JPH10195574A - Hydrogen storage alloy excellent in initial activity - Google Patents

Hydrogen storage alloy excellent in initial activity

Info

Publication number
JPH10195574A
JPH10195574A JP9003356A JP335697A JPH10195574A JP H10195574 A JPH10195574 A JP H10195574A JP 9003356 A JP9003356 A JP 9003356A JP 335697 A JP335697 A JP 335697A JP H10195574 A JPH10195574 A JP H10195574A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
hydrogen storage
storage alloy
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9003356A
Other languages
Japanese (ja)
Inventor
Shinichiro Kakehashi
伸一郎 梯
Yoshio Takizawa
与司夫 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP9003356A priority Critical patent/JPH10195574A/en
Publication of JPH10195574A publication Critical patent/JPH10195574A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy having high hydrogen absorbing and releasing rates, excellent in practical use, and having a superior initial activity. SOLUTION: This hydrogen storage alloy has a composition containing, by atom, 19-30% Ti, 0.5-10% Zr, 30-44% Mn, 4-13% Cr, 7-17% V, 2-9% Ni, 0.1-3.5% La and/or Ce, and 1-10% oxygen and satisfying Ti(%)+Zr(%)+Mn(%)+ Cr(%)+V(%)+Ni(%) + (La and/or Ce) (%) +o xygen (%) + (inevitable impurities) (%)=100%. Moreover, this hydrogen storage alloy has a structure where hydrogenation and oxidation treatment product phases are dispersedly distributed in matrix phases of Ti-Mn alloy and the hydrogenation and oxidation treatment product phases are constituted essentially of oxides of La(Ce) and La(Ce)-Ni alloy and further has a structure where numerous cracks developing at the time of hydrogenation treatment are present and the hydrogenation and oxidation treatment product phases are exposed in the inner surface of the cracks.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えばヒ−トポ
ンプの吸発熱源として組み込み、或いは、水素貯蔵、輸
送用、電池の電極などとして実用に供するに際しては、
水素吸収および放出速度がきわめて速く、優れた初期活
性化を発揮する水素貯蔵合金に関するものである。
BACKGROUND OF THE INVENTION The present invention is applicable, for example, as a heat absorbing / generating source of a heat pump, or for practical use as an electrode of a battery for storing and transporting hydrogen.
The present invention relates to a hydrogen storage alloy having a very high rate of hydrogen absorption and desorption and exhibiting excellent initial activation.

【0002】[0002]

【従来の技術】従来、ヒ−トポンプの吸発熱源として組
み込むことを目的とした下記の組成範囲を有するTi−
Mn系水素貯蔵合金が知られている。原子%で、 Ti:27.5〜31.5%、 Zr:1〜5%、 Mn:38.5〜44.5%、 Cr:7〜13%、 V:10〜16%、 Ni:1〜5%、 不可避不純物:残、 結晶構造当量比:[Mn(%)+Cr(%)+V(%)
+Ni(%)]/[Ti(%)+Zr(%)]=2.0
5〜2.20、 を満足する組成を有する水素貯蔵合金。
2. Description of the Related Art Conventionally, a Ti-pump having the following composition range intended to be incorporated as a heat-absorbing and heat-generating source of a heat pump.
Mn-based hydrogen storage alloys are known. Atomic%, Ti: 27.5 to 31.5%, Zr: 1 to 5%, Mn: 38.5 to 44.5%, Cr: 7 to 13%, V: 10 to 16%, Ni: 1 55%, inevitable impurities: residual, crystal structure equivalent ratio: [Mn (%) + Cr (%) + V (%)
+ Ni (%)] / [Ti (%) + Zr (%)] = 2.0
A hydrogen storage alloy having a composition that satisfies 5 to 2.20.

【0003】[0003]

【発明が解決しようとする課題】近年、水素貯蔵合金
が、多く適用されているヒートポンプなどの高出力化お
よび高性能化、また、電池の電極などとしての実用化に
際して、さらに省エネルギ−化に対する要求は強く、こ
れに伴ない、水素貯蔵合金に対し、大きな有効水素吸蔵
量と、更により一段と速い水素吸収放出速度と共に、よ
り短時間での初期活性化が可能であることが強く望まれ
ている。しかし上記従来の技術では、これら要求を十分
に満足させることは困難であるとの問題点があった。
In recent years, hydrogen storage alloys have been used for increasing the output and performance of heat pumps and the like, which have been widely applied, and for further saving energy in practical use as electrodes of batteries. There is a strong demand, and it is strongly desired that the hydrogen storage alloy be capable of initial activation in a shorter time with a large effective hydrogen storage amount and a much faster hydrogen absorption and release rate. I have. However, the above-described conventional technique has a problem that it is difficult to sufficiently satisfy these requirements.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、水素貯蔵合金の有効水素吸蔵量
と水素吸収放出速度および初期活性化の向上をはかるべ
く研究を行なった結果、 (a) まず、原子%で、 Ti:19〜30%、 Zr:0.5〜10%、 Mn:30〜44%、 Cr:4〜13%、 V:7〜17%、 Ni:2〜9%、 Laおよび/またはCe[以下、La(Ce)で示す]:0.1〜3.5%、 酸素:1〜10%、 不可避不純物:残、 なる組成を有するTi−Mn系合金を溶製し、鋳造した
後、この合金のインゴットに、均質化熱処理を施すと、
Ti−Mn系合金の素地相の結晶粒界にそってLa(C
e)−Ni系合金の分散相が存在した組織を有するよう
になるが、さらに前記均質化熱処理に引き続いて水素雰
囲気中、400〜700℃の範囲内の所定温度に所定時
間保持後冷却の条件で水素化処理を施すと、前記均質化
熱処理で形成されたLa(Ce)−Ni系合金の分散相
が雰囲気の水素と優先的に反応して、主体がLa(C
e)の水素化物[以下、La(Ce)水素化物という]
と、La(Ce)−Ni系合金からなる水素化処理生成
物相となると共に、前記水素化処理生成物相はTi−M
n系合金の素地相に比して大きな熱膨脹を示すことか
ら、前記素地相には前記水素化処理生成物相を起点とし
て無数の亀裂が発生し、この亀裂内面には前記水素化処
理生成物相が露出した状態となり、さらに引続いて、例
えば酸化性雰囲気中、400〜500℃の範囲内の所定
温度に所定時間保持の酸化処理を施すと、上記La(C
e)水素化物がLa(Ce)酸化物となり、この結果T
i−Mn系合金は、図1に代表組織を例示する概略組織
拡大模写図で示される通りTi−Mn系合金の素地相に
水素化酸化処理生成物相が分散分布し、前記水素化酸化
処理生成物相の主体がLa(Ce)−Ni系合金とLa
(Ce)酸化物からなり、さらに無数の亀裂が存在し、
かつ前記亀裂内面には前記水素化酸化処理生成物相が露
出した組織をもつようになること。
Means for Solving the Problems Accordingly, the present inventors have
From the above-mentioned viewpoints, as a result of researching to improve the effective hydrogen storage amount, the hydrogen absorption / release rate and the initial activation of the hydrogen storage alloy, (a) First, in atomic%, Ti: 19 to 30% , Zr: 0.5 to 10%, Mn: 30 to 44%, Cr: 4 to 13%, V: 7 to 17%, Ni: 2 to 9%, La and / or Ce [hereinafter, La (Ce) ]: 0.1 to 3.5%, oxygen: 1 to 10%, unavoidable impurities: residue A Ti-Mn alloy having the following composition is melted and cast, and then homogenized in an ingot of this alloy. Subject to chemical heat treatment,
La (C) along the grain boundaries of the base phase of the Ti—Mn alloy
e) The structure in which the dispersed phase of the -Ni alloy is present, but after the homogenizing heat treatment, the condition of cooling after holding for a predetermined time at a predetermined temperature in the range of 400 to 700 ° C in a hydrogen atmosphere is set. , The dispersed phase of the La (Ce) -Ni-based alloy formed by the homogenizing heat treatment reacts preferentially with hydrogen in the atmosphere, and the main component is La (C).
e) hydride [hereinafter referred to as La (Ce) hydride]
And a hydrogenation product phase composed of a La (Ce) -Ni-based alloy, and the hydrogenation product phase is Ti-M
Since the thermal expansion is larger than that of the base phase of the n-based alloy, countless cracks are generated in the base phase starting from the hydrogenation product phase. When the phase is exposed, and subsequently, for example, in an oxidizing atmosphere, an oxidation treatment is performed at a predetermined temperature within a range of 400 to 500 ° C. for a predetermined time to obtain the above La (C).
e) The hydride becomes La (Ce) oxide, resulting in T
In the i-Mn-based alloy, as shown in a schematic microscopic enlarged schematic diagram illustrating a representative structure in FIG. 1, a hydrogen-oxidation treatment product phase is dispersed and distributed in a base phase of the Ti-Mn-based alloy, and the hydrogen-oxidation treatment is performed. The main component of the product phase is La (Ce) -Ni alloy and La
(Ce) oxide, and there are countless cracks,
In addition, the crack inner surface has a structure in which the hydrooxidation product phase is exposed.

【0005】(b) 上記(a)のTi−Mn系合金に
おいては、これを構成する水素化酸化処理生成物相のL
a(Ce)−Ni系合金およびLa(Ce)酸化物が、
図3に示される従来水素貯蔵合金に比して一段と速い速
度で吸収し、また放出はこの逆の機構による作用を示す
が、前記水素化酸化処理生成物相は無数の亀裂内面に多
くが露出した状態になっており、この結果作用面積の拡
大がなされることから、上記従来水素貯蔵合金における
水素吸収および放出速度に比して一段と速い速度での水
素吸収および放出となり、さらに初期活性時における上
記素地相の水素原子の吸収割合も広い作用面積で行なわ
れるため著しく増大することから、初期活性化の著しい
促進がはかられるようになること。以上(a)および
(b)に示される研究結果を得たのである。
(B) In the Ti-Mn-based alloy of (a), the content of L
a (Ce) -Ni-based alloy and La (Ce) oxide
Although it absorbs at a much faster rate than the conventional hydrogen storage alloy shown in FIG. 3 and releases it by the reverse mechanism, the hydrooxidation product phase is largely exposed to the myriad crack inner surfaces. As a result, the area of action is increased, and as a result, hydrogen absorption and release at a much higher rate than the hydrogen absorption and release rates in the conventional hydrogen storage alloy described above, and further, at the time of initial activation Since the absorption rate of hydrogen atoms in the base phase is remarkably increased because it is performed over a wide working area, remarkable promotion of initial activation can be achieved. The research results shown in (a) and (b) above were obtained.

【0006】本発明は、上記の研究結果にも基づいてな
されたものであって、 原子%で、 Ti:19〜30%、 Zr:0.5〜10%、 Mn:30〜44%、 Cr:4〜13%、 V:7〜17%、 Ni:2〜9%、 La(Ce):0.1〜3.5%、 酸素:1〜10%、 不可避不純物:残、 なる組成を有し、かつTi−Mn系合金の素地相に水素
化酸化処理生成物相が分散分布し、前記水素化酸化処理
生成物相の主体が、La(Ce)の酸化物と、La(C
e)−Ni系合金で構成された組織を有し、さらに水素
化処理時に発生した無数の亀裂が存在すると共に、前記
亀裂内面には前記水素化酸化処理生成物相が露出した構
造を有する水素貯蔵合金、に特徴を有するものである。
The present invention has been made on the basis of the above research results. In atomic%, Ti: 19 to 30%, Zr: 0.5 to 10%, Mn: 30 to 44%, Cr: : 4 to 13%, V: 7 to 17%, Ni: 2 to 9%, La (Ce): 0.1 to 3.5%, oxygen: 1 to 10%, unavoidable impurities: remaining In addition, the hydrogenated oxidation treatment product phase is dispersed and distributed in the base phase of the Ti—Mn alloy, and the main component of the hydrogenated oxidation treatment product phase is an oxide of La (Ce) and La (Ce).
e) Hydrogen having a structure composed of an -Ni-based alloy, further having an infinite number of cracks generated during the hydrogenation treatment, and having a structure in which the hydrogenated oxidation treatment product phase is exposed on the inner surface of the crack. Storage alloy.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態につい
て、説明する。通常の高周波誘導溶解炉にて、原料とし
てそれぞれ99.9%以上の純度をもったNi,Zr,
Ti,Mn,V,La、およびCe、さらにミッシュメ
タルを用い、Ar雰囲気中で溶解して、それぞれ表1に
示される組成をもった合金溶湯を調製し、水冷銅鋳型に
鋳造してインゴットとし、このインゴットに、真空雰囲
気中、950〜1050℃の範囲内の所定温度に20時
間保持の条件で均質化熱処理を施し、ついで1〜1.2
気圧の範囲内の所定の圧力の水素雰囲気中、まず室温で
1時間保持した後、昇温を開始して400〜700℃の
範囲内の所定温度に加熱し、この温度に1時間保持して
から、Arガスによる強制空冷を行なう条件で水素化処
理を施し、さらに大気中、450℃にて1時間保持の条
件で酸化処理を施すと、図1に代表組織を例示する概略
組織拡大模写図で示されるTi−Mn系合金の素地相に
水素化酸化処理生成物相が分散分布し、この水素反応生
成物相の主体が、La(Ce)の酸化物と、La(C
e)−Ni系合金で構成された組織を有し、さらに上記
水素化酸化処理生成物相の形成時に発生した無数の亀裂
が存在すると共に、前記亀裂内面には前記水素化酸化処
理生成物相が露出した構造を有する本発明水素貯蔵合金
が得られ、この合金を例えばヒ−トポンプの吸発熱源と
して組み込み、或いは、水素貯蔵、輸送用、電池の電極
などとして実用に供するに際しては、大きい有効水素吸
蔵量を有すると共に、水素吸収および放出速度がきわめ
て速く、優れた初期活性化を発揮する水素貯蔵合金にな
るのである。一般に、水素貯蔵合金を、例えばヒ−トポ
ンプの吸発熱源として適用する場合には、水素貯蔵合金
が組込まれた前記ヒ−トポンプに対して、数回の水素吸
収放出を繰り返すと、水素吸蔵量が徐々に上昇し何れ一
定の値となる初期活性化が行なわれ、この初期活性化が
行なわれた状態で実用に供されるものである。活性化に
必要な繰り返し数、水素圧等は合金組成によって異な
る。
Embodiments of the present invention will be described below. In a normal high-frequency induction melting furnace, Ni, Zr, each having a purity of 99.9% or more as raw materials are used.
Using Ti, Mn, V, La, and Ce, and misch metal, they were melted in an Ar atmosphere to prepare alloy melts having the compositions shown in Table 1, and cast into water-cooled copper molds to form ingots. The ingot is subjected to a homogenizing heat treatment in a vacuum atmosphere at a predetermined temperature in the range of 950 to 1050 ° C. for 20 hours, and then the ingot is heated to 1 to 1.2 ° C.
In a hydrogen atmosphere of a predetermined pressure within the range of the atmospheric pressure, the temperature is first maintained at room temperature for 1 hour, then, the temperature is raised to a predetermined temperature within the range of 400 to 700 ° C., and the temperature is maintained for 1 hour. When hydrogenation treatment is performed under the condition of forced air cooling by Ar gas and oxidation treatment is further performed at 450 ° C. for one hour in the air, the schematic structure enlarged schematic diagram illustrating a representative structure in FIG. Are dispersed and distributed in the matrix phase of the Ti—Mn-based alloy represented by the following formula. The hydrogen reaction product phase is mainly composed of La (Ce) oxide and La (C
e) having a structure composed of a -Ni-based alloy, in addition to the numerous cracks generated during the formation of the above-mentioned hydro-oxidation product phase, and the above-mentioned hydro-oxidation product phase on the inner surface of the crack; A hydrogen storage alloy of the present invention having an exposed structure is obtained. When this alloy is incorporated as, for example, an endothermic source of a heat pump or practically used as an electrode of a battery for hydrogen storage, transportation, or the like, it is very effective. It is a hydrogen storage alloy that has a hydrogen storage capacity, has an extremely fast hydrogen absorption and release rate, and exhibits excellent initial activation. In general, when a hydrogen storage alloy is used as a heat absorbing / generating source of a heat pump, for example, when the hydrogen absorption / desorption is repeated several times with respect to the heat pump into which the hydrogen storage alloy is incorporated, the hydrogen storage amount is increased. Is gradually increased to a certain value, and initial activation is performed, and the apparatus is put to practical use with the initial activation performed. The number of repetitions, hydrogen pressure, and the like required for activation vary depending on the alloy composition.

【0008】なお、本発明の水素貯蔵合金では、JIS
規格による有効水素吸蔵量の測定は、すなわち(50℃
での吸蔵平衡圧:11気圧時の水素吸蔵量)−(−5℃
での放出平衡圧:1気圧時の水素吸蔵量)の条件により
測定された(図4参照)。
In the hydrogen storage alloy of the present invention, JIS
The measurement of the effective hydrogen storage capacity according to the standard is as follows: (50 ° C.
Equilibrium storage pressure: hydrogen storage capacity at 11 atm)-(-5 ° C)
(Equilibrium release pressure of hydrogen at 1 atm) was measured (see FIG. 4).

【0009】つぎに、本発明の水素貯蔵合金において、
これを構成するTi−Mn系合金の組成を上記の通りに
限定した理由を説明する。 (a) TiおよびZr 有効水素吸蔵量を増大させるには、Tiの一部をZrで
置換する必要があるが、その置換割合が、合金全体(1
00%)に占める割合で(以下、同じ)、0.5未満ま
たはTiの含有割合が30%を越えて多くなった場合で
は、圧力組成等温線における低温側曲線および高温側曲
線のプラト−圧が高くなり過ぎて、所望の有効水素吸蔵
量の増大が計れず、一方その置換割合が10%を越える
か、またはTiの含有割合が19%未満となった場合は
逆に圧力組成等温線における低温側曲線および高温側曲
線のプラト−圧が著しく低下し、所望の大きな有効水素
吸蔵量を確保することが出来ないことから、その含有割
合を、それぞれTi:19〜30%、Zr:0.5〜1
0%と定め、望ましくは、それぞれTi:23〜29
%、Zr:1〜5%とした。
Next, in the hydrogen storage alloy of the present invention,
The reason why the composition of the Ti—Mn-based alloy constituting the alloy is limited as described above will be described. (A) Ti and Zr In order to increase the effective hydrogen storage capacity, it is necessary to replace a part of Ti with Zr.
In the case where the content is less than 0.5 or the content of Ti is more than 30%, the plat-pressure of the low-temperature curve and the high-temperature curve in the pressure composition isotherm is increased. Is too high to achieve the desired increase in the effective hydrogen storage capacity. On the other hand, if the substitution ratio exceeds 10% or the Ti content ratio is less than 19%, the pressure composition isotherm Since the plate pressures of the low-temperature curve and the high-temperature curve are remarkably reduced and a desired large effective hydrogen storage amount cannot be secured, the content ratios of Ti: 19 to 30% and Zr: 0. 5-1
0%, and desirably, Ti: 23 to 29, respectively.
%, Zr: 1 to 5%.

【0010】(b) Mn、Cr、V、およびNi さらに、有効水素吸蔵量の増大には、上記の通りTiの
Zrによる一部置換に加えて 、MnのCr、Vおよび
Niによる一部置換が不可欠であり、更に言い換えれ
ば、Tiの所定量のZrによる一部置換が行なわれない
場合や、置換元素であるCr、VおよびNiのうちの少
なくともいずれかの元素が含有しない場合は勿論のこ
と、Mnのそれぞれ所定量のCr、VおよびNiによる
一部置換が行われない場合には、所望の大きな有効水素
吸蔵量を確保することが出来ないものであり、その理由
は、Mn:30%、Cr:4%、V:7%およびNi:
2%未満であったり、またMn:44%、Cr:13
%、V:17%およびNi:9%をそれぞれ越えると、
圧力組成等温線におけるプラト−の傾きやヒステリシス
が大きくなることになり、したがって、その含有割合
を、それぞれMn:30〜44%、Cr:4〜13%、
V:7〜17%およびNi:2〜9%と定め、望ましく
は、それぞれMn:33〜40%、Cr:7〜11、
V:9〜15%およびNi:3〜7%とした。
(B) Mn, Cr, V, and Ni Further, as described above, in addition to the partial replacement of Ti by Zr, the partial replacement of Mn by Cr, V and Ni Is indispensable. In other words, when partial replacement of Ti with a predetermined amount of Zr is not performed, or when at least one of Cr, V, and Ni as replacement elements is not contained, it is needless to say that If the partial replacement of Mn with a predetermined amount of each of Cr, V and Ni is not carried out, it is impossible to secure a desired large effective hydrogen storage amount. %, Cr: 4%, V: 7% and Ni:
Less than 2%, Mn: 44%, Cr: 13
%, V: 17% and Ni: 9%, respectively,
The slope and hysteresis of the plate in the pressure composition isotherm become large, and therefore, the content ratios thereof are Mn: 30 to 44%, Cr: 4 to 13%,
V: 7 to 17% and Ni: 2 to 9%, preferably Mn: 33 to 40%, Cr: 7 to 11,
V: 9 to 15% and Ni: 3 to 7%.

【0011】(c) La(Ce) これらの成分は、上記の通り雰囲気中の水素を主体相よ
り一段と速い速度で解離吸収し、かつ再結合させて雰囲
気中に放出する作用を有するLa(Ce)−Ni系合金
相を形成するのに不可欠な成分であり、したがってその
割合が0.1%未満では、前記La(Ce)−Ni系合
金相の生成割合が少なすぎて、これのもつ上記作用を十
分に発揮させることが出来ず、一方その割合が3.5%
を越えると、水素吸蔵能の小さい前記La(Ce)−N
i系合金相の割合が多くなりすぎ、合金全体の水素吸蔵
量が低下するようになることから、その割合を0.1〜
3.5%、望ましくは1〜3.0%と定めた。
(C) La (Ce) As described above, these components have the effect of dissociating and absorbing hydrogen in the atmosphere at a higher speed than the main phase, and also recombining and releasing into the atmosphere. ) -Ni-based alloy phase is an indispensable component. Therefore, if the proportion is less than 0.1%, the generation rate of the La (Ce) -Ni-based alloy phase is too small, and the above-mentioned ratio is possessed. The effect cannot be fully exhibited, while the ratio is 3.5%
Is exceeded, the La (Ce) -N having a small hydrogen storage capacity is used.
Since the ratio of the i-based alloy phase becomes too large and the hydrogen storage amount of the entire alloy decreases, the ratio is set to 0.1 to
It was determined to be 3.5%, preferably 1 to 3.0%.

【0012】(g) 酸素 酸素は、主に水素化酸化処理生成物相を構成するLa
(Ce)−Ni系合金と共に、雰囲気中の水素分子(H
2 )を素地相より速い速度で水素原子(H)に解離して
吸収し、吸収した水素原子を素地相中に拡散させ、一方
水素放出にあたっては素地相からの拡散水素原子をいち
速く水素分子に再結合させる作用を有するLa(Ce)
酸化物の形成に不可欠な成分であるが、その割合が1%
未満では、La(Ce)酸化物の形成が少なすぎて上記
の作用効果を十分に発揮させることができず、また亀裂
の形成も不十分となり、一方その割合が10%を越える
と、相対的にLa(Ce)酸化物の割合が多くなりすぎ
て強度が低下し、微粉化傾向が促進されるようになるこ
とから、その割合を、1〜10%、望ましくは1.5〜
7%と定めた。
(G) Oxygen Oxygen is mainly composed of La which constitutes the product phase of the hydro-oxidation treatment.
Along with the (Ce) -Ni-based alloy, hydrogen molecules (H
2 ) is dissociated into hydrogen atoms (H) and absorbed at a faster rate than the base phase, and the absorbed hydrogen atoms are diffused into the base phase. La (Ce) having the effect of recombining with
It is an indispensable component for oxide formation, but its proportion is 1%
If the ratio is less than the above, the formation of La (Ce) oxide is too small to exert the above-mentioned effects sufficiently, and the formation of cracks becomes insufficient. Since the proportion of the La (Ce) oxide becomes too large, the strength is reduced and the tendency to pulverization is promoted, so that the proportion is 1 to 10%, preferably 1.5 to 10%.
It was set at 7%.

【0013】なお、この発明の水素貯蔵合金は、通常の
機械的粉砕により所定粒度の粉末とすることができるほ
か、加圧水素雰囲気中、10〜200℃の範囲内の所定
温度に加熱の水素吸収と、真空排気による水素放出の水
素化粉砕によっても粉末とすることができ、この結果の
粉末は、いずれも図2に代表組織を例示する概略組織拡
大模写図で示される通りの組織をもつものとなる。
The hydrogen storage alloy of the present invention can be converted into a powder having a predetermined particle size by ordinary mechanical pulverization, and can be heated to a predetermined temperature within a range of 10 to 200 ° C. in a pressurized hydrogen atmosphere. And powder by hydrogenation and pulverization of hydrogen release by vacuum evacuation, and the resulting powder has a structure as shown in a schematic structure enlarged schematic diagram illustrating a representative structure in FIG. Becomes

【0014】[0014]

【実施例】つぎに、本発明の水素貯蔵合金を実施例によ
り、具体的に説明する。通常の高周波誘導溶解炉にて、
原料としてそれぞれ99.9%以上の純度をもったN
i,Zr,Ti,Mn,V,La、およびCe、さらに
ミッシュメタルを用い、Ar雰囲気中で溶解して、それ
ぞれ表1に示される組成をもった合金溶湯を調製し、水
冷銅鋳型に鋳造してインゴットとし、このインゴット
に、真空雰囲気中、表2に示される所定温度に20時間
保持の条件で均質化熱処理を施し、ついで表2に示され
る所定の圧力の水素雰囲気中、まず室温で1時間保持し
た後、昇温を開始して同じく表2に示される所定温度に
加熱し、この温度に1時間保持してから、Arガスによ
る強制空冷を行なう条件で水素化処理を施し、さらに大
気中、450に1時間保持の条件で酸化処理を施すこと
により本発明水素貯蔵合金1〜16(以下、本発明合金
1〜16という)をそれぞれ製造した。また、比較の目
的で、合金溶湯の組成を表1に示される通りとし、かつ
均質化熱処理後の水素化処理および酸化処理を行なわな
い以外は同一の条件で従来水素貯蔵合金(以下、従来合
金という)を製造した。この結果得られた水素貯蔵合金
について、その組織を走査型電子顕微鏡で観察したとこ
ろ、本発明合金1〜16は、いずれも図1に示される通
り無数の亀裂が存在し、この亀裂の内面には、La(C
e)−Ni系合金とLa(Ce)酸化物で構成された水
素化酸化処理生成物相が露出し、この水素化酸化処理生
成物がTi−Mn系合金の素地相中に分散分布した組織
を示し、従来合金は、図3に示される通りTi−Mn系
合金の素地相からなる組織を示した。
EXAMPLES Next, the hydrogen storage alloy of the present invention will be specifically described with reference to examples. In a normal high-frequency induction melting furnace,
N, each having a purity of 99.9% or more as a raw material
Using i, Zr, Ti, Mn, V, La, and Ce, and misch metal, melting in an Ar atmosphere to prepare alloy melts each having the composition shown in Table 1, and casting them in a water-cooled copper mold. The ingot was subjected to a homogenizing heat treatment in a vacuum atmosphere at a predetermined temperature shown in Table 2 for 20 hours, and then at room temperature in a hydrogen atmosphere at a predetermined pressure shown in Table 2. After holding for 1 hour, the temperature was raised and heated to a predetermined temperature also shown in Table 2, held at this temperature for 1 hour, and then subjected to a hydrogenation treatment under the condition of forced air cooling with Ar gas. Hydrogen storage alloys 1 to 16 of the present invention (hereinafter referred to as alloys 1 to 16 of the present invention) were produced by subjecting 450 to oxidation treatment in the atmosphere under the condition of holding for 1 hour. For the purpose of comparison, a conventional hydrogen storage alloy (hereinafter referred to as a conventional alloy) was prepared under the same conditions except that the composition of the molten alloy was as shown in Table 1 and the hydrogenation treatment and the oxidation treatment after the homogenization heat treatment were not performed. Manufactured). The structure of the resulting hydrogen storage alloy was observed with a scanning electron microscope. As a result, each of the alloys 1 to 16 of the present invention had an infinite number of cracks as shown in FIG. Is La (C
e) A structure in which a hydrogenated oxidation treatment product phase composed of a -Ni-based alloy and La (Ce) oxide is exposed, and the hydrogenated oxidation treatment product is dispersed and distributed in a base phase of the Ti-Mn-based alloy. As shown in FIG. 3, the conventional alloy showed a structure composed of a base phase of a Ti—Mn-based alloy.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】つぎに、上記の本発明合金1〜16よび従
来合金について、それぞれ水素吸収速度と水素放出速度
をJIS・H7202の「水素吸蔵合金の水素化速度試
験測定法」にもとづいて測定した。なお、測定に先だっ
て、本発明合金1〜16および従来合金を、圧力容器に
封入し、水素雰囲気圧力:8気圧、加熱温度:200
℃、保持時間:1時間の条件での水素吸収と、真空排気
による水素放出からなる水素化粉砕を行なって200m
esh以下の粒度をもった粉末とし、この粉末を用いて
以下に示す条件で測定を行なった。
Next, the hydrogen absorption rate and the hydrogen release rate of the alloys 1 to 16 of the present invention and the conventional alloy were measured in accordance with JIS H7202 "Method for measuring hydrogenation rate of hydrogen storage alloy". Prior to the measurement, the alloys 1 to 16 of the present invention and the conventional alloy were sealed in a pressure vessel, and the hydrogen atmosphere pressure was 8 atm and the heating temperature was 200.
C., holding time: 200 m after hydrogen crushing consisting of absorption of hydrogen under the condition of 1 hour and release of hydrogen by evacuation.
A powder having a particle size of esh or less was used, and measurement was performed using the powder under the following conditions.

【0018】まず、水素吸収速度については、図5に概
略説明図で示される通り、(a) 粉末を浴(油または
水)に浸漬した容器内に封入し、前記浴の温度を200
℃に保持した状態で、弁Vb:閉、弁VaおよびVc:
開として水素ボンベから加圧水素を系内に導入し、系内
を30気圧とした時点で弁Va:閉とし、系内の圧力が
一定圧力に降下する(粉末による水素吸収完了)まで放
置して粉末の初期活性化を行ない、(b) 系内の圧力
が一定圧力(約20気圧程度)に降下した時点で弁V
b:開とし、真空ポンプで系内を10-2トルの真空雰囲
気とした後、浴温を20℃とし、弁VbおよびVc:
閉、弁Va:開にして容器を除く系内に水素を導入し、
その圧力が30気圧となった時点で弁Va:閉、弁V
c:開とし、この状態で系内の時間に対する圧力降下を
測定し、この結果の圧力降下曲線から粉末の水素吸蔵量
が80%になった時点の水素吸蔵量とそれまでに要した
時間を求め、(80%吸蔵時の水素吸蔵量)÷(80%
水素吸蔵に要した時間)を算出し、この値を水素吸収速
度とした。また、水素放出速度については、上記の水素
吸収速度測定後の状態、すなわち弁VaおよびVb:
閉、弁Vc:開であって系内の圧力が一定圧(通常20
気圧前後)となった状態で、浴温を100〜300℃の
範囲内の粉末の水素放出適正温度、例えば120℃とし
た後、弁Vb:開、弁Vc:閉として容器を除く系内を
10-2トルに排気し、ついで弁Vb:閉、弁Vc:開と
した状態で、系内の時間に対する圧力上昇を測定し、こ
の結果の圧力上昇曲線から粉末の水素放出量が80%に
なった時点の水素放出量とそれまでに要した時間を求
め、(80%放出時の水素放出量)÷(80%水素放出
に要した時間)を算出し、この値を水素放出速度とし
た。これらの結果を表3に示した。
First, regarding the hydrogen absorption rate, as shown in the schematic explanatory view of FIG. 5, (a) a powder was sealed in a vessel immersed in a bath (oil or water), and the temperature of the bath was set to 200.
C, the valves Vb: closed, valves Va and Vc:
When opened, pressurized hydrogen is introduced into the system from a hydrogen cylinder. When the pressure in the system reaches 30 atm, the valve Va is closed, and the system is left until the pressure in the system drops to a constant pressure (hydrogen absorption by powder is completed). (B) When the pressure in the system drops to a constant pressure (about 20 atm), the valve V
b: Open, set the system to a vacuum atmosphere of 10 -2 Torr with a vacuum pump, set the bath temperature to 20 ° C, and set the valves Vb and Vc:
Close, valve Va: open and introduce hydrogen into the system excluding the vessel,
When the pressure reaches 30 atm, valve Va: closed, valve V
c: Open, pressure drop with respect to time in the system was measured in this state, and from the resulting pressure drop curve, the hydrogen storage amount at the time when the hydrogen storage amount of the powder became 80% and the time required until then were calculated. Then, (hydrogen storage amount at 80% storage) ÷ (80%
The time required for hydrogen storage) was calculated, and this value was used as the hydrogen absorption rate. Regarding the hydrogen release rate, the state after the above-mentioned hydrogen absorption rate measurement, that is, the valves Va and Vb:
Closed, valve Vc: Open and the pressure in the system is constant (typically 20
(Atmospheric pressure), the bath temperature is set to an appropriate temperature for releasing hydrogen of powder in the range of 100 to 300 ° C., for example, 120 ° C., then the valve Vb is opened and the valve Vc is closed to remove the inside of the system. After exhausting to 10 -2 torr and then, with the valve Vb closed and the valve Vc open, the pressure rise over time in the system was measured and the resulting pressure rise curve showed that the hydrogen release of the powder was 80%. The amount of hydrogen released at the point of time and the time required up to that time were obtained, and (the amount of hydrogen released at the time of 80% release) / (the time required for the release of 80% hydrogen) was calculated. . Table 3 shows the results.

【0019】[0019]

【表3】 [Table 3]

【0020】さらに、上記本発明合金1〜16および従
来合金について、初期活性化を評価する目的で、以下に
詳述する通り、これを粉末にして電池に活物質として組
み込み、前記電池が最大放電容量を示すに至るまで、こ
れに充放電を繰り返し施し、前記最大放電容量の95%
±1%に相当する放電容量を示すまでの充放電回数を測
定した。すなわち、まず、従来合金について、ジョーク
ラッシャを用いて粗粉砕して直径:2mm以下の粗粒と
し、引続いて上記本発明合金1〜161および前記粗粉
砕した従来合金を、ボールミルを用いて微粉砕して20
0メッシュ以下の粒度とし、これに結着剤としてのポリ
テトラフルオロエチレン(PTFE)と増粘剤としての
カルボキシルメチルセルロース(CMC)を加えてペー
スト状とした後、95%の気孔率を有する市販の多孔質
Ni焼結板に充填し、乾燥し、加圧して、平面寸法:3
0mm×40mm、厚さ:0.40〜0.43mmの形状(前
記活物質粉末充填量:約1.8g)とし、これの一辺に
リードとなるNi薄板を溶接により取り付けて負極を形
成し、一方正極は、活物質として重量比で84:16の
割合に配合したNi(OH)2 とCoOを用い、これに
結着剤としてのポリテトラフルオロエチレン(PTF
E)と増粘剤としてのカルボキシルメチルセルロース
(CMC)を加えてペースト状とし、これを上記多孔質
Ni焼結板に充填し、乾燥し、加圧して、平面寸法:3
0mm×40mm、厚さ:0.71〜0.73mmの形状と
し、同じくこれの一辺にNi薄板を取り付けることによ
り形成し、ついで、上記負極の両側に、それぞれポリプ
ロピレンポリエチレン共重合体のセパレータ板を介して
上記正極を配置し、さらに前記正極のそれぞれの外面か
ら活物質の脱落を防止する目的で塩化ビニール製の保護
板ではさんで一体化し、これを塩化ビニール製のセルに
装入し、前記セルに電解液として30%KOH水溶液を
装入することにより電池を製造した。ついで、上記電池
に、充電速度:0.15C、放電速度:0.15C、充
電電気量:負極容量の135%の条件で充放電を行な
い、前記充電と放電を充放電1回と数え、前記電池が最
大放電容量を示すに至るまで前記充放電を繰り返し行な
った。表3に、前記最大放電容量の95%の放電容量を
示すに要した充放電回数を示し、これによって初期活性
化を評価した。
Further, for the purpose of evaluating the initial activation of the alloys 1 to 16 of the present invention and the conventional alloy, as described in detail below, the powder was incorporated into a battery as an active material. This is repeatedly charged and discharged until the capacity is reached, and 95% of the maximum discharge capacity is obtained.
The number of times of charge and discharge until a discharge capacity corresponding to ± 1% was shown was measured. That is, first, the conventional alloy is coarsely pulverized using a jaw crusher to obtain coarse particles having a diameter of 2 mm or less. Subsequently, the alloys 1 to 161 of the present invention and the coarsely pulverized conventional alloy are finely ground using a ball mill. Crushed 20
0 mesh or less, and after adding polytetrafluoroethylene (PTFE) as a binder and carboxymethylcellulose (CMC) as a thickener to form a paste, a commercially available product having a porosity of 95% Fill a porous Ni sintered plate, dry and pressurize, planar dimension: 3
A shape of 0 mm × 40 mm, thickness: 0.40 to 0.43 mm (the amount of the active material powder charged: about 1.8 g), and a Ni thin plate serving as a lead attached to one side of this by welding to form a negative electrode, On the other hand, for the positive electrode, Ni (OH) 2 and CoO mixed in a ratio of 84:16 by weight as active materials were used, and polytetrafluoroethylene (PTF) was used as a binder.
E) and carboxymethylcellulose (CMC) as a thickener were added to form a paste, which was filled in the porous Ni sintered plate, dried, and pressed to obtain a planar dimension of 3
A shape of 0 mm × 40 mm, thickness: 0.71 to 0.73 mm was formed by attaching a Ni thin plate to one side of the shape, and then a polypropylene-polyethylene copolymer separator plate was provided on both sides of the negative electrode. The positive electrode is arranged via a protective plate made of vinyl chloride for the purpose of preventing the active material from falling off from the outer surface of each of the positive electrodes, and integrated into a vinyl chloride cell. A battery was manufactured by charging a 30% aqueous KOH solution as an electrolytic solution into the cell. Then, the battery was charged and discharged under the conditions of a charge rate: 0.15 C, a discharge rate: 0.15 C, a charged amount of electricity: 135% of the negative electrode capacity, and the charge and discharge were counted as one charge and discharge. The charging and discharging were repeated until the battery reached the maximum discharge capacity. Table 3 shows the number of times of charging and discharging required to show a discharge capacity of 95% of the maximum discharge capacity, and the initial activation was evaluated based on the number of times.

【0021】[0021]

【発明の効果】表3に示される結果から、本発明合金1
〜16においては、表面および無数の亀裂内面に露出
し、これによって全体的に広い表面積で雰囲気中に露出
した状態にある水素化酸化処理生成物相のLa(Ce)
−Ni系合金およびLa(Ce)酸化物を通して、雰囲
気中の水素が水素原子に解離されて吸収され、この吸収
水素がTi−Mn系合金の素地相に拡散して水素吸蔵が
行なわれるが、上記の通りきわめて速い水素吸収能を有
するLa(Ce)−Ni系合金およびLa(Ce)酸化物
が全体的に広い表面積で分布するので、水素吸収速度は
相対的にきわめて速いものなり、かつ初期活性化も著し
く促進されるようになり、また水素放出もこの逆の機構
によるものであるため速い速度での水素放出が行なわれ
るのに対して、従来合金においては、水素吸蔵は、水素
化処理による積極的亀裂形成が行なわれない分だけ相対
的に小さく、この結果水素吸収および放出速度は遅くな
らざるを得ず、かつ初期活性化も遅いものとなることが
明らかである。上述のように、この発明の水素貯蔵合金
においては、水素吸収および放出速度がきわめて速く、
かつ実用に際してはすぐれた初期活性化を示すので、水
素貯蔵合金が適用されている各種機械装置の高出力化お
よび高性能化、さらに省エネ化に大いに寄与するもので
ある。
According to the results shown in Table 3, the alloy of the present invention 1
In No.-16, the La (Ce) of the hydro-oxidation treatment product phase exposed to the surface and the myriad of crack inner surfaces, thereby being exposed to the atmosphere with a large surface area as a whole.
Hydrogen in the atmosphere is dissociated into hydrogen atoms and absorbed through the Ni-based alloy and La (Ce) oxide, and the absorbed hydrogen diffuses into the base phase of the Ti-Mn-based alloy to store hydrogen. As described above, the La (Ce) -Ni-based alloy and the La (Ce) oxide having the extremely fast hydrogen absorption ability are distributed over a large surface area as a whole, so that the hydrogen absorption rate becomes relatively extremely fast, and Activation is remarkably promoted, and hydrogen is released at a high rate because of the reverse mechanism. On the other hand, in conventional alloys, hydrogen storage is performed by hydrogenation treatment. It is clear that the rate of hydrogen absorption and desorption has to be slow, and the initial activation is also slow, because no active crack formation is caused. As described above, in the hydrogen storage alloy of the present invention, the rate of hydrogen absorption and release is extremely high,
In addition, since it exhibits excellent initial activation in practical use, it greatly contributes to high output and high performance of various mechanical devices to which the hydrogen storage alloy is applied, and further to energy saving.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の水素貯蔵合金の代表組織を例示する
概略組織拡大模写図である。
FIG. 1 is a schematic enlarged enlarged view illustrating a representative structure of a hydrogen storage alloy of the present invention.

【図2】 本発明の水素貯蔵合金粉砕粉末の代表組織を
例示する概略組織拡大模写図である。
FIG. 2 is a schematic enlarged microstructure diagram illustrating a representative structure of the hydrogen storage alloy pulverized powder of the present invention.

【図3】 従来水素貯蔵合金の代表組織を例示する概略
組織拡大模写図である。
FIG. 3 is a schematic enlarged schematic view illustrating a typical structure of a conventional hydrogen storage alloy.

【図4】 本発明の水素貯蔵合金の圧力組成等温線を示
す図である。
FIG. 4 is a diagram showing a pressure composition isotherm of the hydrogen storage alloy of the present invention.

【図5】 水素貯蔵合金の水素吸収放出速度を測定する
のに用いた装置の概略説明図である。
FIG. 5 is a schematic explanatory view of an apparatus used for measuring a hydrogen absorption / release rate of a hydrogen storage alloy.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原子%で、 Ti:19〜30%、 Zr:0.5〜10%、 Mn:30〜44%、 Cr:4〜13%、 V:7〜17%、 Ni:2〜9%、 Laおよび/またはCe:0.1〜3.5%、 酸素:1〜10% 不可避不純物:残、なる組成を有し、 かつTi−Mn系合金の素地相に水素化酸化処理生成物
相が分散分布し、前記水素化酸化処理生成物相の主体
が、Laおよび/またはCeの酸化物と、Laおよび/
またはCe−Ni系合金で構成された組織を有し、さら
に水素化処理時に発生した無数の亀裂が存在すると共
に、前記亀裂内面には前記水素化酸化処理生成物相が露
出した構造を有することを特徴とする水素貯蔵合金。
1. Atomic%, Ti: 19 to 30%, Zr: 0.5 to 10%, Mn: 30 to 44%, Cr: 4 to 13%, V: 7 to 17%, Ni: 2 to 2% 9%, La and / or Ce: 0.1-3.5%, Oxygen: 1-10% Inevitable impurities: Remaining, and have a hydrogen-oxidation treatment generated in the base phase of the Ti-Mn alloy. The material phase is dispersed and distributed, and the main component of the hydrooxidation treatment product phase is an oxide of La and / or Ce, and La and / or La.
Or having a structure composed of a Ce-Ni-based alloy, further having an infinite number of cracks generated during the hydrogenation treatment, and having a structure in which the hydrogenation oxidation treatment product phase is exposed on the inner surface of the crack. A hydrogen storage alloy characterized by the following.
JP9003356A 1997-01-10 1997-01-10 Hydrogen storage alloy excellent in initial activity Withdrawn JPH10195574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9003356A JPH10195574A (en) 1997-01-10 1997-01-10 Hydrogen storage alloy excellent in initial activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9003356A JPH10195574A (en) 1997-01-10 1997-01-10 Hydrogen storage alloy excellent in initial activity

Publications (1)

Publication Number Publication Date
JPH10195574A true JPH10195574A (en) 1998-07-28

Family

ID=11555079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9003356A Withdrawn JPH10195574A (en) 1997-01-10 1997-01-10 Hydrogen storage alloy excellent in initial activity

Country Status (1)

Country Link
JP (1) JPH10195574A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113148947A (en) * 2021-03-03 2021-07-23 中国科学院江西稀土研究院 Rare earth alloy hydrogen storage material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113148947A (en) * 2021-03-03 2021-07-23 中国科学院江西稀土研究院 Rare earth alloy hydrogen storage material and preparation method thereof
CN113148947B (en) * 2021-03-03 2023-02-10 中国科学院江西稀土研究院 Rare earth alloy hydrogen storage material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3965209B2 (en) Low Co hydrogen storage alloy
JPWO2007018291A1 (en) Hydrogen storage alloy and manufacturing method thereof, hydrogen storage alloy electrode, and secondary battery
CN111471894B (en) Doped A5B19 type samarium-containing hydrogen storage alloy, battery and preparation method
JPWO2005014871A1 (en) Low Co hydrogen storage alloy
US5900334A (en) Hydrogen occluding alloy
EP0753590B1 (en) Hydrogen occluding alloy and electrode made of the alloy
US6083327A (en) Hydrogen occluding alloy
JP6934097B1 (en) Hydrogen storage alloy
JPH10195575A (en) Hydrogen storage alloy excellent in initial activity
JPH10195574A (en) Hydrogen storage alloy excellent in initial activity
JPH10195584A (en) Hydrogen storage alloy excellent in initial activity
JPH10195583A (en) Hydrogen storage alloy excellent in initial activity
JPH10195576A (en) Hydrogen storage alloy excellent in initial activity
JPH10195577A (en) Hydrogen storage alloy excellent in initial activity
EP0761833B1 (en) Hydrogen occluding alloy and electrode made of the alloy
JPH10195580A (en) Hydrogen storage alloy excellent in initial activity
JPH10195582A (en) Hydrogen storage alloy excellent in initial activity
JPH10195578A (en) Hydrogen storage alloy excellent in initial activity
JPH1025528A (en) Hydrogen storage alloy
JPH10195581A (en) Hydrogen storage alloy excellent in initial activity
JPH09176777A (en) Hydrogen storage alloy
JPH10195579A (en) Hydrogen storage alloy excellent in initial activity
JPH10195573A (en) Hydrogen storage alloy excellent in initial activity
JPH0978167A (en) Hydrogen storage alloy
JPH10152740A (en) Hydrogen storage alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040406