成し、次に該一次電気銅めっき被膜層上に中間金属層と
して無電解銅めっき被膜を形成し、最後に該中間金属層
上に二次電気銅めっき被膜層を形成することにより最終
的に絶縁体フィルム上に5〜18μm銅導体層を形成す
る2層フレキシブル基板の製造方法を特徴とするもので
ある。
According to the present invention, in order to achieve the above object, an underlayer metal layer is formed directly on one or both sides of an insulating film without using an adhesive, and a desired metal layer is formed on the underlayer metal layer. In the method for manufacturing a two-layer flexible substrate for forming a copper conductor layer having a thickness of at least one selected from the group consisting of nickel, copper-nickel alloy, chromium, and chromium oxide, And a copper layer formed by a dry plating method further formed on the film layer by a dry plating method, and then a primary electrolytic copper plating film layer is formed on the base metal layer. To form an electroless copper plating film as an intermediate metal layer on the primary copper plating film layer, and finally form a secondary copper electroplating film layer on the intermediate metal layer. Insulation film And it is characterized in the manufacturing method of the two-layer flexible substrate forming a 5~18μm copper conductor layer.

【0015】本発明において下地金属層上に施される一
次電気銅めっき被膜層の厚さは0.3〜10μm、特に
0.5〜2μmの範囲のであることが好ましい。また、
無電解銅めっき被膜層の厚さは、0.01〜1.0μ
m、特に0.05〜0.5μmの範囲であることが好ま
しく、無電解銅めっき被膜層を形成するに際し、前処理
として触媒付与処理を施すことが好ましい。
In the present invention, the thickness of the primary electroplated copper coating layer formed on the base metal layer is preferably in the range of 0.3 to 10 μm, particularly preferably 0.5 to 2 μm. Also,
The thickness of the electroless copper plating layer is 0.01 to 1.0 μm.
m, particularly preferably in the range of 0.05 to 0.5 μm, and when forming the electroless copper plating film layer, it is preferable to perform a catalyst application treatment as a pretreatment.

【0016】また、本発明において、絶縁体フィルム上
に乾式めっき被膜法によって直接形成される2層の下地
金属層のうち、ニッケル、銅−ニッケル合金、クロム、
クロム酸化物のうちから選ばれた少なくとも1種を乾式
めっき処理して得られた被膜層の厚さは50〜2,00
0オングストロームであることが好ましく、その上に形
成される銅の乾式めっき被膜層の厚さは200〜5,0
00オングストロームであることが好ましい。また該下
地金属層を形成するための乾式めっき法は、真空蒸着
法、スパッタリング法、またはイオンプレ−ティング法
のうちのいずれかを採用することが好ましい。
In the present invention, nickel, copper-nickel alloy, chromium, and the like are selected from the two base metal layers formed directly on the insulator film by the dry plating method.
The thickness of the coating layer obtained by dry plating at least one selected from chromium oxides is 50 to 2,000.
0 angstrom, and the thickness of the copper dry plating film layer formed thereon is 200 to 5,0
Preferably, it is 00 Å. In addition, as the dry plating method for forming the base metal layer, it is preferable to employ any one of a vacuum deposition method, a sputtering method, and an ion plating method.

【0017】[0017]

【発明の実施の形態】本発明は、上記したように絶縁体
フィルム上に、乾式めっき法によりニッケル、銅−ニッ
ケル合金、クロム、クロム酸化物からなる群から選ばれ
た少なくとも1種を用いて形成した被膜層と、該被膜層
上にさらに乾式めっき法により形成した銅被膜層との2
層からなる下地金属層上に、先ず所定の厚さの一次電気
銅めっき被膜層を形成した後、その上にさらに無電解銅
めっき被膜層を被着させ、最後に二次電気銅めっき被膜
層を形成することによって所望の厚さの銅導体層を形成
する2層フレキシブル基板の製造方法であり、乾式めっ
き法と無電解めっき法を併用したフレキシブル配線板の
製造を行うに際して、上記した製造方法を採用すること
により乾式めっき被膜層の形成に際して発生するピンホ
ールに基づく導体部欠陥が少なく、かつ導体層と絶縁体
フィルム間の密着性の高い2層フレキシブル基板を得る
ことに成功したものである。
DETAILED DESCRIPTION OF THE INVENTION As described above, the present invention uses at least one selected from the group consisting of nickel, copper-nickel alloy, chromium, and chromium oxide on an insulator film by a dry plating method. 2 of the formed coating layer and a copper coating layer further formed on the coating layer by dry plating.
First, a primary electrolytic copper plating layer having a predetermined thickness is formed on a base metal layer composed of a plurality of layers, and then an electroless copper plating layer is further applied thereon, and finally, a secondary electrolytic copper plating layer is formed. Forming a copper conductor layer having a desired thickness by forming a flexible printed circuit board using a dry plating method and an electroless plating method. By using the method described above, it is possible to obtain a two-layer flexible substrate having few conductor defects due to pinholes generated at the time of forming a dry plating film layer and having high adhesion between the conductor layer and the insulator film. .

【0018】本発明において、基板上に電気銅めっき被
膜層を一次、二次に分けて形成させる理由について説明
すると次のごとくである。即ち、通常乾式めっき法によ
って絶縁体フィルム上に形成されるめっき被膜層には、
大小無数のピンホールが存在するが、そのうちの殆どは
光学顕微鏡では観察困難な1μm以下の微小なピンホー
ルであり、残部が数μm乃至数百μmの粗大なピンホー
ルである。そして、前者の微小ピンホールは配線板を作
製する際の配線部の欠陥発生に殆ど影響しないが、後者
の粗大ピンホールは絶縁体フィルム上に顕著な大きさの
露出部を形成するために、無電解銅めっき処理によって
この露出部を被覆しなければ、その後の電気銅めっき処
理工程において形成される導体層に部分的欠落部を生
じ、配線板作製に際して配線欠陥を生ずる原因となる。
In the present invention, the reason why the electrolytic copper plating film layer is formed on the substrate in a primary and secondary manner will be described as follows. That is, the plating film layer usually formed on the insulator film by the dry plating method,
Although there are countless large and small pinholes, most of them are minute pinholes of 1 μm or less which are difficult to observe with an optical microscope, and the rest are coarse pinholes of several μm to several hundred μm. The former minute pinholes have almost no effect on the occurrence of defects in the wiring portion when the wiring board is manufactured, but the latter coarse pinholes form an exposed portion of a remarkable size on the insulating film. If the exposed portion is not covered by the electroless copper plating process, the conductor layer formed in the subsequent electrolytic copper plating process will have a partially missing portion, which will cause a wiring defect in manufacturing a wiring board.

【0019】なお、本発明者らの行った実験によれば、
配線板における配線部の欠落の許容限界の目安は、配線
幅の1/4から1/3程度であるので、例えば配線幅4
0μmの配線板においては、基板に形成した導体層に1
0μmの大きさを超えるピンホールよる部分欠落部が多
数存在すると、該基板により作製される配線板は不良品
となり易いことが実証されている。
According to an experiment conducted by the present inventors,
Since the standard of the allowable limit of the loss of the wiring portion in the wiring board is about 1/4 to 1/3 of the wiring width, for example, the wiring width of 4
In a 0 μm wiring board, the conductor layer formed on the substrate has 1
It has been proved that when there are a large number of partially missing portions due to pinholes having a size of more than 0 μm, a wiring board manufactured from the substrate is likely to be defective.

【0020】そしてまた、上記したピンホールのうち微
小ピンホールの存在も、その後に行われる無電解銅めっ
き処理に際し、無電解めっき液やその前処理液などがこ
の微小ピンホールの穴から下地金属層と絶縁体フィルム
の間に浸透し、下地金属層の密着性を阻害する原因とな
り、ひいては作製される配線板における配線部の密着強
度が通常この種の配線板において実用的基準とされる1
kgf/cmの値を下回るようになるので好ましくない
ことが分かった。そこで本発明においては、下地金属層
上に一次電解銅めっき処理を施すことによって、形成さ
れた銅めっき被膜層によって下地金属層の微小ピンホー
ルの穴を埋めてやり、次工程の無電解銅めっき工程での
無電解めっき液や前処理液の微小ピンホールから絶縁体
フィルムへの浸透を抑制し、これによって下地金属層の
絶縁体フィルムに対する密着性を確保するようにしたも
のである。
In addition, the presence of minute pinholes among the above-mentioned pinholes also means that an electroless plating solution or a pre-treatment liquid is used to pass the underlying metal through the holes of the minute pinholes in the subsequent electroless copper plating treatment. It penetrates between the layer and the insulator film and causes the adhesion of the underlying metal layer to be hindered. Therefore, the adhesion strength of the wiring portion in the manufactured wiring board is usually regarded as a practical standard in this type of wiring board.
It was found that the value was lower than kgf / cm, which was not preferable. Therefore, in the present invention, by performing primary electrolytic copper plating on the underlying metal layer, the formed copper plating film layer is used to fill the fine pinholes of the underlying metal layer, and the electroless copper plating in the next step is performed. In the process, the permeation of the electroless plating solution or the pretreatment solution from the fine pinholes into the insulator film is suppressed, and thereby the adhesion of the base metal layer to the insulator film is ensured.

【0021】この場合において、一次電気銅めっき被膜
層の厚みを0.3〜10μmの範囲に限定した理由は次
のごとくである。粗大ピンホール部分は絶縁体フィルム
面が大きく露出しているために電気銅めっき処理を行っ
ても通電性のない絶縁体フィルム上には銅めっき被膜は
形成されない。その結果一次電気銅めっき被膜が形成さ
れた部分の厚さは下地金属層の厚さに一次電気銅めっき
被膜層の厚さが加わり、粗大ピンホールによる絶縁体フ
ィルムの露出部分と一次電気銅めっき被膜層の形成部分
とに段差が生ずることになる。この段差は最終工程の二
次電気銅めっき被膜形成後も変わることがないので、一
次電気銅めっき被膜層を10μmを超える厚さにする
と、得られた2層フレキシブル基板の表面における段差
が著しく多きくなりすぎてその後の配線部形成工程にお
ける配線部の加工に支障をきたすようになる。また、一
次電気銅めっき被膜層の厚さが0.3μm未満となると
微小ピンホールの穴を十分に埋めきれないので、無電解
銅めっき処理に際してのめっき液等の浸透が起こり易く
なり、下地金属層の密着性の低下を招く恐れが生ずるの
で、いずれの場合も好ましくない。
In this case, the reason why the thickness of the primary electrolytic copper plating layer is limited to the range of 0.3 to 10 μm is as follows. Since the surface of the insulator film is largely exposed in the coarse pinhole portion, no copper plating film is formed on the insulator film having no conductivity even when the electrolytic copper plating process is performed. As a result, the thickness of the portion where the primary electrolytic copper plating film is formed is obtained by adding the thickness of the primary electrolytic copper plating film layer to the thickness of the underlying metal layer, and the exposed portion of the insulator film due to the coarse pinholes and the primary electrolytic copper plating A step is generated between the portion where the coating layer is formed and the portion where the coating layer is formed. Since this step does not change even after the formation of the secondary electrolytic copper plating film in the final step, if the thickness of the primary electrolytic copper plating film exceeds 10 μm, the level difference on the surface of the obtained two-layer flexible substrate is extremely large. It becomes too difficult, which hinders the processing of the wiring portion in the subsequent wiring portion forming step. Also, if the thickness of the primary electrolytic copper plating film layer is less than 0.3 μm, the fine pinholes cannot be filled sufficiently, so that the plating solution or the like easily penetrates during the electroless copper plating treatment, and Either case is not preferable because there is a fear that the adhesion of the layer may be reduced.

【0022】なお、この一次電気銅めっき被膜層の厚さ
は、もとより微小ピンホールの穴を埋めてめっき液の浸
透を防止できる程度の厚さにすればよいのであるが、こ
の厚さは二次電気銅めっき処理を施すことによって得ら
れる最終的な導体層の厚さおよび配線板に形成される配
線部の配線幅および配線ピッチの大きさを考慮して定め
られる。例えば、基板に最終的に形成される導体層の厚
さが5μm程度で、これにより作製される配線板におけ
る配線幅が40μm、配線ピッチが80μm程度である
ときに、基板における下地金属層の密着性をほぼ確保し
つつ実質的段差の解消を図るためには、一次電気銅めっ
き被膜層の厚さは0.5〜2μmの範囲に定めるのが理
想的である。
Incidentally, the thickness of the primary electrolytic copper plating film layer may be set to such a thickness as to fill the holes of the minute pinholes and to prevent the penetration of the plating solution. The thickness is determined in consideration of the thickness of the final conductor layer obtained by performing the subsequent electrolytic copper plating treatment and the size of the wiring width and the wiring pitch of the wiring portion formed on the wiring board. For example, when the thickness of the conductor layer finally formed on the substrate is about 5 μm, and the wiring width of the wiring board manufactured by this is about 40 μm and the wiring pitch is about 80 μm, the adhesion of the underlying metal layer on the substrate is In order to substantially eliminate the difference in level while ensuring the performance, it is ideal that the thickness of the primary electrolytic copper plating layer is set in the range of 0.5 to 2 μm.

【0023】次に、無電解銅めっき処理を行うが、これ
は基板全面に無電解銅めっき被膜層を形成させることに
よって、粗大ピンホールによる絶縁体フィルムの露出面
を覆って基板面全面を良導体化し、これによってピンホ
ールの影響を受けることなく次工程での二次電気銅めっ
き処理を基板全面に亘って行わせることを可能とするた
めに行われるものである。該無電解銅めっき処理を施す
に当たっては、公知の触媒付与剤を使用して事前に基板
上に触媒付与処理を施すことが好ましい。以後、二次電
気銅めっき処理を施すことによって、容易に厚さ5〜1
8μm程度の導体層を有する薄肉の健全な2層フレキシ
ブル基板を得ることができる。
Next, an electroless copper plating process is performed. The electroless copper plating film is formed on the entire surface of the substrate by covering the exposed surface of the insulator film by the coarse pinholes by forming an electroless copper plating film layer on the entire surface of the substrate. This is performed so that the secondary electrolytic copper plating process in the next step can be performed over the entire surface of the substrate without being affected by the pinhole. In performing the electroless copper plating treatment, it is preferable to perform a catalyst imparting treatment on the substrate in advance using a known catalyst imparting agent. Thereafter, by performing a secondary electrolytic copper plating treatment, the thickness is easily reduced to 5 to 1 mm.
A thin, sound two-layer flexible substrate having a conductor layer of about 8 μm can be obtained.

【0024】本発明において無電解銅めっき処理に際し
て行われる触媒付与処理に用いる触媒金属種は、無電解
めっき液に含まれる錯体化された金属イオン種よりも電
位的に貴なものであればよく、例えば金、白金、銀、パ
ラジウム等が使用できる。しかし、簡便さを考慮すれ
ば、触媒付与剤として広く市販されているパラジウム系
の触媒付与剤、例えば、パラジウム−錫の酸性溶液や、
アルカリ性のパラジウム錯体溶液、あるいは錫を含まな
い酸性パラジウム溶液などが適当である。触媒の付与方
法は特に限定されず、通常この種の触媒付与に際して一
般的に行われているセンシタイジング・アクチベーショ
ン法やキャタリスト・アクセレーター法などを状況に応
じて適宜選択すればよい。
In the present invention, the catalytic metal species used in the catalyst application treatment performed in the electroless copper plating treatment may be any one which is more noble in potential than the complexed metal ion species contained in the electroless plating solution. For example, gold, platinum, silver, palladium and the like can be used. However, in consideration of simplicity, palladium-based catalyst-imparting agents that are widely commercially available as catalyst-imparting agents, for example, palladium-tin acidic solutions,
An alkaline palladium complex solution or an acidic palladium solution containing no tin is suitable. The method of applying the catalyst is not particularly limited, and a sensitizing activation method, a catalyst accelerator method, or the like generally used for applying this type of catalyst may be appropriately selected depending on the situation.

【0025】また、触媒付与処理に際しての前処理は、
特に限定されないが下地金属層と絶縁体フィルムおよび
下地金属層と無電解めっき被膜の密着性を高めるため
に、脱脂等の清浄化処理を施しておくことが望ましい。
しかしながら、この前処理によって下地金属層の第2層
に形成する銅被膜層や一次電気めっき処理によって形成
された銅被覆層が溶解するような条件で処理することは
厳に避けなければならない。
The pretreatment for the catalyst application treatment is as follows:
Although not particularly limited, it is desirable to perform a cleaning treatment such as degreasing in order to increase the adhesion between the base metal layer and the insulator film and between the base metal layer and the electroless plating film.
However, it is necessary to strictly avoid processing under such conditions that the copper coating layer formed on the second layer of the base metal layer and the copper coating layer formed by the primary electroplating process are dissolved by this pretreatment.

【0026】また、本発明において使用する無電解めっ
き液は、含まれる金属イオンが自己触媒性を有し、かつ
ヒドラジン、ホスフィン酸ナトリウム、ホルマリン等の
還元剤によって還元されて金属析出する還元析出型のも
のであればいずれでもよいが、本発明の趣旨からいっ
て、下地金属層に生じているピンホールにより露出した
絶縁体フィルム露出部分の良導体化を図ることが主たる
目的であるから、導電性が良好で比較的作業性のよい無
電解銅めっき液が最適である。
In addition, the electroless plating solution used in the present invention is a reduced deposition type in which metal ions contained therein have autocatalytic properties and are reduced by a reducing agent such as hydrazine, sodium phosphinate, formalin or the like to deposit metals. Any material may be used as long as the object of the present invention is to make the exposed portion of the insulator film exposed by the pinholes formed in the base metal layer a good conductor. An electroless copper plating solution having a good workability and relatively good workability is optimal.

【0027】なお、この無電解銅めっき液によるめっき
被膜の厚さは、基板面におけるピンホールによる欠陥修
復が可能でかつ電気銅めっき処理を施す際に、電気銅め
っき液によって溶解されない程度の厚さであればよく、
0.01〜1.0μmの範囲であることが好ましい。
The thickness of the plating film formed by the electroless copper plating solution is set to such a level that a defect can be repaired by pinholes on the substrate surface and that the plating film is not dissolved by the electrolytic copper plating solution during the electrolytic copper plating treatment. If it is good,
It is preferably in the range of 0.01 to 1.0 μm.

【0028】このようにして無電解銅めっき被膜を形成
させた基板は、最終的に所望の厚さの導体層が形成され
るように二次電気銅めっき処理を施すことにより、下地
金属形成時に発生した大小様々なピンホールによる影響
を受けない健全で導体層の密着度の高い2層フレキシブ
ル基板を得ることができる。なお、本発明において行わ
れる電気銅めっき処理は、一次、二次ともに常法による
電気銅めっき法における諸条件を採用すればよい。
The substrate on which the electroless copper plating film is formed as described above is subjected to a secondary electrolytic copper plating process so that a conductor layer having a desired thickness is finally formed, so that the substrate can be formed at the time of forming the base metal. It is possible to obtain a two-layer flexible substrate that is not affected by various generated pinholes and is sound and has a high degree of adhesion of the conductor layer. The copper electroplating treatment performed in the present invention may employ various conditions in the conventional copper electroplating for both primary and secondary.

【0029】本発明において、絶縁体フィルム上に直接
形成される下地金属層は、ニッケル、銅−ニッケル合
金、クロムおよびクロム酸化物からなる群から選ばれた
少なくとも1種から得られたを乾式めっき被膜層を第1
層とし、その上にさらに第2層として銅の乾式めっき被
膜層を形成することにより2層としたものである。この
ように下地金属層を2層に形成したのは、乾式めっき処
理によるピンホールの発生箇所をずらすことにより、ピ
ンホールに基づく前記したような弊害を可及的に抑制す
ることと、下地金属層の第1層に絶縁体フィルムの構成
材料である合成樹脂と比較的密着性の良好なニッケル、
クロムおよびこれらの化合物等による乾式めっき被膜層
を配し、第2層の表面層に導電性の高い銅被覆層を配す
ることで下地金属層の密着性と通電性の双方を高め、次
に行われる一次銅電解処理がより容易に行われるように
するためである。
In the present invention, the underlying metal layer directly formed on the insulator film is obtained by dry plating at least one selected from the group consisting of nickel, copper-nickel alloy, chromium and chromium oxide. First coating layer
The second layer is formed by forming a copper dry plating layer as a second layer on the second layer. The reason why the underlayer metal layer is formed in two layers is that the above-mentioned adverse effects due to the pinholes are suppressed as much as possible by shifting the locations where pinholes are generated by the dry plating process. Nickel having relatively good adhesion to a synthetic resin as a constituent material of an insulator film,
By providing a dry plating film layer of chromium and these compounds and the like, and disposing a highly conductive copper coating layer on the surface layer of the second layer, both the adhesion and the electrical conductivity of the underlying metal layer are improved, This is to make the performed primary copper electrolytic treatment easier.

【0030】下地金属層として形成させるそれぞれの乾
式めっき被膜層厚さは、第1層のニッケル、銅−ニッケ
ル合金、クロム、クロム酸化物等の乾式めっき被膜層で
は、50〜2,000オングストロームであることが好
ましく、第2層の銅乾式めきっき被膜層では200〜
5,000オングストロームであることが好ましい。第
1層の乾式めっき被膜層の厚さが50オングストローム
未満であるときは、その後の各処理工程を経ても下地金
属層の長期的な密着性に問題を生じ、また2,000オ
ングストロームを超えると、配線部の加工に際してニッ
ケル、クロム等の除去が困難になるからである。また第
2層の銅乾式めっき被膜層の厚さが200オングストロ
ーム未満であるときは、ピンホールによる欠陥の軽減効
果が少なく満足な一次電気銅めっき処理を行うことが困
難であり、また5,000オングストロームを超える
と、被膜層に応力によるクラックやそり等を生じ、かえ
って密着強度が低下をきたすようになるのでいずれも好
ましくない。
The thickness of each dry plating film formed as a base metal layer is 50 to 2,000 angstroms for the first dry plating film layer of nickel, copper-nickel alloy, chromium, chromium oxide or the like. Preferably, the second copper dry plating layer is 200-200.
Preferably, it is 5,000 angstroms. When the thickness of the first dry plating film layer is less than 50 angstroms, there is a problem in long-term adhesion of the underlying metal layer even after each of the subsequent processing steps, and when it exceeds 2,000 angstroms. This is because it becomes difficult to remove nickel, chromium, and the like when processing the wiring portion. When the thickness of the second copper dry plating film layer is less than 200 angstroms, it is difficult to perform a satisfactory primary copper electroplating process because the effect of reducing defects due to pinholes is small and it is difficult. If the thickness exceeds angstrom, cracks and warpage due to stress are generated in the coating layer, and the adhesion strength is rather lowered.

【0031】また、本発明におけるこれら2層の下地金
属層の形成のための乾式めっき法としては、真空蒸着
法、スパッタリング法、またはイオンプレ−ティング法
のいずれかを適宜採用すればよい。
As a dry plating method for forming these two underlying metal layers in the present invention, any one of a vacuum deposition method, a sputtering method, and an ion plating method may be appropriately employed.

【0032】[0032]

【実施例】以下に本発明の実施例を比較例とともに掲げ
る。 実施例1:厚さ50μmのポリイミドフィルム(東レ・
デュポン社製、製品名「カプトン200V」)を12c
m×12cmの大きさに切り出し、その片面に下地金属
層の第1層として真空蒸着法によりニッケル被膜層を1
00オングストロームの厚さに形成し、さらにその上に
第2層として真空蒸着法により銅被覆層を1000オン
グストロームの厚さに形成した。
EXAMPLES Examples of the present invention are listed below together with comparative examples. Example 1: 50 μm thick polyimide film (Toray
DuPont product name "Kapton 200V") 12c
m × 12 cm, and a nickel coating layer was formed on one surface thereof by a vacuum evaporation method as a first layer of a base metal layer.
A copper coating layer was formed to a thickness of 1000 Å by vacuum evaporation as a second layer thereon.

【0033】次に、これを弱アルカリ性の脱脂剤に1分
間浸漬し、引き続き2分間水洗して表面洗浄処理を行っ
た。次に、表1に示す組成の電気銅めっき液を用いて厚
さ1μmの一次電気銅めっき被膜層を形成した。このと
きのめっき条件は、めっき液温度は室温とし、空気撹拌
を行い、電流密度を0.5A/dmとした。
Next, this was immersed in a weak alkaline degreasing agent for 1 minute, and then washed with water for 2 minutes to perform a surface cleaning treatment. Next, a primary electrolytic copper plating layer having a thickness of 1 μm was formed using an electrolytic copper plating solution having the composition shown in Table 1. The plating conditions at this time were a plating solution temperature of room temperature, air stirring, and a current density of 0.5 A / dm 2 .

【0034】[0034]

【表1】 硫酸銅5水塩 :80g/リットル 硫酸 :200g/リットル 光沢剤 :適宜 塩素イオン :50mg/リットル[Table 1] Copper sulfate pentahydrate: 80 g / l Sulfuric acid: 200 g / l Brightener: as appropriate Chloride ion: 50 mg / l

【0035】一次電気銅めっき被膜形成後、水洗し、キ
ャタライジング液、アクセレーティング液(共に奥野製
薬社製)に浸漬して基板表面に触媒を付与した。引き続
き基板を表2に示す組成の無電解銅めっき液に3分間浸
漬して表面に0.1μmの厚さの無電解銅めっき被膜を
成膜した。このときのめっき条件は、めっき液の温度は
60℃、pHは12.5であり、空気撹拌を行った。
After the formation of the primary electrolytic copper plating film, the film was washed with water and immersed in a catalizing solution and an accelerating solution (both manufactured by Okuno Pharmaceutical Co., Ltd.) to apply a catalyst to the substrate surface. Subsequently, the substrate was immersed in an electroless copper plating solution having the composition shown in Table 2 for 3 minutes to form an electroless copper plating film having a thickness of 0.1 μm on the surface. The plating conditions at this time were as follows: the temperature of the plating solution was 60 ° C., the pH was 12.5, and air stirring was performed.

【0036】[0036]

【表2】 硫酸銅 :10g/リットル EDTA :30g/リットル HCHO(36%溶液) :5ミリリットル/リットル PEG1000 :0.5g/リットル ジピリジル :10mg/リットル[Table 2] Copper sulfate: 10 g / liter EDTA: 30 g / liter HCHO (36% solution): 5 ml / liter PEG1000: 0.5 g / liter Dipyridyl: 10 mg / liter

【0037】無電解めっき処理後、引き続いて表1に示
す組成の電気銅めっき液を用いて銅導体層の厚さが最終
的に5μmになるように二次電気銅めっき被膜を形成し
た。このときのめっき条件は、めっき液の温度は室温と
し、空気撹拌を行い、通電時の電流密度を3A/dm
とした。
After the electroless plating treatment, a secondary electrolytic copper plating film was formed using an electrolytic copper plating solution having the composition shown in Table 1 so that the thickness of the copper conductor layer finally became 5 μm. The plating conditions at this time were as follows: the temperature of the plating solution was room temperature, the air was stirred, and the current density during energization was 3 A / dm 2.
And

【0038】得られた基板に対し、銅被膜側から光を当
ててピンホールの有無を確認したところ12cm×12
cmの領域内では光の透過は認められず、ピンホールが
存在しないことが分かった。この基板を用いて配線幅4
0μm、配線ピッチ80μmのフレキシブル配線板を常
法によるサブトラクティブ法に基づいて作製したとこ
ろ、配線部分にピンホールに起因する欠陥のない2層フ
レキシブル配線板が得られた。
The obtained substrate was irradiated with light from the copper film side to check for the presence of pinholes.
No light transmission was observed in the region of cm, indicating that no pinhole was present. Wiring width 4 using this substrate
When a flexible wiring board having a wiring pitch of 0 μm and a wiring pitch of 80 μm was manufactured based on a subtractive method according to a conventional method, a two-layer flexible wiring board free from defects due to pinholes in wiring portions was obtained.

【0039】また、該2層フレキシブル配線板の配線部
を垂直に引き剥がして配線部の密着強度を測定したとこ
ろ、その強度は1kgf/cm以上であり、ポリイミド
フィルムに下地金属層を真空蒸着した後、一次電気銅め
っき被膜層を施さずに直ちに無電解めっき処理を施し次
いで電気銅めっき被膜層を形成した基板によるものに比
べて高い密着強度を有し、十分に実用に供することがで
きる密着強度を有するものであることが分かった。
When the wiring portion of the two-layer flexible wiring board was peeled off vertically and the adhesion strength of the wiring portion was measured, the strength was 1 kgf / cm or more, and the base metal layer was vacuum-deposited on the polyimide film. After that, the electroless plating process is immediately performed without applying the primary electrolytic copper plating film layer, and then the adhesive strength is higher than that of the substrate having the electrolytic copper plating film layer formed thereon, and the adhesion can be sufficiently provided for practical use. It was found to have strength.

【0040】なお、本実施例においては、サブトラクテ
ィブ法によってポリイミドフィルムの片面に配線パター
ンを有する基板から得られた片面フレキシブル配線板に
ついての作製例を示したが、絶縁体フィルムの両面に配
線部を有する両面フレキシブル配線板、あるいはセミア
ディティブ法により作製された片面または両面フレキシ
ブル配線板についても同様の優れた結果が得られること
が確認されている。
In this embodiment, an example of manufacturing a single-sided flexible wiring board obtained from a substrate having a wiring pattern on one side of a polyimide film by a subtractive method has been described. It has been confirmed that the same excellent results can be obtained for a double-sided flexible wiring board having the above-mentioned or a single-sided or double-sided flexible wiring board manufactured by a semi-additive method.

【0041】実施例2:下地金属層におけるの第1層の
ニッケル被膜層を真空蒸着法により500オングストロ
ームの厚さに形成した以外は実施例1と同様の手順で2
層フレキシブル基板を作製し、この基板を使用して実施
例1と同様の手順で2層フレキシブル配線板を作製した
ところ、配線部分にピンホールに起因する欠陥のない2
層フレキシブル配線板が得られた。また、得られた2層
フレキシブル配線板の配線部を垂直に引き剥がして配線
部の密着強度を測定したところ、その強度は1kgf/
cm以上であり、十分に実用に供することができる密着
強度を有するものであることが分かった。
Example 2 The procedure of Example 1 was repeated except that the first nickel coating layer in the base metal layer was formed to a thickness of 500 Å by vacuum evaporation.
A two-layer flexible printed circuit board was prepared and a two-layer flexible printed circuit board was prepared using this substrate in the same procedure as in Example 1.
A layer flexible wiring board was obtained. When the wiring portion of the obtained two-layer flexible wiring board was peeled off vertically and the adhesion strength of the wiring portion was measured, the strength was 1 kgf /
cm or more, and was found to have a sufficient adhesive strength to be practically used.

【0042】実施例3:下地金属層における第1層のニ
ッケル被膜層を真空蒸着法により1,000オングスト
ロームの厚さに形成し、第2層の銅被膜層を真空蒸着法
により500オングストロームの厚さに形成したた以外
は実施例1と同様の手順で2層フレキシブル基板を作製
し、この基板を使用して実施例1と同様の手順で2層フ
レキシブル配線板を作製したところ、配線部分にピンホ
ールに起因する欠陥のない2層フレキシブル配線板が得
られた。また、得られた2層フレキシブル配線板の配線
部を垂直に引き剥がして配線部の密着強度を測定したと
ころ、その強度は1kgf/cm以上であり、十分に実
用に供することができる密着強度を有するものであるこ
とが分かった。
Example 3 A first nickel coating layer of a base metal layer was formed to a thickness of 1,000 angstroms by a vacuum evaporation method, and a second copper coating layer was formed to a thickness of 500 angstroms by a vacuum evaporation method. A two-layer flexible printed circuit board was manufactured in the same procedure as in Example 1 except that the wiring board was formed, and a two-layer flexible printed circuit board was manufactured in the same procedure as in Example 1 using this substrate. A two-layer flexible wiring board free from defects due to pinholes was obtained. Further, when the wiring portion of the obtained two-layer flexible wiring board was peeled off vertically and the adhesion strength of the wiring portion was measured, the strength was 1 kgf / cm or more, and the adhesion strength sufficient for practical use was obtained. It was found to have.

【0043】実施例4:下地金属層における第1層のニ
ッケルに代えてクロムを真空蒸着法により100オング
ストロームの厚さに形成した以外は実施例1と同様の手
順で2層フレキシブル基板を作製し、この基板を使用し
て実施例1と同様の手順で2層フレキシブル配線板を作
製したところ、配線部分にピンホールに起因する欠陥の
ない2層フレキシブル配線板が得られた。また、得られ
た2層フレキシブル配線板の配線部を垂直に引き剥がし
て配線部の密着強度を測定したところ、その強度は1k
gf/cm以上であり、十分に実用に供することができ
る密着強度を有するものであることが分かった。
Example 4 A two-layer flexible substrate was manufactured in the same procedure as in Example 1 except that chromium was formed to a thickness of 100 angstroms by vacuum evaporation instead of nickel of the first layer in the base metal layer. Using this substrate, a two-layer flexible wiring board was manufactured in the same procedure as in Example 1. As a result, a two-layer flexible wiring board free from defects caused by pinholes in the wiring portion was obtained. When the wiring portion of the obtained two-layer flexible wiring board was peeled vertically and the adhesion strength of the wiring portion was measured, the strength was 1 k.
gf / cm or more, and was found to have a sufficient adhesive strength to be practically used.

【0044】実施例5:下地金属層における第1層の形
成にニッケルに代えてクロム酸化物を真空蒸着法により
100オングストロームの厚さに形成した以外は実施例
1と同様の手順で2層フレキシブル基板を作製し、この
基板を使用して実施例1と同様の手順で2層フレキシブ
ル配線板を作製したところ、配線部分にピンホールに起
因する欠陥のない2層フレキシブル配線板が得られた。
また、得られた2層フレキシブル配線板の配線部を垂直
に引き剥がして配線部の密着強度を測定したところ、そ
の強度は1kgf/cm以上であり、十分に実用に供す
ることができる密着強度を有するものであることが分か
った。
Example 5: A two-layer flexible film was formed in the same manner as in Example 1 except that chromium oxide was formed to a thickness of 100 angstroms by vacuum evaporation instead of nickel in forming the first layer in the base metal layer. A substrate was prepared, and a two-layer flexible wiring board was prepared using this substrate in the same procedure as in Example 1. As a result, a two-layer flexible wiring board free from defects due to pinholes in the wiring portion was obtained.
Further, when the wiring portion of the obtained two-layer flexible wiring board was peeled off vertically and the adhesion strength of the wiring portion was measured, the strength was 1 kgf / cm or more, and the adhesion strength sufficient for practical use was obtained. It was found to have.

【0045】実施例6:下地金属層における第1層のク
ロム酸化物被膜層を真空蒸着法により50オングストロ
ームの厚さに形成し、第2層の銅被膜層を真空蒸着法に
より1,500オングストロームの厚さに形成した以外
は実施例1と同様の手順で2層フレキシブル基板を作製
し、この基板を使用して実施例1と同様の手順で2層フ
レキシブル配線板を作製したところ、配線部分にピンホ
ールに起因する欠陥のない2層フレキシブル配線板が得
られた。また、得られた2層フレキシブル配線板の配線
部を垂直に引き剥がして配線部の密着強度を測定したと
ころ、その強度は1kgf/cm以上であり、十分に実
用に供することができる密着強度を有するものであるこ
とが分かった。
Example 6: The first chromium oxide coating layer of the base metal layer was formed to a thickness of 50 angstroms by a vacuum evaporation method, and the second copper coating layer was formed to a thickness of 1,500 angstroms by a vacuum evaporation method. A two-layer flexible printed circuit board was manufactured in the same procedure as in Example 1 except that the wiring layer was formed to a thickness of 2 mm, and a two-layer flexible wiring board was manufactured in the same procedure as in Example 1 using this substrate. Thus, a two-layer flexible wiring board free from defects due to pinholes was obtained. Further, when the wiring portion of the obtained two-layer flexible wiring board was peeled off vertically and the adhesion strength of the wiring portion was measured, the strength was 1 kgf / cm or more, and the adhesion strength sufficient for practical use was obtained. It was found to have.

【0046】実施例7:下地金属層における第1層の形
成にニッケルに代えてニッケル含有量40重量%の銅−
ニッケル合金を真空蒸着法により100オングストロー
ムの厚さに形成した以外は実施例1と同様の手順で2層
フレキシブル基板を作製し、この基板を使用して実施例
1と同様の手順で2層フレキシブル配線板を作製したと
ころ、配線部分にピンホールに起因する欠陥のない2層
フレキシブル配線板が得られた。また、得られた2層フ
レキシブル配線板の配線部を垂直に引き剥がして配線部
の密着強度を測定したところ、その強度は1kgf/c
m以上であり、十分に実用に供することができる密着強
度を有するものであることが分かった。
Example 7: The formation of the first layer in the base metal layer was replaced with nickel having a nickel content of 40% by weight.
A two-layer flexible substrate was prepared in the same procedure as in Example 1 except that a nickel alloy was formed to a thickness of 100 Å by a vacuum deposition method, and this substrate was used to produce a two-layer flexible substrate in the same procedure as in Example 1. When a wiring board was prepared, a two-layer flexible wiring board having no defects due to pinholes in the wiring portion was obtained. Further, when the wiring portion of the obtained two-layer flexible wiring board was peeled vertically and the adhesion strength of the wiring portion was measured, the strength was 1 kgf / c.
m or more, and was found to have a sufficient adhesive strength to be practically used.

【0047】実施例8:一次電気銅めっき被膜層を5μ
mの厚さに形成した以外は実施例1と同様の手順で2層
フレキシブル基板を作製し、この基板を使用して実施例
1と同様の手順で2層フレキシブル配線板を作製したと
ころ、配線部分にピンホールに起因する欠陥のない2層
フレキシブル配線板が得られた。また、得られた2層フ
レキシブル配線板の配線部を垂直に引き剥がして配線部
の密着強度を測定したところ、その強度は1kgf/c
m以上であり、十分に実用に供することができる密着強
度を有するものであることが分かった。
Example 8: 5 μm primary copper plating layer
A two-layer flexible printed circuit board was manufactured in the same procedure as in Example 1 except that the wiring board was formed to a thickness of m, and a two-layer flexible wiring board was manufactured in the same procedure as in Example 1 using this substrate. A two-layer flexible wiring board free from defects caused by pinholes was obtained. Further, when the wiring portion of the obtained two-layer flexible wiring board was peeled vertically and the adhesion strength of the wiring portion was measured, the strength was 1 kgf / c.
m or more, and was found to have a sufficient adhesive strength to be practically used.

【0048】実施例9:一次電気銅めっき被膜層を5μ
mの厚さに形成した以外は実施例5と同様の手順で2層
フレキシブル基板を作製し、この基板を使用して実施例
1と同様の手順で2層フレキシブル配線板を作製したと
ころ、配線部分にピンホールに起因する欠陥のない2層
フレキシブル配線板が得られた。また、得られた2層フ
レキシブル配線板の配線部を垂直に引き剥がして配線部
の密着強度を測定したところ、その強度は1kgf/c
m以上であり、十分に実用に供することができる密着強
度を有するものであることが分かった。
Example 9: The primary copper electroplating layer was 5 μm thick.
A two-layer flexible printed circuit board was produced in the same procedure as in Example 5 except that the substrate was formed to a thickness of m, and a two-layer flexible wiring board was produced in the same procedure as in Example 1 using this substrate. A two-layer flexible wiring board free from defects caused by pinholes was obtained. Further, when the wiring portion of the obtained two-layer flexible wiring board was peeled vertically and the adhesion strength of the wiring portion was measured, the strength was 1 kgf / c.
m or more, and was found to have a sufficient adhesive strength to be practically used.

【0049】比較例1:下地金属層の第1層のニッケル
被膜層の厚さを50オングストロームとし、第2層の銅
被膜層の厚さを50オングストロームとした以外は実施
例1と同様の手順で一次電気銅めっき処理を施したとこ
ろ、電解電圧が10v以上となって電流が流れなくな
り、電気銅めっき処理を継続することができなかった。
Comparative Example 1: The same procedure as in Example 1 except that the thickness of the first nickel coating layer of the base metal layer was set to 50 Å and the thickness of the second copper coating layer was set to 50 Å. When the primary electrolytic copper plating treatment was performed, the electrolytic voltage became 10 V or more, the current stopped flowing, and the electrolytic copper plating treatment could not be continued.

【0050】比較例2:下地金属層の上に一次銅めっき
処理を施さなかった以外は実施例1と同様の手順で2層
フレキシブル基板を作製し、この基板を使用して実施例
1と同様の手順で2層フレキシブル配線板を作製したと
ころ、配線部分にピンホールに起因する欠陥のない2層
フレキシブル配線板が得られた。しかし、得られた2層
フレキシブル配線板の配線部を垂直に引き剥がして、そ
の密着強度を測定したところ、その強度は1kgf/c
m以下であり、実用に供することができる密着強度とは
ならなかった。
Comparative Example 2: A two-layer flexible substrate was produced in the same procedure as in Example 1 except that the primary copper plating treatment was not performed on the underlying metal layer, and this substrate was used to perform the same procedure as in Example 1. When a two-layer flexible wiring board was produced by the procedure described in the above, a two-layer flexible wiring board free from defects caused by pinholes in the wiring portion was obtained. However, when the wiring portion of the obtained two-layer flexible wiring board was peeled vertically and its adhesion strength was measured, the strength was found to be 1 kgf / c.
m or less, and did not have an adhesive strength that could be put to practical use.

【0051】比較例3:下地金属層の上に施す一次銅め
っき被膜層の厚さを0.1μmとした以外は実施例1と
同様の手順で2層フレキシブル基板を作製し、この基板
を使用して実施例1と同様の手順で2層フレキシブル配
線板を作製したところ、配線部分にピンホールに起因す
る欠陥のない2層フレキシブル配線板が得られた。しか
し、得られた2層フレキシブル配線板の配線部を垂直に
引き剥がして、その密着強度を測定したところ、その強
度は1kgf/cm以下であり、実用に供することがで
きる密着強度とはならなかった。
Comparative Example 3: A two-layer flexible substrate was produced in the same procedure as in Example 1 except that the thickness of the primary copper plating film layer applied on the base metal layer was changed to 0.1 μm, and this substrate was used. Then, a two-layer flexible wiring board was produced in the same procedure as in Example 1. As a result, a two-layer flexible wiring board free from defects caused by pinholes in the wiring portion was obtained. However, when the wiring portion of the obtained two-layer flexible wiring board was peeled off vertically and its adhesion strength was measured, the strength was 1 kgf / cm or less, which was not enough to be practically used. Was.

【0052】比較例4:一次電気銅めっき処理と無電解
銅めっき処理を省略し、下地金属層の上に直接電気銅め
っき処理を施した以外は実施例1と同様の手順で2層フ
レキシブル基板を作製した。得られた基板に対し、銅被
膜側から光を当ててピンホールの有無を確認したところ
12cm×12cmの領域内で部分的に光の透過が認め
られ、ピンホールが存在することが分かった。また、こ
の基板を使用して実施例1と同様の手順で2層フレキシ
ブル配線板を作製したところ、配線部にピンホールに起
因すると思われる欠落部による不良箇所があることが確
認され、この基板は狭ピッチ幅の配線部を有する2層フ
レキシブル配線板の作製には適さないことが分かった。
Comparative Example 4: Two-layer flexible substrate in the same procedure as in Example 1 except that the primary electrolytic copper plating and the electroless copper plating were omitted, and the electrolytic copper plating was performed directly on the underlying metal layer. Was prepared. The obtained substrate was irradiated with light from the copper coating side to check for the presence or absence of pinholes. As a result, light was partially transmitted within a region of 12 cm × 12 cm, indicating that pinholes were present. Further, when a two-layer flexible wiring board was produced using this substrate in the same procedure as in Example 1, it was confirmed that there was a defective portion in the wiring portion due to a missing portion considered to be due to a pinhole. Was not suitable for producing a two-layer flexible wiring board having a wiring portion having a narrow pitch width.

【0053】比較例5:一次電解銅めっき被膜層を12
μmの厚さで形成し、二次電気銅めっき被膜処理を施し
て得られる最終的な導体層の厚さを15μmとした以外
は実施例1と同様の手順で2層フレキシブル基板を作製
し、この基板を使用して実施例1と同様の手順で2層フ
レキシブル配線板を作製したところ、配線部分にピンホ
ールに起因する欠陥のない2層フレキシブル配線板が得
られた。しかし、得られた2層フレキシブル配線板は、
下地金属層形成に際しての粗大ピンホールに基づいくポ
リイミドフィルムの露出部分と思われる箇所の銅導体層
の厚さが薄く、他の部分との段差が12μmもあること
からフレキシブル配線板には適さないことが分かった。
Comparative Example 5: The primary electrolytic copper plating film layer was 12
A two-layer flexible substrate was produced in the same procedure as in Example 1, except that the thickness of the conductive layer was formed to a thickness of 15 μm, and the thickness of the final conductor layer obtained by performing the secondary electrolytic copper plating treatment was changed to 15 μm. Using this substrate, a two-layer flexible wiring board was produced in the same procedure as in Example 1, and a two-layer flexible wiring board free from defects caused by pinholes in the wiring portion was obtained. However, the obtained two-layer flexible wiring board is
It is not suitable for a flexible wiring board because the thickness of the copper conductor layer at the portion considered to be the exposed portion of the polyimide film based on the coarse pinhole at the time of forming the base metal layer is small and the step with other portions is as large as 12 μm. I understood that.

【0054】比較例6:下地金属層の上に施す一次銅め
っき被膜層の厚さを0.1μmとした以外は実施例4と
同様の手順で2層フレキシブル基板を作製し、この基板
を使用して実施例1と同様の手順で2層フレキシブル配
線板を作製したところ、配線部分にピンホールに起因す
る欠陥のない2層フレキシブル配線板が得られた。しか
し、得られた2層フレキシブル配線板の配線部を垂直に
引き剥がして、その密着強度を測定したところ、その強
度は1kgf/cm以下であり、実用に供することがで
きる密着強度とはならなかった。
Comparative Example 6: A two-layer flexible substrate was produced in the same procedure as in Example 4 except that the thickness of the primary copper plating film layer applied on the base metal layer was changed to 0.1 μm, and this substrate was used. Then, a two-layer flexible wiring board was produced in the same procedure as in Example 1. As a result, a two-layer flexible wiring board free from defects caused by pinholes in the wiring portion was obtained. However, when the wiring portion of the obtained two-layer flexible wiring board was peeled off vertically and its adhesion strength was measured, the strength was 1 kgf / cm or less, which was not enough to be practically used. Was.

【0055】比較例7:下地金属層の上に施す一次銅め
っき被膜層の厚さを0.1μmとした以外は実施例5と
同様の手順で2層フレキシブル基板を作製し、この基板
を使用して実施例1と同様の手順で2層フレキシブル配
線板を作製したところ、配線部分にピンホールに起因す
る欠陥のない2層フレキシブル配線板が得られた。しか
し、得られた2層フレキシブル配線板の配線部を垂直に
引き剥がして、その密着強度を測定したところ、その強
度は1kgf/cm以下であり、実用に供することがで
きる密着強度とはならなかった。
Comparative Example 7: A two-layer flexible substrate was produced in the same procedure as in Example 5, except that the thickness of the primary copper plating layer applied on the underlying metal layer was changed to 0.1 μm, and this substrate was used. Then, a two-layer flexible wiring board was produced in the same procedure as in Example 1. As a result, a two-layer flexible wiring board free from defects caused by pinholes in the wiring portion was obtained. However, when the wiring portion of the obtained two-layer flexible wiring board was peeled off vertically and its adhesion strength was measured, the strength was 1 kgf / cm or less, which was not enough to be practically used. Was.

【0056】比較例8:下地金属層の上に施す一次銅め
っき被膜層の厚さを0.1μmとした以外は実施例7と
同様の手順で2層フレキシブル基板を作製し、この基板
を使用して実施例1と同様の手順で2層フレキシブル配
線板を作製したところ、配線部分にピンホールに起因す
る欠陥のない2層フレキシブル配線板が得られた。しか
し、得られた2層フレキシブル配線板の配線部を垂直に
引き剥がして、その密着強度を測定したところ、その強
度は1kgf/cm以下であり、実用に供することがで
きる密着強度とはならなかった。
Comparative Example 8: A two-layer flexible substrate was produced in the same procedure as in Example 7, except that the thickness of the primary copper plating layer applied on the base metal layer was changed to 0.1 μm, and this substrate was used. Then, a two-layer flexible wiring board was produced in the same procedure as in Example 1. As a result, a two-layer flexible wiring board free from defects caused by pinholes in the wiring portion was obtained. However, when the wiring portion of the obtained two-layer flexible wiring board was peeled off vertically and its adhesion strength was measured, the strength was 1 kgf / cm or less, which was not enough to be practically used. Was.

【0057】[0057]

【発明の効果】以上述べたように、本発明の2層フレキ
シブル基板の製造方法によるときは、絶縁体フィルム上
に施す乾式めっき法により生ずる下地金属層のピンホー
ルを下地金属層を2層に形成することにより軽減した上
で、該ピンホールのうちの微小ピンホールに基づく下地
金属層の密着性の低下を一次電気銅めっき処理を行うこ
とによって抑制し、粗大ピンホールによる絶縁体フィル
ムの露出部分を無電解銅めっき被膜層によって覆うこと
によって粗大ピンホールに基づく導体部欠落の発生を抑
制するようにしたので、その結果3〜18μmというよ
うな極めて薄い銅導体層を有する2層フレキシブル基板
を健全かつ容易に得ることができる。従って、この基板
を使用することによって密着性が高く、欠陥のない配線
部を有する信頼性の高い2層フレキシブル配線板を効率
よく得ることができるのでその効果は大きい。
As described above, according to the method of manufacturing a two-layer flexible substrate of the present invention, the pinholes of the underlying metal layer generated by the dry plating method applied to the insulating film are formed into two layers of the underlying metal layer. After being reduced by forming, the lowering of the adhesion of the underlying metal layer based on the fine pinholes among the pinholes is suppressed by performing the primary electrolytic copper plating treatment, and the exposure of the insulator film due to the coarse pinholes is performed. By covering the portion with an electroless copper plating film layer, the occurrence of the conductor portion loss due to the coarse pinhole is suppressed, so that a two-layer flexible substrate having an extremely thin copper conductor layer of 3 to 18 μm is obtained. Sound and easy to get. Therefore, by using this substrate, a highly reliable two-layer flexible wiring board having high adhesion and a defect-free wiring portion can be efficiently obtained, and the effect is large.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H05K 3/38 H05K 3/38 C // C23C 14/06 C23C 14/06 N ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI H05K 3/38 H05K 3/38 C // C23C 14/06 C23C 14/06 N

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 絶縁体フィルムの片面または両面に、接
着剤を介さずに直接下地金属層を形成し、該下地金属層
上に所望の厚さの銅導体層を形成する2層フレキシブル
基板の製造方法において、絶縁体フィルム上に下地金属
層をニッケル、銅−ニッケル合金、クロム、クロム酸化
物からなる群から選ばれた少なくとも1種を用い乾式め
っき法により形成された被膜層と該被膜層上にさらに形
成された乾式めっき法による銅被膜層によって形成し、
次に該下地金属層上に一次電気銅めっき被膜層を形成し
た後、該一次電気銅めっき被膜層上に中間金属層として
無電解銅めっき被膜層を形成し、最後に該中間金属層上
に二次電気銅めっき被膜層を形成することにより最終的
に絶縁体フィルム上に5〜18μmの厚さの銅導体層を
形成することを特徴とする2層フレキシブル基板の製造
方法。
1. A two-layer flexible substrate comprising: a base metal layer formed directly on one or both sides of an insulator film without an adhesive; and a copper conductor layer having a desired thickness formed on the base metal layer. In the manufacturing method, a coating layer formed by dry plating using at least one selected from the group consisting of nickel, copper-nickel alloy, chromium, and chromium oxide on an insulating film, and the coating layer Formed by a copper coating layer by a dry plating method further formed on the
Next, after forming a primary electrolytic copper plating film layer on the base metal layer, an electroless copper plating film layer is formed as an intermediate metal layer on the primary electrolytic copper plating film layer, and finally on the intermediate metal layer. A method for manufacturing a two-layer flexible substrate, comprising: finally forming a copper conductor layer having a thickness of 5 to 18 μm on an insulator film by forming a secondary electrolytic copper plating film layer.
【請求項2】 下地金属層の第1層として形成するニッ
ケル、銅−ニッケル合金、クロム、クロム酸化物からな
る群から選ばれた少なくとも1種を用いた乾式めっき被
膜層の厚さは50〜2,000オングストロームである
ことを特徴とする請求項1記載の2層フレキシブル基板
の製造方法。
2. A dry plating layer using at least one selected from the group consisting of nickel, copper-nickel alloy, chromium, and chromium oxide formed as the first layer of the base metal layer has a thickness of 50 to 50. 2. The method for manufacturing a two-layer flexible substrate according to claim 1, wherein the thickness is 2,000 angstroms.
【請求項3】下地金属層の第2層とし形成する乾式めっ
き法による銅被膜層の厚さは200〜5,000オング
ストロームであることを特徴とする請求項1記載の2層
フレキシブル基板の製造方法。
3. The two-layer flexible substrate according to claim 1, wherein the thickness of the copper coating layer formed by the dry plating method, which is formed as the second layer of the base metal layer, is 200 to 5,000 angstroms. Method.
【請求項4】 下地金属層を形成するための乾式めっき
法は、真空蒸着法、スパッタリング法、またはイオンプ
レーティング法のいずれかであることを特徴とする請求
項1記載の2層フレキシブル基板の製造方法。
4. The two-layer flexible substrate according to claim 1, wherein the dry plating method for forming the base metal layer is any one of a vacuum deposition method, a sputtering method, and an ion plating method. Production method.
【請求項5】 一次電気銅めっき被膜層の厚さは0.3
〜10μmの範囲のであることを特徴とする請求項1記
載の2層フレキシブル基板の製造方法。
5. The thickness of the primary electrolytic copper plating film layer is 0.3
2. The method for manufacturing a two-layer flexible substrate according to claim 1, wherein the thickness is in a range of 10 to 10 [mu] m.
【請求項6】 無電解銅めっき被膜層の厚さは、0.0
1〜1.0μmの範囲であることを特徴とする請求項1
記載の2層フレキシブル基板の製造方法。
6. The thickness of the electroless copper plating film layer is 0.0
2. The method according to claim 1, wherein the distance is in the range of 1 to 1.0 [mu] m.
A method for producing a two-layer flexible substrate according to the above.
【請求項7】 無電解銅めっき被膜層を形成するに際
し、前処理として触媒付与処理を施すことを特徴とする
請求項1記載の2層フレキシブル基板の製造方法。
7. The method for producing a two-layer flexible substrate according to claim 1, wherein a catalyst applying treatment is performed as a pretreatment when forming the electroless copper plating film layer.
JP35787696A 1996-12-28 1996-12-28 Production of two-layer flexible substrate Pending JPH10195668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35787696A JPH10195668A (en) 1996-12-28 1996-12-28 Production of two-layer flexible substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35787696A JPH10195668A (en) 1996-12-28 1996-12-28 Production of two-layer flexible substrate

Publications (1)

Publication Number Publication Date
JPH10195668A true JPH10195668A (en) 1998-07-28

Family

ID=18456394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35787696A Pending JPH10195668A (en) 1996-12-28 1996-12-28 Production of two-layer flexible substrate

Country Status (1)

Country Link
JP (1) JPH10195668A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100606882B1 (en) * 2000-12-25 2006-07-31 미츠이 마이닝 & 스멜팅 콤파니 리미티드 Method of manufacturing a semiconductor carrier film
JP2007023344A (en) * 2005-07-19 2007-02-01 Sumitomo Metal Mining Co Ltd Duplex-plated substrate and manufacturing method therefor
JP2010192861A (en) * 2009-02-17 2010-09-02 Faintekku:Kk Method of manufacturing flexible printed circuit board
JP2013018245A (en) * 2011-07-13 2013-01-31 Sumitomo Metal Mining Co Ltd Metallized polyimide film and printed circuit board
CN110484899A (en) * 2019-09-19 2019-11-22 东莞市通科电子有限公司 A kind of chemical nickel-plating liquid and its nickel plating technology for electronic component pin nickel plating

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100606882B1 (en) * 2000-12-25 2006-07-31 미츠이 마이닝 & 스멜팅 콤파니 리미티드 Method of manufacturing a semiconductor carrier film
JP2007023344A (en) * 2005-07-19 2007-02-01 Sumitomo Metal Mining Co Ltd Duplex-plated substrate and manufacturing method therefor
JP2010192861A (en) * 2009-02-17 2010-09-02 Faintekku:Kk Method of manufacturing flexible printed circuit board
JP2013018245A (en) * 2011-07-13 2013-01-31 Sumitomo Metal Mining Co Ltd Metallized polyimide film and printed circuit board
CN110484899A (en) * 2019-09-19 2019-11-22 东莞市通科电子有限公司 A kind of chemical nickel-plating liquid and its nickel plating technology for electronic component pin nickel plating

Similar Documents

Publication Publication Date Title
JP5461988B2 (en) Metal laminated polyimide substrate and manufacturing method thereof
JP5178064B2 (en) Metal layer laminate having metal surface roughened layer and method for producing the same
JP3615033B2 (en) Manufacturing method of two-layer flexible substrate
JPS6262551A (en) Carrier and manufacturing thereof
JP2012094918A (en) To-resin adhesive layer on surface of copper, wiring board, and method for forming adhesive layer
JPH10193505A (en) 2 layer flexible circuit board production method
JP3069476B2 (en) Multilayer printed wiring board and method of manufacturing the same
CN100363175C (en) Bonding layer forming solution, method of producing copper-to-resin bonding layer using the solution, and layered product obtained thereby
JPH10195668A (en) Production of two-layer flexible substrate
JP3152331B2 (en) Flexible substrate manufacturing method
JP3112128B2 (en) Method for producing metal-coated glass epoxy substrate
JP2006104504A (en) Electroless plating pre-treatment method and surface metallizing method for polyimide resin, and flexible printed circuit board and manufacturing method for the same
JP2005060772A (en) Flexible printed circuit board manufacturing method, and base material for circuit used therefor
JP3125838B2 (en) Method for manufacturing two-layer flexible substrate
US4968398A (en) Process for the electrolytic removal of polyimide resins
JPH10200233A (en) Manufacture of 2-layer flexible substrate
JPH10154863A (en) Production of two layer flexible wiring board
JPH1060661A (en) Production of two-layer flexible substrate
JPH1065316A (en) Manufacturing method of double-layer flexible board
JPH06256960A (en) Production of copper-coated aramid substrate
JPH06316768A (en) Electroless plating method for fluorine containing polyimide resin
JPH10154864A (en) Production of two layer flexible wiring board
TWI805902B (en) Surface treated copper foil, copper clad laminate and printed circuit board
JPH1065061A (en) Method for manufacturing double-layer flexible board
JPH1065311A (en) Manufacturing method for double-layer flexible board