JPH10195581A - Hydrogen storage alloy excellent in initial activity - Google Patents

Hydrogen storage alloy excellent in initial activity

Info

Publication number
JPH10195581A
JPH10195581A JP9003363A JP336397A JPH10195581A JP H10195581 A JPH10195581 A JP H10195581A JP 9003363 A JP9003363 A JP 9003363A JP 336397 A JP336397 A JP 336397A JP H10195581 A JPH10195581 A JP H10195581A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
hydrogen storage
reaction product
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9003363A
Other languages
Japanese (ja)
Inventor
Shinichiro Kakehashi
伸一郎 梯
Yoshio Takizawa
与司夫 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP9003363A priority Critical patent/JPH10195581A/en
Publication of JPH10195581A publication Critical patent/JPH10195581A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy increased in hydrogen absorbing and releasing rates, excellent in practical use, and having a superior initial activity. SOLUTION: This hydrogen storage alloy has a composition containing, by atom, 19-30% Ti, 0.5-10% Zr, 0.02-0.4% Hf, 30-44% Mn, 4-13% Cr, 7-17% V, 2-9% Ni, 0.1-3.5% La and/or Ce, and 0.2-7% hydrogen and satisfying Ti(%)+ Zr(%)+Hf(%)+Mn(%)+Cr(%)+V(%)+Ni(%)+(La and/or Ce) (%) +hydrogen (%) + (inevitable impurities) (%)=100%. Moreover, this hydrogen storage alloy has a structure where hydrogen reaction product phases are dispersedly distributed in matrix phases of Ti-Mn alloy and the hydrogen reaction product phases are constituted essentially of hydride of La and/or Ce and (La and/or Ce)-Ni alloy and further has a structure where numerous cracks developing at the time of formation of the hydrogen reaction product phases are present and the hydrogen reaction product phases are exposed in the inner surface of the cracks.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えばヒ−トポ
ンプの吸発熱源として組み込み、或いは、水素貯蔵、輸
送用、電池の電極などとして実用に供するに際しては、
水素吸収および放出速度がきわめて速く、優れた初期活
性化を発揮する水素貯蔵合金に関するものである。
BACKGROUND OF THE INVENTION The present invention is applicable, for example, as a heat absorbing / generating source of a heat pump, or for practical use as an electrode of a battery for storing and transporting hydrogen.
The present invention relates to a hydrogen storage alloy having a very high rate of hydrogen absorption and desorption and exhibiting excellent initial activation.

【0002】[0002]

【従来の技術】従来、ヒ−トポンプの吸発熱源として組
み込むことを目的とした下記の組成範囲を有するTi−
Mn系水素貯蔵合金が知られている。原子%で、 Ti:27.5〜31.5%、 Zr:1〜5%、 Mn:38.5〜44.5%、 Cr:7〜13%、 V:10〜16%、 Ni:1〜5%、 不可避不純物:残、 結晶構造当量比:[Mn(%)+Cr(%)+V(%)
+Ni(%)]/[Ti(%)+Zr(%)]=2.0
5〜2.20、 を満足する組成を有する水素貯蔵合金。
2. Description of the Related Art Conventionally, a Ti-pump having the following composition range intended to be incorporated as a heat-absorbing and heat-generating source of a heat pump.
Mn-based hydrogen storage alloys are known. Atomic%, Ti: 27.5 to 31.5%, Zr: 1 to 5%, Mn: 38.5 to 44.5%, Cr: 7 to 13%, V: 10 to 16%, Ni: 1 55%, inevitable impurities: residual, crystal structure equivalent ratio: [Mn (%) + Cr (%) + V (%)
+ Ni (%)] / [Ti (%) + Zr (%)] = 2.0
A hydrogen storage alloy having a composition that satisfies 5 to 2.20.

【0003】[0003]

【発明が解決しようとする課題】近年、水素貯蔵合金
が、多く適用されているヒートポンプなどの高出力化お
よび高性能化、また、電池の電極などとしての実用化に
際して、さらに省エネルギ−化に対する要求は強く、こ
れに伴ない、水素貯蔵合金に対し、大きな有効水素吸蔵
量と、更により一段と速い水素吸収放出速度と共に、よ
り短時間での初期活性化が可能であることが強く望まれ
ている。しかし上記従来の技術では、これら要求を十分
に満足させることは困難であるとの問題点があった。
In recent years, hydrogen storage alloys have been used for increasing the output and performance of heat pumps and the like, which have been widely applied, and for further saving energy in practical use as electrodes of batteries. There is a strong demand, and it is strongly desired that the hydrogen storage alloy be capable of initial activation in a shorter time with a large effective hydrogen storage amount and a much faster hydrogen absorption and release rate. I have. However, the above-described conventional technique has a problem that it is difficult to sufficiently satisfy these requirements.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、水素貯蔵合金の有効水素吸蔵量
と水素吸収放出速度および初期活性化の向上をはかるべ
く研究を行なった結果、 (a)まず、原子%で、 Ti:19〜30%、 Zr:0.5〜10%、 Hf:0.02〜0.4% Mn:30〜44%、 Cr:4〜13%、 V:7〜17%、 Ni:2〜9%、 Laおよび/またはCe[以下、La(Ce)と言う]: 0.1〜3.5%、 水素:0.2〜7、 不可避不純物:残、 からなる組成を有するTi−Mn系合金を溶製し、鋳造
した後、この合金のインゴットに、均質化熱処理を施す
と、Ti−Mn系合金の素地相の結晶粒界にそってLa
(Ce)−Ni系合金の分散相が存在した組織を有する
ようになるが、さらに前記均質化熱処理に引き続いて水
素雰囲気中、所定温度に所定時間保持後冷却の条件で水
素化処理を施すと、図1に代表組織を例示する概略組織
拡大模写図で示される通り、前記均質化熱処理で形成さ
れたLa(Ce)−Ni系合金の分散相が雰囲気の水素
と優先的に反応して、主体がLa(Ce)の水素化物
[以下、La(Ce)の水素化物という]とLa(C
e)−Ni系合金からなる水素反応生成物相となると共
に、前記水素反応生成物相はTi−Mn系合金の素地相
に比して大きな熱膨脹を示すことから、前記素地相には
前記水素反応生成物相を起点として無数の亀裂が発生
し、この亀裂内面には前記水素反応生成物相が露出した
状態となること。
Means for Solving the Problems Accordingly, the present inventors have
From the above-mentioned viewpoints, as a result of conducting research to improve the effective hydrogen storage amount, the hydrogen absorption / desorption rate, and the initial activation of the hydrogen storage alloy, (a) first, in atomic%, Ti: 19 to 30% Zr: 0.5 to 10%, Hf: 0.02 to 0.4% Mn: 30 to 44%, Cr: 4 to 13%, V: 7 to 17%, Ni: 2 to 9%, La and // Ce [hereinafter referred to as La (Ce)]: 0.1 to 3.5%, hydrogen: 0.2 to 7, unavoidable impurities: residual, a Ti-Mn alloy having a composition of: When the ingot of this alloy is subjected to a homogenizing heat treatment after casting, La along the crystal grain boundary of the base phase of the Ti—Mn alloy is obtained.
It has a structure in which a dispersed phase of a (Ce) -Ni-based alloy is present. However, when the homogenizing heat treatment is followed by a hydrogenation treatment under a condition of cooling at a predetermined temperature in a hydrogen atmosphere for a predetermined time and then cooling. As shown in a schematic microscopic enlarged view illustrating a representative structure in FIG. 1, the dispersed phase of the La (Ce) —Ni-based alloy formed by the homogenization heat treatment reacts preferentially with hydrogen in the atmosphere, The main components are hydrides of La (Ce) [hereinafter referred to as hydrides of La (Ce)] and La (Ce).
e) It becomes a hydrogen reaction product phase composed of a -Ni-based alloy, and the hydrogen reaction product phase shows a large thermal expansion as compared with the base phase of the Ti-Mn-based alloy. Innumerable cracks are generated starting from the reaction product phase, and the hydrogen reaction product phase is exposed on the inner surface of the crack.

【0005】(b)上記(a)のTi−Mn系合金にお
いては、これを構成する水素反応生成物相のLa(C
e)−Ni系合金が、これのもつ触媒作用で雰囲気中の
水素分子(H2 )を水素原子(H)に解離すると共に、
解離した水素原子をTi−Mn系の素地相に比して一段
と速い速度で吸収し、また放出はこの逆の機構による作
用を示すが、前記水素反応生成物相は無数の亀裂内面に
多くが露出した状態になっており、この結果作用面積の
拡大がなされることから、同じく上記La(Ce)水素
化物が吸収水素原子および放出水素原子の拡散の進行を
促進する作用をもつことと相まって、水素吸収および放
出速度に比して一段と速い速度での水素吸収および放出
となり、さらに初期活性時における上記素地相の水素原
子の吸収割合も広い作用面積で行なわれるため著しく増
大することから、初期活性化の著しい促進がはかられる
ようになること。以上(a)および(b)に示される研
究結果を得たのである。
(B) In the Ti-Mn alloy of (a), La (C)
with e) -Ni system alloy, the hydrogen molecules in the atmosphere in the catalytic action possessed by this (H 2) dissociates into hydrogen atom (H), a
The dissociated hydrogen atoms are absorbed at a much higher rate than the Ti-Mn-based matrix phase, and the release shows the action by the reverse mechanism. Since it is in an exposed state, and as a result, the working area is enlarged, the La (Ce) hydride also has an effect of promoting the progress of diffusion of absorbed hydrogen atoms and released hydrogen atoms. Hydrogen absorption and desorption become much faster than hydrogen absorption and desorption rates, and the absorption rate of hydrogen atoms in the above-mentioned base phase at the time of initial activation increases significantly over a wide working area. Remarkable promotion will be achieved. The research results shown in (a) and (b) above were obtained.

【0006】この発明は、上記の研究結果に基づいてな
されたものであって、原子%で、 Ti:19〜30%、 Zr:0.5〜10%、 Hf:0.02〜0.4% Mn:30〜44%、 Cr:4〜13%、 V:7〜17%、 Ni:2〜9%、 La(Ce):0.1〜3.5%、 水素:0.2〜7%、 不可避不純物:残、 なる組成を有し、かつTi−Mn系合金の素地相に水素
反応生成物相が分散分布し、前記水素反応生成物相の主
体が、La(Ce)の水素化物と、La(Ce)−Ni
系合金で構成された組織を有し、さらに前記水素反応生
成物相の形成時に発生した無数の亀裂が存在すると共
に、前記亀裂内面には前記水素反応生成物相が露出した
構造を有する水素貯蔵合金に特徴を有するものである。
The present invention has been made on the basis of the above-mentioned research results, and in terms of atomic%, Ti: 19 to 30%, Zr: 0.5 to 10%, Hf: 0.02 to 0.4 % Mn: 30 to 44%, Cr: 4 to 13%, V: 7 to 17%, Ni: 2 to 9%, La (Ce): 0.1 to 3.5%, Hydrogen: 0.2 to 7 %, Unavoidable impurities: residual, and the hydrogen reaction product phase is dispersed and distributed in the base phase of the Ti—Mn alloy, and the main component of the hydrogen reaction product phase is a hydride of La (Ce). And La (Ce) -Ni
A hydrogen storage having a structure composed of a base alloy, and further having a myriad of cracks generated during the formation of the hydrogen reaction product phase, and having a structure in which the hydrogen reaction product phase is exposed on the inner surface of the crack. The alloy has characteristics.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態につい
て、説明する。まず、上記せる組成を有するTi−Mn
系合金を溶製し、鋳造した後、このTi−Mn系合金の
インゴットを真空または不活性ガスの非酸化性雰囲気中
950〜1050℃の範囲内の所定温度に所定時間保持
後冷却の条件で均質化熱処理を施し、更に前記均質化熱
処理に引き続いて加圧水素雰囲気中、200〜950℃
の範囲内の所定温度に所定時間保持後冷却の条件で水素
化処理を施すと、図1に代表組織を例示する概略組織拡
大模写図で示されるTi−Mn系合金の素地相に水素反
応生成物相が分散分布し、この水素反応生成物相の主体
が、La(Ce)の水素化物と、La(Ce)−Ni系
合金で構成された組織を有し、さらに上記水素反応生成
物相の形成時に発生した無数の亀裂が存在すると共に、
前記亀裂内面には前記水素反応生成物相が露出した構造
を有する本発明水素貯蔵合金が得られ、この合金を例え
ばヒ−トポンプの吸発熱源として組み込み、或いは、水
素貯蔵、輸送用、電池の電極などとして実用に供するに
際しては、大きい有効水素吸蔵量を有すると共に、水素
吸収および放出速度がきわめて速く、優れた初期活性化
を発揮する水素貯蔵合金になるのである。一般に、水素
貯蔵合金を、例えばヒ−トポンプの吸発熱源として適用
する場合には、水素貯蔵合金が組込まれた前記ヒ−トポ
ンプに対して、数回の水素吸収放出を繰り返すと、水素
吸蔵量が徐々に上昇し何れ一定の値となる初期活性化が
行なわれ、この初期活性化が行なわれた状態で実用に供
されるものである。活性化に必要な繰り返し数、水素圧
等は合金組成によって異なる。
Embodiments of the present invention will be described below. First, Ti-Mn having the above composition
After melting and casting the system alloy, the ingot of the Ti-Mn system alloy was held at a predetermined temperature within a range of 950 to 1050 ° C. in a vacuum or a non-oxidizing atmosphere of an inert gas for a predetermined time and then cooled. A homogenizing heat treatment is performed, and subsequently to the homogenizing heat treatment, at 200 to 950 ° C. in a hydrogen atmosphere under pressure.
When a hydrogenation treatment is performed under the condition of cooling after holding at a predetermined temperature within the range of the above for a predetermined time, a hydrogen reaction is generated in the base phase of the Ti—Mn-based alloy shown in a schematic enlarged enlarged schematic diagram illustrating a representative structure in FIG. The hydrogen reaction product phase has a structure composed of a hydride of La (Ce) and a La (Ce) -Ni-based alloy, and the hydrogen reaction product phase There are countless cracks that occurred during the formation of
The hydrogen storage alloy of the present invention having a structure in which the hydrogen reaction product phase is exposed is obtained on the inner surface of the crack, and this alloy is incorporated as, for example, an endothermic source of a heat pump, or used for hydrogen storage, transportation, and battery use. When practically used as an electrode or the like, a hydrogen storage alloy having a large effective hydrogen storage amount, an extremely fast hydrogen absorption and desorption rate, and excellent initial activation is obtained. In general, when a hydrogen storage alloy is used as a heat absorbing / generating source of a heat pump, for example, when the hydrogen absorption / desorption is repeated several times with respect to the heat pump into which the hydrogen storage alloy is incorporated, the hydrogen storage amount is increased. Is gradually increased to a certain value, and initial activation is performed, and the apparatus is put to practical use with the initial activation performed. The number of repetitions, hydrogen pressure, and the like required for activation vary depending on the alloy composition.

【0008】なお、本発明の水素貯蔵合金では、JIS
規格による有効水素吸蔵量の測定は、すなわち(50℃
での吸蔵平衡圧:11気圧時の水素吸蔵量)−(−5℃
での放出平衡圧:1気圧時の水素吸蔵量)の条件により
測定された(図4参照)。
In the hydrogen storage alloy of the present invention, JIS
The measurement of the effective hydrogen storage capacity according to the standard is as follows: (50 ° C.
Equilibrium storage pressure: hydrogen storage capacity at 11 atm)-(-5 ° C)
(Equilibrium release pressure of hydrogen at 1 atm) was measured (see FIG. 4).

【0009】つぎに、この発明の水素貯蔵合金におい
て、これを構成するTi−Mn系合金の組成を上記の通
りに限定した理由を説明する。 (a) TiおよびZr 有効水素吸蔵量を増大させるには、Tiの一部をZrで
置換する必要があるが、その置換割合が、合金全体(1
00%)に占める割合で(以下、同じ)、0.5%未満
またはTiの含有割合が30%を越えて多くなった場合
では、圧力組成等温線における低温側曲線および高温側
曲線のプラト−圧が高くなり過ぎて、所望の有効水素吸
蔵量の増大が計れず、一方その置換割合が10%を越え
るか、またはTiの含有割合が19%未満となった場合
は逆に圧力組成等温線における低温側曲線および高温側
曲線のプラト−圧が著しく低下し、所望の大きな有効水
素吸蔵量を確保することが出来ないことから、その含有
割合を、それぞれTi:19〜30%、Zr:0.5〜
10%と定め、望ましくは、Ti:23〜29%、Z
r:1〜5%とした。
Next, the reason why the composition of the Ti—Mn alloy constituting the hydrogen storage alloy of the present invention is limited as described above will be described. (A) Ti and Zr In order to increase the effective hydrogen storage capacity, it is necessary to replace a part of Ti with Zr.
When the content of Ti is less than 0.5% or the content of Ti is more than 30%, the low-temperature side curve and the high-temperature side curve in the pressure composition isotherm are plotted. If the pressure becomes too high to achieve the desired increase in the effective hydrogen storage capacity, on the other hand, if the substitution ratio exceeds 10% or the Ti content ratio becomes less than 19%, the pressure composition isotherm , The plate-pressure of the low-temperature curve and the high-temperature curve significantly decreased, and it was not possible to secure a desired large effective hydrogen storage amount, so that the content ratios were 19 to 30% for Ti and 0 for Zr, respectively. .5-
10%, desirably, Ti: 23 to 29%, Z
r: 1 to 5%.

【0010】(b) Hf Hf成分には、Zr成分とともにTi−Mn系合金の素
地相を形成してZr成分によってもたらされる上記の作
用を十分に発揮させる作用があるが、その含有量が0.
02%未満では所望の効果を発揮することができず、一
方その割合が0.4%を越えるとZrによる上記の作用
が阻害されるようになることから、その含有量を0.0
2〜0.4%と定め、望ましくは、0.04〜0.2%
とした。
(B) Hf The Hf component has a function of forming a base phase of the Ti—Mn alloy together with the Zr component to sufficiently exert the above-mentioned action brought about by the Zr component. .
If it is less than 02%, the desired effect cannot be exerted. On the other hand, if the content exceeds 0.4%, the above-mentioned action by Zr will be impaired.
2 to 0.4%, desirably 0.04 to 0.2%
And

【0011】(c) Mn、Cr、V、およびNi さらに、有効水素吸蔵量の増大には、上記の通りTiの
Zrによる一部置換に加えて 、MnのCr、Vおよび
Niによる一部置換が不可欠であり、更に言い換えれ
ば、Tiの所定量のZrによる一部置換が行なわれない
場合や、置換元素であるCr、VおよびNiのうちの少
なくともいずれかの元素が含有しない場合は勿論のこ
と、Mnのそれぞれ所定量のCr、VおよびNiによる
一部置換が行われない場合には、所望の大きな有効水素
吸蔵量を確保することが出来ないものであり、その理由
は、Mn:30%、Cr:4%、V:7%およびNi:
2%未満であったり、またMn:44%、Cr:13
%、V:17%およびNi:9%をそれぞれ越えると、
圧力組成等温線におけるプラト−の傾きやヒステリシス
が大きくなることによる。したがって、その含有割合
を、それぞれMn:33〜40%、Cr:7〜11%、
V:9〜15%およびNi:2〜9%と定め、望ましく
は、それぞれMn:30〜44%、Cr:4〜13%、
V:7〜17%およびNi:3〜7%ととした。
(C) Mn, Cr, V, and Ni Further, as described above, in addition to the partial replacement of Ti by Zr, the partial replacement of Mn by Cr, V and Ni Is indispensable. In other words, when partial replacement of Ti with a predetermined amount of Zr is not performed, or when at least one of Cr, V, and Ni as replacement elements is not contained, it is needless to say that If the partial replacement of Mn with a predetermined amount of each of Cr, V and Ni is not carried out, it is impossible to secure a desired large effective hydrogen storage amount. %, Cr: 4%, V: 7% and Ni:
Less than 2%, Mn: 44%, Cr: 13
%, V: 17% and Ni: 9%, respectively,
This is because the plate slope and hysteresis in the pressure composition isotherm increase. Therefore, the content ratios of Mn: 33 to 40%, Cr: 7 to 11%,
V: 9 to 15% and Ni: 2 to 9%, desirably Mn: 30 to 44%, Cr: 4 to 13%, respectively
V: 7 to 17% and Ni: 3 to 7%.

【0012】(d)La(Ce) これらの成分は、上記の通り雰囲気中の水素を素地相よ
り一段と速い速度で解離吸収し、一方再結合させて雰囲
気中に放出する作用を有するLa(Ce)−Ni系合金
の形成、並びに素地相への吸収水素の拡散および素地相
からの放出水素の拡散を促進する作用を有するLa(C
e)水素化物の形成に不可欠な成分であるが、その割合
が0.1%未満では前記La(Ce)−Ni系合金およ
びLa(Ce)水素化物の生成割合が少なすぎて所望の
速い水素吸収放出速度を確保することができず、一方そ
の割合が3.5%を越えると、水素吸蔵量の小さい前記
分散相の割合が多くなりすぎ、合金全体の水素吸蔵量が
低下するようになることから、その割合を0.1〜3.
5%、望ましくは1〜3%と定めた。
(D) La (Ce) As described above, these components dissociate and absorb hydrogen in the atmosphere at a much higher rate than the base phase, and have the effect of recombining and releasing into the atmosphere. ) -Ni-based alloy, and La (C) having an effect of promoting the diffusion of absorbed hydrogen into the base phase and the diffusion of hydrogen released from the base phase.
e) Although it is an indispensable component for the formation of hydride, if the proportion is less than 0.1%, the production rate of the La (Ce) -Ni-based alloy and the La (Ce) hydride is too small to obtain desired fast hydrogen. When the rate of absorption and release cannot be ensured, while the proportion exceeds 3.5%, the proportion of the dispersed phase having a small hydrogen storage amount becomes too large, and the hydrogen storage amount of the entire alloy decreases. Therefore, the ratio is set to 0.1 to 3.
5%, preferably 1-3%.

【0013】(e)水素 水素は、主に水素反応生成物相を構成するLa(Ce)
水素化物を形成して、同じく水素反応生成物を構成する
La(Ce)−Ni系合金が解離吸収した水素を速い拡
散速度で素地相中に移動させ、一方素地相からの放出水
素をいち速く前記La(Ce)−Ni系合金に拡散させ
る作用を発揮させるが、その割合が0.2%未満では前
記作用を発揮せしめるLa(Ce)水素化物の割合が少
なすぎて前記作用を十分に発揮することができず、一方
その割合が7%を越えるとLa(Ce)−Ni系合金に
比してLa(Ce)水素化物の割合が多くなりすぎ、相
対的にLa(Ce)−Ni系合金が少なくなって水素吸
収放出速度および初期活性化が低下するようになること
から、その割合を0.2〜7%と定め、望ましくは2〜
6%とした。
(E) Hydrogen Hydrogen is mainly composed of La (Ce) which constitutes a hydrogen reaction product phase.
The La (Ce) -Ni-based alloy, which also forms a hydride, also dissociates and absorbs hydrogen by the La (Ce) -Ni-based alloy, which forms a hydrogen reaction product, into the base phase at a high diffusion rate, while rapidly releasing hydrogen from the base phase. The La (Ce) -Ni alloy has an effect of diffusing into the alloy, but if the ratio is less than 0.2%, the ratio of La (Ce) hydride which exerts the effect is too small to sufficiently exert the effect. On the other hand, if the proportion exceeds 7%, the proportion of La (Ce) hydride becomes too large as compared with the La (Ce) -Ni-based alloy, and the proportion of La (Ce) -Ni-based alloy is relatively high. Since the amount of alloy decreases and the hydrogen absorption / desorption rate and the initial activation decrease, the ratio is set to 0.2 to 7%, preferably 2 to 7%.
6%.

【0014】なお、この発明の水素貯蔵合金は、通常の
機械的粉砕により所定粒度の粉末とすることができるほ
か、加圧水素雰囲気中、10〜200℃の範囲内の所定
温度に加熱の水素吸収と、真空排気による水素放出の水
素化粉砕によっても粉末とすることができ、この結果の
粉末は、いずれも図2に代表組織を例示する概略組織拡
大模写図で示される通りの組織を持つものとなる。
The hydrogen storage alloy of the present invention can be converted into powder having a predetermined particle size by ordinary mechanical pulverization, and can be heated to a predetermined temperature within the range of 10 to 200 ° C. in a pressurized hydrogen atmosphere. And powder by hydrogenation and pulverization of hydrogen release by evacuation, and the resulting powder has a structure as shown in a schematic structure enlarged schematic diagram illustrating a representative structure in FIG. Becomes

【0015】[0015]

【実施例】つぎに、この発明の水素貯蔵合金の実施例に
ついて、具体的に説明する。通常の高周波誘導溶解炉に
て、原料としてそれぞれ99.9%以上の純度をもった
Ni,Zr,Hf、Ti,Mn,V,La,およびC
e、さらにミッシュメタルを用い、Ar雰囲気中で溶解
して、それぞれ表1に示される組成をもった合金溶湯を
調製し、水冷銅鋳型に鋳造してインゴットとし、このイ
ンゴットに、真空雰囲気中、950〜1050℃の範囲
内の所定温度に20時間保持の条件で均質化熱処理を施
し、さらに引続いて表1に示した所定の圧力の水素雰囲
気中、まず室温で1時間保持した後、昇温を開始して同
じく表1に示した所定温度に加熱し、この温度に1時間
保持してから、Arガスによる強制空冷を行なう条件で
水素化処理を施すことにより本発明水素貯蔵合金1〜1
6(以下、本発明合金1〜16という)をそれぞれ製造
した。また、比較の目的で、合金溶湯の組成を表1に示
される通りとし、かつ均質化熱処理後の水素化処理を行
なわない以外は同一の条件で従来水素貯蔵合金(以下、
従来合金という)を製造した。この結果得られた水素貯
蔵合金について、その組織を走査型電子顕微鏡で観察し
たところ、本発明合金1〜16は、いずれも図1に示さ
れる通り無数の亀裂が存在し、この亀裂の内面には、L
a(Ce)−Ni系合金とLa(Ce)水素化物で構成
された水素反応生成物相が露出し、この水素反応生成物
がTi−Mn系合金の素地相中に分散分布した組織を示
し、従来合金は、図3に示される通りTi−Mn系合金
の素地相からなる組織を示した。
EXAMPLES Next, examples of the hydrogen storage alloy of the present invention will be specifically described. In a normal high-frequency induction melting furnace, Ni, Zr, Hf, Ti, Mn, V, La, and C each having a purity of 99.9% or more as raw materials.
e. Further, using a misch metal, melting in an Ar atmosphere to prepare an alloy melt having the composition shown in Table 1, and casting it into a water-cooled copper mold to form an ingot. A homogenizing heat treatment is performed at a predetermined temperature in the range of 950 to 1050 ° C. for 20 hours, and then, in a hydrogen atmosphere at a predetermined pressure shown in Table 1, first at room temperature for 1 hour, and then The temperature was then increased to the predetermined temperature shown in Table 1, and maintained at this temperature for 1 hour, and then subjected to hydrogenation treatment under the condition of forced air cooling with Ar gas, whereby hydrogen storage alloys 1 to 5 of the present invention were obtained. 1
6 (hereinafter referred to as alloys 1 to 16 of the present invention). For the purpose of comparison, a conventional hydrogen storage alloy (hereinafter, referred to as “metal alloy”) was prepared under the same conditions except that the composition of the molten alloy was as shown in Table 1 and no hydrogenation treatment was performed after the homogenization heat treatment.
Conventional alloy). The structure of the resulting hydrogen storage alloy was observed with a scanning electron microscope. As a result, each of the alloys 1 to 16 of the present invention had numerous cracks as shown in FIG. Is L
A hydrogen reaction product phase composed of an a (Ce) -Ni-based alloy and a La (Ce) hydride is exposed, showing a structure in which the hydrogen reaction product is dispersed and distributed in a base phase of the Ti-Mn-based alloy. As shown in FIG. 3, the conventional alloy had a structure composed of a base phase of a Ti—Mn alloy.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】つぎに、上記の本発明合金1〜16および
従来合金について、それぞれ水素吸収速度と水素放出速
度をJIS・H7202の「水素吸蔵合金の水素化速度
試験測定法」にもとづいて測定した。なお、測定に先だ
って、本発明合金1〜16および従来合金を、圧力容器
に封入し、水素雰囲気圧力:8気圧、加熱温度:200
℃、保持時間:1時間の条件での水素吸収と、真空排気
による水素放出からなる水素化粉砕を行なって200m
esh以下の粒度をもった粉末とし、この粉末を用いて
以下に示す条件で測定を行なった。
Next, with respect to the alloys 1 to 16 of the present invention and the conventional alloy, the hydrogen absorption rate and the hydrogen release rate were measured in accordance with JIS H7202 "Hydrogen storage alloy hydrogenation rate test measurement method". Prior to the measurement, the alloys 1 to 16 of the present invention and the conventional alloy were sealed in a pressure vessel, and the hydrogen atmosphere pressure was 8 atm and the heating temperature was 200.
C., holding time: 200 m after hydrogen crushing consisting of absorption of hydrogen under the condition of 1 hour and release of hydrogen by evacuation.
A powder having a particle size of esh or less was used, and measurement was performed using the powder under the following conditions.

【0019】まず、水素吸収速度の測定装置について
は、図5の概略説明図で示される通り (a)粉末を浴(油または水)に浸漬した容器内に封入
し、前記浴の温度を200℃に保持した状態で、弁V
b:閉、弁VaおよびVc:開として水素ボンベから加
圧水素を系内に導入し、系内を30気圧とした時点で弁
Va:閉とし、系内の圧力が一定圧力に降下する(粉末
による水素吸収完了)まで放置して粉末の初期活性化を
行ない、(b)系内の圧力が一定圧力(約20気圧程
度)に降下した時点で弁Vb:開とし、真空ポンプで系
内を10-2トルの真空雰囲気とした後、浴温を20℃と
し、弁VbおよびVc:閉、弁Va:開にして容器を除
く系内に水素を導入し、その圧力が30気圧となった時
点で弁Va:閉、弁Vc:開とし、この状態で系内の時
間に対する圧力降下を測定し、この結果の圧力降下曲線
から粉末の水素吸蔵量が80%になった時点の水素吸蔵
量とそれまでに要した時間を求め、(80%吸蔵時の水
素吸蔵量)÷(80%水素吸蔵量に要した時間)を算出
し、この値を水素吸収速度とした。
First, as for the apparatus for measuring the hydrogen absorption rate, as shown in the schematic explanatory view of FIG. 5, (a) a powder is sealed in a vessel immersed in a bath (oil or water), and the temperature of the bath is set to 200. ℃ while maintaining the valve V
b: Closed, valves Va and Vc: Open and pressurized hydrogen was introduced into the system from a hydrogen cylinder, and when the pressure in the system reached 30 atm, valve Va was closed and the pressure in the system dropped to a constant pressure (powder (The hydrogen absorption is completed), and the powder is initially activated. (B) When the pressure in the system drops to a constant pressure (about 20 atm), the valve Vb is opened and the system is opened by a vacuum pump. After a vacuum atmosphere of 10 -2 Torr, the bath temperature was set to 20 ° C., the valves Vb and Vc were closed and the valve Va was opened to introduce hydrogen into the system except for the container, and the pressure became 30 atm. At this time, the valve Va: closed and the valve Vc: open, the pressure drop with respect to time in the system was measured in this state, and the hydrogen storage amount at the time when the hydrogen storage amount of the powder became 80% was obtained from the resulting pressure drop curve. And the time required until then, (hydrogen occlusion amount at 80% occlusion) ÷ (80 Calculating the time) that takes in hydrogen storage capacity was the value as hydrogen absorption rate.

【0020】また、水素放出速度については、上記の水
素吸収速度測定後の状態、すなわち弁VaおよびVb:
閉、弁Vc:開であって系内の圧力が一定圧(通常20
気圧前後)となった状態で、浴温を100〜300℃の
範囲内の粉末の水素放出適正温度、例えば120℃とし
た後、弁Vb:開、弁Vc:閉として容器を除く系内を
10-2Torrに排気し、ついで弁Vb:閉、弁Vc:
開とした状態で、系内の時間に対する圧力上昇を測定
し、この結果の圧力上昇曲線から粉末の水素放出量が8
0%になった時点の水素放出量とそれまでに要した時間
を求め、(80%放出時の水素放出量)÷(80%水素
放出に要した時間)を算出し、この値を水素放出速度と
した。これらの結果を表3に示した。
Regarding the hydrogen release rate, the state after the above-mentioned hydrogen absorption rate measurement, that is, the valves Va and Vb:
Closed, valve Vc: Open and the pressure in the system is constant (typically 20
(Atmospheric pressure), the bath temperature is set to an appropriate temperature for releasing hydrogen of powder in the range of 100 to 300 ° C., for example, 120 ° C., then the valve Vb is opened and the valve Vc is closed to remove the inside of the system. Exhaust to 10 -2 Torr, then valve Vb: closed, valve Vc:
In the open state, the pressure rise with respect to time in the system was measured, and from the resulting pressure rise curve, the amount of hydrogen released from the powder was 8%.
The amount of hydrogen released at 0% and the time required up to that time are obtained, and (hydrogen released at 80% release) / (time required for 80% hydrogen release) is calculated. Speed. Table 3 shows the results.

【0021】次いで、上記本発明合金1〜16および従
来合金について、これをジョークラッシャにて粗粉砕し
て直径:2mm以下の粗粒とし、さらにこれをボ−ルミ
ルで微粉砕して粒度:350メッシュ以下の微粉末とし
た状態で、JIS規格にもとづいて、(50℃での吸蔵
平衡圧:11気圧時の水素吸蔵量)−(−5℃での放出
平衡圧:1気圧時の水素吸蔵量)を測定し、算出して有
効水素吸蔵量を求めた。この結果を表3に示した。
Next, the alloys 1 to 16 of the present invention and the conventional alloy are coarsely pulverized with a jaw crusher to coarse particles having a diameter of 2 mm or less, and further finely pulverized with a ball mill to obtain a particle size of 350. In the state of fine powder having a mesh size or less, based on JIS standards, (storage equilibrium pressure at 50 ° C .: hydrogen storage amount at 11 atm) − (equilibrium release pressure at −5 ° C .: hydrogen storage at 1 atm. Was measured and calculated to obtain an effective hydrogen storage amount. The results are shown in Table 3.

【0022】さらに、上記の本発明合金1〜16および
従来合金について、初期活性化を評価する目的で、ま
ず、本発明合金1〜16と従来合金をジョークラッシャ
を用いて粗粉砕して直径:2mm以下の粗粒とし、引続い
て本発明合金1〜16および前記粗粒の従来合金をボー
ルミルを用いて微粉砕して200メッシュ以下の粒度と
し、これに結着剤としてのポリテトラフルオロエチレン
(PTFE)と増粘剤としてのカルボキシルメチルセル
ロース(CMC)を加えてペースト状とした後、95%
の気孔率を有する市販の発泡Ni板に充填し、乾燥し、
加圧して、平面寸法:30mm×40mm、厚さ:0.40
〜0.43mmの形状(前記活物質粉末充填量:約1.8
g)とし、これの一辺にリードとなるNi薄板を溶接に
より取り付けて負極を形成し、一方正極は、活物質とし
てNi(OH)2 を用い、これに結着剤としてのポリテ
トラフルオロエチレン(PTFE)と増粘剤としてのカ
ルボキシルメチルセルロース(CMC)を加えてペース
ト状とし、これを上記発泡Ni板に充填し、乾燥し、加
圧して、平面寸法:30mm×40mm、厚さ:0.71〜
0.73mmの形状とし、同じくこれの一辺にNi薄板を
取り付けることにより形成し、ついで、上記負極の両側
に、それぞれポリプロピレンポリエチレン共重合体のセ
パレータ板を介して上記正極を配置し、さらに前記正極
のそれぞれの外面から活物質の脱落を防止する目的で塩
化ビニール製の保護板ではさんで一体化し、これを塩化
ビニール製のセルに装入し、前記セルに電解液として3
5%KOH水溶液を装入することにより電池を製造し
た。ついで、上記電池に、充電速度:0.20C、放電
速度:0.20C、充電電気量:負極容量の135%の
条件で充放電を行ない、前記充電と放電を充放電1回と
数え、前記電池が最大放電容量を示すに至るまで前記充
放電を繰り返し行なった。表3に、前記最大放電容量の
95%の放電容量を示すに要した充放電回数を示し、こ
れによって初期活性化を評価した。
Further, for the purpose of evaluating the initial activation of the alloys 1 to 16 of the present invention and the conventional alloy, first, the alloys 1 to 16 of the present invention and the conventional alloy were coarsely pulverized using a jaw crusher to obtain a diameter: Then, the alloys 1 to 16 of the present invention and the above-mentioned conventional alloy were finely pulverized with a ball mill to a particle size of 200 mesh or less, and polytetrafluoroethylene as a binder was added thereto. (PTFE) and carboxymethylcellulose (CMC) as a thickener were added to form a paste, and then 95%
Filling a commercially available foamed Ni plate having a porosity of
Press, plane dimension: 30mm x 40mm, thickness: 0.40
0.40.43 mm (filling amount of the active material powder: about 1.8)
g), and a Ni thin plate serving as a lead is attached to one side of the negative electrode by welding to form a negative electrode, while the positive electrode uses Ni (OH) 2 as an active material, and uses polytetrafluoroethylene (B) as a binder. PTFE) and carboxymethylcellulose (CMC) as a thickener were added to form a paste, which was filled in the above foamed Ni plate, dried, and pressed to obtain a plane size: 30 mm × 40 mm, thickness: 0.71 ~
It is formed by attaching a Ni thin plate to one side of the 0.73 mm shape. Then, the positive electrode is disposed on both sides of the negative electrode with a separator plate made of a polypropylene-polyethylene copolymer interposed therebetween. In order to prevent the active material from falling off from the respective outer surfaces, they are integrated by sandwiching them with a protective plate made of vinyl chloride, and this is charged into a cell made of vinyl chloride.
A battery was manufactured by charging a 5% KOH aqueous solution. Then, the battery was charged and discharged under the conditions of a charge rate: 0.20 C, a discharge rate: 0.20 C, a charged amount of electricity: 135% of the negative electrode capacity, and the charge and discharge were counted as one charge and discharge. The charging and discharging were repeated until the battery reached the maximum discharge capacity. Table 3 shows the number of times of charging and discharging required to show a discharge capacity of 95% of the maximum discharge capacity, and the initial activation was evaluated based on the number of times.

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【発明の効果】表3に示される結果から、本発明合金1
〜16においては、従来合金と異なり、表面および無数
の亀裂内面に露出し、これによって全体的に広い表面積
で雰囲気中に露出した状態にある水素反応生成物相のL
a(Ce)−Ni系合金を通して、雰囲気中の水素が水
素原子に解離されて吸収され、この吸収水素が直接、あ
るいはLa(Ce)水素化物を介してTi−Mn系合金
の素地相に拡散して水素吸蔵が行なわれるが、上記の通
りきわめて速い水素吸収能を有するLa(Ce)−Ni
系合金が全体的に広い表面積で分布するので、水素吸収
速度は相対的にきわめて速いものとなり、かつ初期活性
化も著しく促進されるようになり、また水素放出もこの
逆の機構によるものであるため速い速度での水素放出が
行なわれるのである。上述のように、この発明の水素貯
蔵合金においては、大きい有効水素吸蔵量を持つと共
に、水素吸収および放出速度がきわめて速く、かつ実用
に際してはすぐれた初期活性化を示すので、水素貯蔵合
金が適用されている各種機械装置の高出力化および高性
能化、さらに省エネルギ−化に大いに寄与するものであ
る。
According to the results shown in Table 3, the alloy of the present invention 1
-16, unlike the conventional alloys, the hydrogen reaction product phase exposed to the surface and the myriad of crack inner surfaces and thus exposed to the atmosphere with a large surface area as a whole was obtained.
Hydrogen in the atmosphere is dissociated into hydrogen atoms and absorbed through the a (Ce) -Ni alloy, and the absorbed hydrogen diffuses directly or through the La (Ce) hydride into the base phase of the Ti-Mn alloy. Hydrogen absorption is performed, but as described above, La (Ce) -Ni having extremely fast hydrogen absorption capacity is used.
Since the system alloy is distributed over a large surface area as a whole, the hydrogen absorption rate becomes relatively extremely high, and the initial activation is also greatly promoted, and the hydrogen release is also based on the reverse mechanism. Therefore, hydrogen is released at a high speed. As described above, the hydrogen storage alloy of the present invention has a large effective hydrogen storage capacity, a very fast hydrogen absorption and desorption rate, and excellent initial activation in practical use. It greatly contributes to high output and high performance of various mechanical devices and energy saving.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の水素貯蔵合金の代表組織を例示する
概略組織拡大模写図である。
FIG. 1 is a schematic enlarged enlarged view illustrating a representative structure of a hydrogen storage alloy of the present invention.

【図2】 本発明の水素貯蔵合金粉砕粉末の代表組織を
例示する概略組織拡大模写図である。
FIG. 2 is a schematic enlarged microstructure diagram illustrating a representative structure of the hydrogen storage alloy pulverized powder of the present invention.

【図3】 従来の水素貯蔵合金の代表組織を例示する概
略組織拡大模写図である。
FIG. 3 is a schematic enlarged schematic view illustrating a typical structure of a conventional hydrogen storage alloy.

【図4】 本発明の水素貯蔵合金の圧力組成等温線を示
す図である。
FIG. 4 is a diagram showing a pressure composition isotherm of the hydrogen storage alloy of the present invention.

【図5】 水素貯蔵合金の水素吸収放出速度を測定する
のに用いた装置の概略説明図である。
FIG. 5 is a schematic explanatory view of an apparatus used for measuring a hydrogen absorption / release rate of a hydrogen storage alloy.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原子%で、 Ti:19〜30%、 Zr:0.5〜10%、 Hf:0.02〜0.4% 、Mn:30〜44%、 Cr:4〜13%、 V:7〜17%、 Ni: 2〜9%、 Laおよび/またはCe:0.1〜3.5%、 水素:0.2〜7 %、 不可避不純物:残、 なる組成を有し、 かつTi−Mn系合金の素地相に、水素反応生成物相が
分散分布し、前記水素反応生成物相の主体が、Laおよ
び/またはCeの水素化物と、Laおよび/またはCe
−Ni系合金で構成された組織を有し、 さらに前記水素反応生成物相の形成時に発生した無数の
亀裂が存在すると共に、前記亀裂内面には前記水素反応
生成物相が露出した構造を有することを特徴とする水素
貯蔵合金。
1. Atomic%, Ti: 19 to 30%, Zr: 0.5 to 10%, Hf: 0.02 to 0.4%, Mn: 30 to 44%, Cr: 4 to 13%, V: 7 to 17%, Ni: 2 to 9%, La and / or Ce: 0.1 to 3.5%, hydrogen: 0.2 to 7%, unavoidable impurities: remaining, and The hydrogen reaction product phase is dispersed and distributed in the base phase of the Ti—Mn-based alloy, and the hydrogen reaction product phase is mainly composed of La and / or Ce hydride, La and / or Ce.
-Has a structure composed of a Ni-based alloy, and further has a myriad of cracks generated during the formation of the hydrogen reaction product phase, and has a structure in which the hydrogen reaction product phase is exposed on the inner surface of the crack. A hydrogen storage alloy, characterized in that:
JP9003363A 1997-01-10 1997-01-10 Hydrogen storage alloy excellent in initial activity Withdrawn JPH10195581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9003363A JPH10195581A (en) 1997-01-10 1997-01-10 Hydrogen storage alloy excellent in initial activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9003363A JPH10195581A (en) 1997-01-10 1997-01-10 Hydrogen storage alloy excellent in initial activity

Publications (1)

Publication Number Publication Date
JPH10195581A true JPH10195581A (en) 1998-07-28

Family

ID=11555275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9003363A Withdrawn JPH10195581A (en) 1997-01-10 1997-01-10 Hydrogen storage alloy excellent in initial activity

Country Status (1)

Country Link
JP (1) JPH10195581A (en)

Similar Documents

Publication Publication Date Title
JP2021510767A (en) A method for producing an AB5-based hydrogen storage alloy, an electrode for a nickel-metal hydride battery, a secondary battery, and a hydrogen storage alloy.
JP3965209B2 (en) Low Co hydrogen storage alloy
CN109868390B (en) Rare earth-nickel base AB2Hydrogen storage alloy material and preparation method thereof
WO2005014871A1 (en) LOW Co HYDROGEN OCCLUSION ALLOY
US5900334A (en) Hydrogen occluding alloy
EP0753590B1 (en) Hydrogen occluding alloy and electrode made of the alloy
JP3697996B2 (en) Hydrogen storage alloy for battery negative electrode that enables high discharge capacity with a small number of charge / discharge cycles and improvement of low-temperature, high-rate discharge capacity with high-rate initial activation treatment
JPH10195584A (en) Hydrogen storage alloy excellent in initial activity
JPH10195575A (en) Hydrogen storage alloy excellent in initial activity
JPH10195581A (en) Hydrogen storage alloy excellent in initial activity
JPH0673466A (en) Hydrogen occlusion alloy for ni-hydrogen battery having excellent electrode life and its production
JPH10195583A (en) Hydrogen storage alloy excellent in initial activity
JPH10195578A (en) Hydrogen storage alloy excellent in initial activity
JPH10195579A (en) Hydrogen storage alloy excellent in initial activity
JPH10195574A (en) Hydrogen storage alloy excellent in initial activity
JPH10195580A (en) Hydrogen storage alloy excellent in initial activity
JPH10195582A (en) Hydrogen storage alloy excellent in initial activity
EP0761833B1 (en) Hydrogen occluding alloy and electrode made of the alloy
JPH10195569A (en) Hydrogen storage alloy excellent in initial activity
JPH10195576A (en) Hydrogen storage alloy excellent in initial activity
JPH10195573A (en) Hydrogen storage alloy excellent in initial activity
JPH0978167A (en) Hydrogen storage alloy
JPH10195577A (en) Hydrogen storage alloy excellent in initial activity
JPH10195572A (en) Hydrogen storage alloy excellent in initial activity
JPH09176777A (en) Hydrogen storage alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040406