JPH10195577A - Hydrogen storage alloy excellent in initial activity - Google Patents

Hydrogen storage alloy excellent in initial activity

Info

Publication number
JPH10195577A
JPH10195577A JP9003359A JP335997A JPH10195577A JP H10195577 A JPH10195577 A JP H10195577A JP 9003359 A JP9003359 A JP 9003359A JP 335997 A JP335997 A JP 335997A JP H10195577 A JPH10195577 A JP H10195577A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen
hydrogen storage
hydrogenation
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9003359A
Other languages
Japanese (ja)
Inventor
Shinichiro Kakehashi
伸一郎 梯
Yoshio Takizawa
与司夫 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP9003359A priority Critical patent/JPH10195577A/en
Publication of JPH10195577A publication Critical patent/JPH10195577A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy increased in hydrogen absorbing and releasing rates, excellent in practical use, and having a superior initial activity. SOLUTION: This hydrogen storage alloy has a composition containing, by atom, 19-30% Ti, 0.5-10% Zr, 0.02-0.4% Hf, 30-44% Mn, 4-13% Cr, 7-17% V, 2-9% Ni, 0.1-3.5% Re (where Re represents a mixture consisting of one or >=2 elements among La, Ce, Pr, and Nd), and 1-10% oxygen and satisfying Ti(%)+Zr(%)+Hf(%)+Mn(%)+Cr(%)+V(%)+Ni(%)+Re(%) + oxygen (%) +(inevitable impurities) (%)=100%. Moreover, this hydrogen storage alloy has a structure where hydrogenation and oxidation treatment product phases are dispersedly distributed in matrix phases of Ti-Mn alloy and the hydrogenation and oxidation treatment product phases are constituted essentially of Re oxide and Re-Ni alloy and further has a structure where numerous cracks developing at the time of hydrogenation treatment are present and the hydrogenation and oxidation treatment product phases are exposed in the inner surface of the cracks.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えばヒ−トポ
ンプの吸発熱源として組み込み、或いは、水素貯蔵、輸
送用、電池の電極などとして実用に供するに際しては、
水素吸収および放出速度がきわめて速く、優れた初期活
性化を発揮する水素貯蔵合金に関するものである。
BACKGROUND OF THE INVENTION The present invention is applicable, for example, as a heat absorbing / generating source of a heat pump, or for practical use as an electrode of a battery for storing and transporting hydrogen.
The present invention relates to a hydrogen storage alloy having a very high rate of hydrogen absorption and desorption and exhibiting excellent initial activation.

【0002】[0002]

【従来の技術】従来、ヒ−トポンプの吸発熱源として組
み込むことを目的とした下記の組成範囲を有するTi−
Mn系水素貯蔵合金が知られている。原子%で、 Ti:27.5〜31.5%、 Zr:1〜5%、 Mn:38.5〜44.5%、 Cr:7〜13%、 V:10〜16%、 Ni:1〜5%、 不可避不純物:残、 結晶構造当量比:[Mn(%)+Cr(%)+V(%)
+Ni(%)]/[Ti(%)+Zr(%)]=2.0
5〜2.20、 を満足する組成を有する水素貯蔵合金。
2. Description of the Related Art Conventionally, a Ti-pump having the following composition range intended to be incorporated as a heat-absorbing and heat-generating source of a heat pump.
Mn-based hydrogen storage alloys are known. Atomic%, Ti: 27.5 to 31.5%, Zr: 1 to 5%, Mn: 38.5 to 44.5%, Cr: 7 to 13%, V: 10 to 16%, Ni: 1 55%, inevitable impurities: residual, crystal structure equivalent ratio: [Mn (%) + Cr (%) + V (%)
+ Ni (%)] / [Ti (%) + Zr (%)] = 2.0
A hydrogen storage alloy having a composition that satisfies 5 to 2.20.

【0003】[0003]

【発明が解決しようとする課題】近年、水素貯蔵合金
が、多く適用されているヒートポンプなどの高出力化お
よび高性能化、また、電池の電極などとしての実用化に
際して、さらに省エネルギ−化に対する要求は強く、こ
れに伴ない、水素貯蔵合金に対し、大きな有効水素吸蔵
量と、更により一段と速い水素吸収放出速度と共に、よ
り短時間での初期活性化が可能であることが強く望まれ
ている。しかし上記従来の技術では、これら要求を十分
に満足させることは困難であるとの問題点があった。
In recent years, hydrogen storage alloys have been used for increasing the output and performance of heat pumps and the like, which have been widely applied, and for further saving energy in practical use as electrodes of batteries. There is a strong demand, and it is strongly desired that the hydrogen storage alloy be capable of initial activation in a shorter time with a large effective hydrogen storage amount and a much faster hydrogen absorption and release rate. I have. However, the above-described conventional technique has a problem that it is difficult to sufficiently satisfy these requirements.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、水素貯蔵合金の有効水素吸蔵量
と水素吸収放出速度および初期活性化の向上をはかるべ
く研究を行なった結果、 (a) まず、原子%で、 Ti:19〜30%、 Zr:0.5〜10%、 Hf:0.02〜0.4% 、Mn:30〜44%、 Cr:4〜13%、 V:7〜17%、 Ni:2〜9%、 Re:0.1〜3.5%、(ここでReは、La,C e,PrおよびNdの中の1種または2種以上からなる混合物を表す、以下同様 。)、 酸素:1〜10%、 不可避不純物:残 なる組成を有するTi−Mn系合金を溶製し、鋳造した
後、この合金のインゴットに、均質化熱処理を施すと、
Ti−Mn系合金の素地相の結晶粒界にそってRe−N
i系合金の分散相が存在した組織を有するようになる
が、さらに前記均質化熱処理に引き続いて水素雰囲気
中、400〜700℃の範囲内の所定温度に所定時間保
持後冷却の条件で水素化処理を施すと、前記均質化熱処
理で形成されたRe−Ni系合金の分散相が雰囲気の水
素と優先的に反応して、主体がReの水素化物[以下、
Re水素化物という]と、Re−Ni系合金からなる水
素化処理生成物相となると共に、前記水素化処理生成物
相はTi−Mn系合金の素地相に比して大きな熱膨脹を
示すことから、前記素地相には前記水素化処理生成物相
を起点として無数の亀裂が発生し、この亀裂内面には前
記水素化処理生成物相が露出した状態となり、さらに引
続いて、例えば酸化性雰囲気中、400〜500℃の範
囲内の所定温度に所定時間保持の酸化処理を施すと、上
記Re水素化物がRe酸化物となり、この結果Ti−M
n系合金は、図1に代表組織を例示する概略組織拡大模
写図で示される通りTi−Mn系合金の素地相に水素化
酸化処理生成物相が分散分布し、前記水素化酸化処理生
成物相の主体がRe−Ni系合金とRe酸化物からな
り、さらに無数の亀裂が存在し、かつ前記亀裂内面には
前記水素化酸化処理生成物相が露出した組織をもつよう
になること。
Means for Solving the Problems Accordingly, the present inventors have
From the above-mentioned viewpoints, as a result of researching to improve the effective hydrogen storage amount, the hydrogen absorption / release rate and the initial activation of the hydrogen storage alloy, (a) First, in atomic%, Ti: 19 to 30% , Zr: 0.5 to 10%, Hf: 0.02 to 0.4%, Mn: 30 to 44%, Cr: 4 to 13%, V: 7 to 17%, Ni: 2 to 9%, Re : 0.1 to 3.5%, wherein Re represents a mixture of one or more of La, Ce, Pr and Nd, and the same applies hereinafter.) Oxygen: 1 to 10% Inevitable impurities: After ingoting and casting a Ti—Mn alloy having the remaining composition, an ingot of this alloy is subjected to a homogenizing heat treatment.
Re-N along the grain boundaries of the base phase of Ti-Mn alloy
Although it has a structure in which the dispersed phase of the i-type alloy is present, it is further hydrogenated under the condition of cooling after maintaining for a predetermined time at a predetermined temperature in a range of 400 to 700 ° C. in a hydrogen atmosphere following the homogenizing heat treatment. When the treatment is performed, the dispersed phase of the Re—Ni-based alloy formed by the homogenization heat treatment preferentially reacts with hydrogen in the atmosphere, and the main component is a hydride of Re [hereinafter, referred to as “H”.
Re hydride] and a hydrogenation product phase composed of a Re-Ni-based alloy, and the hydrogenation product phase exhibits a large thermal expansion as compared with the base phase of the Ti-Mn-based alloy. An infinite number of cracks are generated in the base phase starting from the hydrogenation product phase, and the hydrogenation product phase is exposed on the inner surfaces of the cracks. When the oxidation treatment is performed at a predetermined temperature within a range of 400 to 500 ° C. for a predetermined time, the Re hydride becomes a Re oxide, and as a result, Ti-M
The n-type alloy has a hydrogenation treatment product phase dispersed and distributed in a base phase of a Ti—Mn-based alloy as shown in a schematic structure enlarged schematic diagram exemplifying a representative structure in FIG. The phase is mainly composed of a Re—Ni-based alloy and a Re oxide, and further has numerous cracks, and has a structure in which the hydrogenated oxidation product phase is exposed on the inner surface of the crack.

【0005】(b) 上記(a)のTi−Mn系合金に
おいては、これを構成する水素化酸化処理生成物相のR
e−Ni系合金およびRe酸化物が、図3に示される従
来水素貯蔵合金に比して一段と速い速度で吸収し、また
放出はこの逆の機構による作用を示すが、前記水素化酸
化処理生成物相は無数の亀裂内面に多くが露出した状態
になっており、この結果作用面積の拡大がなされること
から、上記従来水素貯蔵合金における水素吸収および放
出速度に比して一段と速い速度での水素吸収および放出
となり、さらに初期活性時における上記素地相の水素原
子の吸収割合も広い作用面積で行なわれるため著しく増
大することから、初期活性化のしい促進がはかられるよ
うになること。以上(a)および(b)に示される研究
結果を得たのである。
(B) In the Ti-Mn-based alloy of (a), the R
The e-Ni-based alloy and the Re oxide absorb at a much faster rate than the conventional hydrogen storage alloy shown in FIG. 3, and release shows an action by the reverse mechanism. The material phase is in a state where much is exposed on the myriad of crack inner surfaces, and as a result, the action area is expanded, so that the speed is much faster than the hydrogen absorption and desorption rate in the conventional hydrogen storage alloy. Hydrogen is absorbed and released, and the absorption rate of hydrogen atoms in the base phase at the time of initial activation is remarkably increased because of the large active area, so that initial activation can be promoted well. The research results shown in (a) and (b) above were obtained.

【0006】本発明は、上記の研究結果にも基づいてな
されたものであって、原子%で、 Ti:19〜30%、 Zr:0.5〜10%、 Hf:0.02〜0.4% 、Mn:30〜44%、 Cr:4〜13%、 V:7〜17%、 Ni:2〜9% Re:0.1〜3.5%、 酸素:1〜10%、 不可避不純物:残 なる組成を有し、かつTi−Mn系合金の素地相に水素
化酸化処理生成物相が分散分布し、前記水素化酸化処理
生成物相の主体が、Reの酸化物と、Re−Ni系合金
で構成された組織を有し、さらに水素化処理時に発生し
た無数の亀裂が存在すると共に、前記亀裂内面には前記
水素化酸化処理生成物相が露出した構造を有する水素貯
蔵合金、に特徴を有するものである。
The present invention has been made on the basis of the results of the above-mentioned research, and in terms of atomic%, Ti: 19 to 30%, Zr: 0.5 to 10%, Hf: 0.02 to 0. 4%, Mn: 30 to 44%, Cr: 4 to 13%, V: 7 to 17%, Ni: 2 to 9% Re: 0.1 to 3.5%, Oxygen: 1 to 10%, inevitable impurities : Having the remaining composition, and a hydrogenation oxidation treatment product phase being dispersed and distributed in the base phase of the Ti—Mn alloy, the main component of the hydrogenation oxidation treatment product phase is an oxide of Re, A hydrogen storage alloy having a structure composed of a Ni-based alloy, further having innumerable cracks generated during the hydrogenation treatment, and having a structure in which the hydrogenation oxidation treatment product phase is exposed on the inner surface of the crack; It is characterized by the following.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態につい
て、説明する。通常の高周波誘導溶解炉にて、原料とし
てそれぞれ99.9%以上の純度をもったNi,Zr,
Ti,Hf,Mn,V,およびRe、さらにミッシュメ
タルを用い、Ar雰囲気中で溶解して、それぞれ表1に
示される組成をもった合金溶湯を調製し、水冷銅鋳型に
鋳造してインゴットとし、このインゴットに、真空雰囲
気中、950〜1050℃の範囲内の所定温度に20時
間保持の条件で均質化熱処理を施し、ついで1〜1.2
気圧の範囲内の所定の圧力の水素雰囲気中、まず室温で
1時間保持した後、昇温を開始して400〜700℃の
範囲内の所定温度に加熱し、この温度に1時間保持して
から、Arガスによる強制空冷を行なう条件で水素化処
理を施し、さらに大気中、450℃にて1時間保持の条
件で酸化処理を施すと、図1に代表組織を例示する概略
組織拡大模写図で示されるTi−Mn系合金の素地相に
水素化酸化処理生成物相が分散分布し、この水素反生成
物相の主体が、Reの酸化物と、Re−Ni系合金で構
成された組織を有し、さらに上記水素化酸化処理生成物
相の形成時に発生した無数の亀裂が存在すると共に、前
記亀裂内面には前記水素化酸化処理生成物相が露出した
構造を有する本発明水素貯蔵合金が得られ、この合金を
例えばヒ−トポンプの吸発熱源として組み込み、或い
は、水素貯蔵、輸送用、電池の電極などとして実用に供
するに際しては、大きい有効水素吸蔵量を有すると共
に、水素吸収および放出速度がきわめて速く、優れた初
期活性化を発揮する水素貯蔵合金になるのである。一般
に、水素貯蔵合金を、例えばヒ−トポンプの吸発熱源と
して適用する場合には、水素貯蔵合金が組込まれた前記
ヒ−トポンプに対して、数回の水素吸収放出を繰り返す
と、水素吸蔵量が徐々に上昇し何れ一定の値となる初期
活性化が行なわれ、この初期活性化が行なわれた状態で
実用に供されるものである。活性化に必要な繰り返し
数、水素圧等は合金組成によって異なる。
Embodiments of the present invention will be described below. In a normal high-frequency induction melting furnace, Ni, Zr, each having a purity of 99.9% or more as raw materials are used.
Using Ti, Hf, Mn, V, and Re, and misch metal, they are melted in an Ar atmosphere to prepare alloy melts having the compositions shown in Table 1, and cast into a water-cooled copper mold to form an ingot. The ingot is subjected to a homogenizing heat treatment in a vacuum atmosphere at a predetermined temperature in the range of 950 to 1050 ° C. for 20 hours, and then the ingot is heated to 1 to 1.2 ° C.
In a hydrogen atmosphere of a predetermined pressure within the range of the atmospheric pressure, the temperature is first maintained at room temperature for 1 hour, then, the temperature is raised to a predetermined temperature within the range of 400 to 700 ° C., and the temperature is maintained for 1 hour. When hydrogenation treatment is performed under the condition of forced air cooling by Ar gas and oxidation treatment is further performed at 450 ° C. for one hour in the air, the schematic structure enlarged schematic diagram illustrating a representative structure in FIG. The hydrogen oxidation treatment product phase is dispersed and distributed in the base phase of the Ti-Mn-based alloy represented by the following formula, and the hydrogen anti-product phase is mainly composed of an oxide of Re and a Re-Ni-based alloy. The hydrogen storage alloy according to the present invention, further comprising innumerable cracks generated during the formation of the hydrooxidation product phase, and having a structure in which the hydrogenation oxidation product phase is exposed on the inner surface of the crack. This alloy can be used, for example, Incorporation as a heat-absorbing and heat-generating source, or for practical use as a hydrogen storage / transportation / battery electrode, etc., it has a large effective hydrogen storage capacity, extremely fast hydrogen absorption and desorption rates, and excellent initial activation It becomes an effective hydrogen storage alloy. In general, when a hydrogen storage alloy is used as a heat absorbing / generating source of a heat pump, for example, when the hydrogen absorption / desorption is repeated several times with respect to the heat pump into which the hydrogen storage alloy is incorporated, the hydrogen storage amount is increased. Is gradually increased to a certain value, and initial activation is performed, and the apparatus is put to practical use with the initial activation performed. The number of repetitions, hydrogen pressure, and the like required for activation vary depending on the alloy composition.

【0008】なお、本発明の水素貯蔵合金では、JIS
規格による有効水素吸蔵量の測定は、すなわち(50℃
での吸蔵平衡圧:11気圧時の水素吸蔵量)−(−5℃
での放出平衡圧:1気圧時の水素吸蔵量)の条件により
測定された(図4参照)。
In the hydrogen storage alloy of the present invention, JIS
The measurement of the effective hydrogen storage capacity according to the standard is as follows: (50 ° C.
Equilibrium storage pressure: hydrogen storage capacity at 11 atm)-(-5 ° C)
(Equilibrium release pressure of hydrogen at 1 atm) was measured (see FIG. 4).

【0009】つぎに、本発明の水素貯蔵合金において、
これを構成するTi−Mn系合金の組成を上記の通りに
限定した理由を説明する。 (a) TiおよびZr 有効水素吸蔵量を増大させるには、Tiの一部をZrで
置換する必要があるが、その置換割合が、合金全体(1
00%)に占める割合で(以下、同じ)、0.5%未満
またはTiの含有割合が30%を越えて多くなった場合
では、圧力組成等温線における低温側曲線および高温側
曲線のプラト−圧が高くなり過ぎて、所望の有効水素吸
蔵量の増大が計れず、一方その置換割合が10%を越え
るか、またはTiの含有割合が19%未満となった場合
は逆に圧力組成等温線における低温側曲線および高温側
曲線のプラト−圧が著しく低下し、所望の大きな有効水
素吸蔵量を確保することが出来ないことから、その含有
割合を、それぞれTi:19〜30%、Zr:0.5〜
10%と定め、望ましくは、Ti:23〜29%、Z
r:1〜5%とした。
Next, in the hydrogen storage alloy of the present invention,
The reason why the composition of the Ti—Mn-based alloy constituting the alloy is limited as described above will be described. (A) Ti and Zr In order to increase the effective hydrogen storage capacity, it is necessary to replace a part of Ti with Zr.
When the content of Ti is less than 0.5% or the content of Ti is more than 30%, the low-temperature side curve and the high-temperature side curve in the pressure composition isotherm are plotted. If the pressure becomes too high to achieve the desired increase in the effective hydrogen storage capacity, on the other hand, if the substitution ratio exceeds 10% or the Ti content ratio becomes less than 19%, the pressure composition isotherm , The plate-pressure of the low-temperature curve and the high-temperature curve significantly decreased, and it was not possible to secure a desired large effective hydrogen storage amount, so that the content ratios were 19 to 30% for Ti and 0 for Zr, respectively. .5-
10%, desirably, Ti: 23 to 29%, Z
r: 1 to 5%.

【0010】(b) Hf Hf成分には、Zr成分と共にTi−Mn系合金の素地
相を形成してZr成分によってもたらされる上記の作用
を十分に発揮させる作用があるが、その含有量が0.0
2%未満では、所望の効果を発揮することが出来ず、一
方その割合が0.4%を越えると、Zrによる上記の作
用が阻害される様になることから、その含有量を0.0
2〜0.4%と定め、望ましくは、0.04〜0.2%
とした。
(B) Hf The Hf component has a function of forming a base phase of the Ti—Mn alloy together with the Zr component to sufficiently exert the above-mentioned action brought about by the Zr component. .0
If it is less than 2%, the desired effect cannot be exerted. On the other hand, if the content exceeds 0.4%, the above-mentioned action by Zr will be impaired.
2 to 0.4%, desirably 0.04 to 0.2%
And

【0011】(c) Mn、Cr、V、およびNi さらに、有効水素吸蔵量の増大には、上記の通りTiの
Zrによる一部置換に加えて 、MnのCr、Vおよび
Niによる一部置換が不可欠であり、更に言い換えれ
ば、Tiの所定量のZrによる一部置換が行なわれない
場合や、置換元素であるCr、VおよびNiのうちの少
なくともいずれかの元素が含有しない場合は勿論のこ
と、Mnのそれぞれ所定量のCr、VおよびNiによる
一部置換が行われない場合には、所望の大きな有効水素
吸蔵量を確保することが出来ないものであり、その理由
は、Mn:30%、Cr:4%、V:7%およびNi:
2%未満であったり、またMn:44%、Cr:13
%、V:17%およびNi:9%をそれぞれ越えると、
圧力組成等温線におけるプラト−の傾きやヒステリシス
が大きくなることによる。したがって、その含有割合
を、それぞれMn:30〜44%、Cr:4〜13%、
V:7〜17%およびNi:2〜9%と定め、望ましく
は、Mn:33〜40%、Cr:7〜11%、V:9〜
15%およびNi:3〜7%とした。
(C) Mn, Cr, V, and Ni Further, as described above, in addition to the partial replacement of Ti by Zr, the partial replacement of Mn by Cr, V and Ni Is indispensable. In other words, when partial replacement of Ti with a predetermined amount of Zr is not performed, or when at least one of Cr, V, and Ni as replacement elements is not contained, it is needless to say that If the partial replacement of Mn with a predetermined amount of each of Cr, V and Ni is not carried out, it is impossible to secure a desired large effective hydrogen storage amount. %, Cr: 4%, V: 7% and Ni:
Less than 2%, Mn: 44%, Cr: 13
%, V: 17% and Ni: 9%, respectively,
This is because the plate slope and hysteresis in the pressure composition isotherm increase. Therefore, the content ratios of Mn: 30 to 44%, Cr: 4 to 13%,
V: 7 to 17% and Ni: 2 to 9%, desirably, Mn: 33 to 40%, Cr: 7 to 11%, V: 9 to
15% and Ni: 3 to 7%.

【0012】(c) Re これらの成分は、上記の通り雰囲気中の水素を主体相よ
り一段と速い速度で解離吸収し、かつ再結合させて雰囲
気中に放出する作用を有するre−Ni系合金相を形成
するのに不可欠な成分であり、したがってその割合が
0.1%未満では、前記Re−Ni系合金相の生成割合
が少なすぎて、これのもつ上記作用を十分に発揮させる
ことが出来ず、一方その割合が3.5%を越えると、水
素吸蔵能の小さい前記Re−Ni系合金相の割合が多く
なりすぎ、合金全体の水素吸蔵量が低下するようになる
ことから、その割合を0.1〜3.5%、望ましくは1
〜3%と定めた。また、上記Re−Ni系合金およびR
e水酸化物による上記作用を十分に発揮させるために
は、Reの主体をLaおよび/またはCeとする必要が
あり、この場合望ましくはLaおよび/またはCeの割
合をReに占める割合で50%以上とするのがよく、さ
らに望ましくはReを実質的にLaおよび/またはCe
で構成するのがよい。
(C) Re These components are, as described above, a re-Ni-based alloy phase having an action of dissociating and absorbing hydrogen in the atmosphere at a much higher rate than the main phase, and recombining and releasing into the atmosphere. Therefore, if the ratio is less than 0.1%, the generation ratio of the Re-Ni-based alloy phase is too small, and the above-described action of the Re-Ni-based alloy phase can be sufficiently exhibited. On the other hand, if the proportion exceeds 3.5%, the proportion of the Re-Ni-based alloy phase having a small hydrogen storage capacity becomes too large, and the hydrogen storage amount of the entire alloy is reduced. 0.1 to 3.5%, preferably 1
33%. Further, the above-mentioned Re-Ni alloy and R
In order to sufficiently exert the above-mentioned action of the e-hydroxide, it is necessary that the main component of Re is La and / or Ce. In this case, preferably, the proportion of La and / or Ce is 50% in proportion to Re. More preferably, Re is substantially La and / or Ce.
It is good to consist of.

【0013】(g) 酸素 酸素は、主に水素化酸化処理生成物相を構成するRe−
Ni系合金と共に、雰囲気中の水素分子(H2 )を素地
相より速い速度で水素原子(H)に解離して吸収し、吸
収した水素原子を素地相中に拡散させ、一方水素放出に
あたっては素地相からの拡散水素原子をいち速く水素分
子に再結合させる作用を有するRe酸化物の形成に不可
欠な成分であるが、その割合が1%未満では、Re酸化
物の形成が少なすぎて上記の作用効果を十分に発揮させ
ることができず、また亀裂の形成も不十分となり、一方
その割合が10%を越えると、相対的にRe酸化物の割
合が多くなりすぎて強度が低下し、微粉化傾向が促進さ
れるようになることから、その割合を、1〜10%、望
ましくは1.5〜7%と定めた。
(G) Oxygen Oxygen is mainly composed of Re-
Along with the Ni-based alloy, hydrogen molecules (H 2 ) in the atmosphere are dissociated and absorbed into hydrogen atoms (H) at a faster speed than the base phase, and the absorbed hydrogen atoms are diffused into the base phase. It is an essential component for the formation of a Re oxide having an action of quickly recombining the hydrogen atoms diffused from the base phase into hydrogen molecules. If the proportion is less than 1%, the formation of the Re oxide is too small and the above-mentioned ratio is too small. Cannot sufficiently exhibit the effect of the invention, and the formation of cracks becomes insufficient. On the other hand, when the ratio exceeds 10%, the ratio of the Re oxide becomes relatively too large, and the strength decreases. Since the tendency to pulverization is promoted, the ratio is set to 1 to 10%, preferably 1.5 to 7%.

【0014】なお、この発明の水素貯蔵合金は、通常の
機械的粉砕により所定粒度の粉末とすることができるほ
か、加圧水素雰囲気中、10〜200℃の範囲内の所定
温度に加熱の水素吸収と、真空排気による水素放出の水
素化粉砕によっても粉末とすることができ、この結果の
粉末は、いずれも図2に代表組織を例示する概略組織拡
大模写図で示される通りの組織をもつものとなる。
The hydrogen storage alloy of the present invention can be converted into powder having a predetermined particle size by ordinary mechanical pulverization, and can be heated to a predetermined temperature within the range of 10 to 200 ° C. in a pressurized hydrogen atmosphere. And powder by hydrogenation and pulverization of hydrogen release by vacuum evacuation, and the resulting powder has a structure as shown in a schematic structure enlarged schematic diagram illustrating a representative structure in FIG. Becomes

【0015】[0015]

【実施例】つぎに、本発明の水素貯蔵合金を実施例によ
り、具体的に説明する。通常の高周波誘導溶解炉にて、
原料としてそれぞれ99.9%以上の純度をもったN
i,Zr,Ti,Hf,Mn,V,およびRe、さらに
ミッシュメタルを用い、Ar雰囲気中で溶解して、それ
ぞれ表1に示される組成をもった合金溶湯を調製し、水
冷銅鋳型に鋳造してインゴットとし、このインゴット
に、真空雰囲気中、表2に示される所定温度に20時間
保持の条件で均質化熱処理を施し、ついで表2に示され
る所定の圧力の水素雰囲気中、まず室温で1時間保持し
た後、昇温を開始して同じく表2に示される所定温度に
加熱し、この温度に1時間保持してから、Arガスによ
る強制空冷を行なう条件で水素化処理を施し、さらに大
気中、450に1時間保持の条件で酸化処理を施すこと
により本発明水素貯蔵合金1〜16(以下、本発明合金
1〜16という)をそれぞれ製造した。また、比較の目
的で、合金溶湯の組成を表1に示される通りとし、かつ
均質化熱処理後の水素化処理および酸化処理を行なわな
い以外は同一の条件で従来水素貯蔵合金(以下、従来合
金という)を製造した。この結果得られた水素貯蔵合金
について、その組織を走査型電子顕微鏡で観察したとこ
ろ、本発明合金1〜16は、いずれも図1に示される通
り無数の亀裂が存在し、この亀裂の内面には、Re−N
i系合金とRe酸化物で構成された水素化酸化処理生成
物相が露出し、この水素化酸化処理生成物がTi−Mn
系合金の素地相中に分散分布した組織を示し、従来合金
は、図3に示される通りTi−Mn系合金の素地相から
なる組織を示した。
EXAMPLES Next, the hydrogen storage alloy of the present invention will be specifically described with reference to examples. In a normal high-frequency induction melting furnace,
N, each having a purity of 99.9% or more as a raw material
Using i, Zr, Ti, Hf, Mn, V, and Re, and misch metal, melting in an Ar atmosphere to prepare alloy melts having the compositions shown in Table 1, respectively, and casting into a water-cooled copper mold. The ingot was subjected to a homogenizing heat treatment in a vacuum atmosphere at a predetermined temperature shown in Table 2 for 20 hours, and then at room temperature in a hydrogen atmosphere at a predetermined pressure shown in Table 2. After holding for 1 hour, the temperature was raised and heated to a predetermined temperature also shown in Table 2, held at this temperature for 1 hour, and then subjected to a hydrogenation treatment under the condition of forced air cooling with Ar gas. Hydrogen storage alloys 1 to 16 of the present invention (hereinafter referred to as alloys 1 to 16 of the present invention) were produced by subjecting 450 to oxidation treatment in the atmosphere under the condition of holding for 1 hour. For the purpose of comparison, a conventional hydrogen storage alloy (hereinafter referred to as a conventional alloy) was prepared under the same conditions except that the composition of the molten alloy was as shown in Table 1 and the hydrogenation treatment and the oxidation treatment after the homogenization heat treatment were not performed. Manufactured). The structure of the resulting hydrogen storage alloy was observed with a scanning electron microscope. As a result, each of the alloys 1 to 16 of the present invention had an infinite number of cracks as shown in FIG. Is Re-N
A hydro-oxidation treatment product phase composed of the i-based alloy and the Re oxide is exposed, and this hydro-oxidation treatment product is Ti-Mn
3 shows a structure dispersed and distributed in the base phase of the base alloy, and the conventional alloy shows a structure composed of the base phase of the Ti—Mn base alloy as shown in FIG. 3.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】つぎに、上記の本発明合金1〜16よび従
来合金について、それぞれ水素吸収速度と水素放出速度
をJIS・H7202の「水素吸蔵合金の水素化速度試
験測定法」にもとづいて測定した。なお、測定に先だっ
て、本発明合金1〜16および従来合金を、圧力容器に
封入し、水素雰囲気圧力:8気圧、加熱温度:200
℃、保持時間:1時間の条件での水素吸収と、真空排気
による水素放出からなる水素化粉砕を行なって200m
esh以下の粒度をもった粉末とし、この粉末を用いて
以下に示す条件で測定を行なった。
Next, with respect to the alloys 1 to 16 of the present invention and the conventional alloy, the hydrogen absorption rate and the hydrogen release rate were measured in accordance with JIS H7202 "Hydrogen storage alloy hydrogenation rate test measurement method". Prior to the measurement, the alloys 1 to 16 of the present invention and the conventional alloy were sealed in a pressure vessel, and the hydrogen atmosphere pressure was 8 atm and the heating temperature was 200.
C., holding time: 200 m after hydrogen crushing consisting of absorption of hydrogen under the condition of 1 hour and release of hydrogen by evacuation.
A powder having a particle size of esh or less was used, and measurement was performed using the powder under the following conditions.

【0019】まず、水素吸収速度については、図5に概
略説明図で示される通り、(a) 粉末を浴(油または
水)に浸漬した容器内に封入し、前記浴の温度を200
℃に保持した状態で、弁Vb:閉、弁VaおよびVc:
開として水素ボンベから加圧水素を系内に導入し、系内
を30気圧とした時点で弁Va:閉とし、系内の圧力が
一定圧力に降下する(粉末による水素吸収完了)まで放
置して粉末の初期活性化を行ない、(b) 系内の圧力
が一定圧力(約20気圧程度)に降下した時点で弁V
b:開とし、真空ポンプで系内を10-2トルの真空雰囲
気とした後、浴温を20℃とし、弁VbおよびVc:
閉、弁Va:開にして容器を除く系内に水素を導入し、
その圧力が30気圧となった時点で弁Va:閉、弁V
c:開とし、この状態で系内の時間に対する圧力降下を
測定し、この結果の圧力降下曲線から粉末の水素吸蔵量
が80%になった時点の水素吸蔵量とそれまでに要した
時間を求め、(80%吸蔵時の水素吸蔵量)÷(80%
水素吸蔵に要した時間)を算出し、この値を水素吸収速
度とした。また、水素放出速度については、上記の水素
吸収速度測定後の状態、すなわち弁VaおよびVb:
閉、弁Vc:開であって系内の圧力が一定圧(通常20
気圧前後)となった状態で、浴温を100〜300℃の
範囲内の粉末の水素放出適正温度、例えば120℃とし
た後、弁Vb:開、弁Vc:閉として容器を除く系内を
10-2トルに排気し、ついで弁Vb:閉、弁Vc:開と
した状態で、系内の時間に対する圧力上昇を測定し、こ
の結果の圧力上昇曲線から粉末の水素放出量が80%に
なった時点の水素放出量とそれまでに要した時間を求
め、(80%放出時の水素放出量)÷(80%水素放出
に要した時間)を算出し、この値を水素放出速度とし
た。これらの結果を表3に示した。
First, regarding the hydrogen absorption rate, as shown in the schematic explanatory view of FIG. 5, (a) a powder was sealed in a container immersed in a bath (oil or water), and the temperature of the bath was set to 200.
C, the valves Vb: closed, valves Va and Vc:
When opened, pressurized hydrogen is introduced into the system from a hydrogen cylinder. When the pressure in the system reaches 30 atm, the valve Va is closed, and the system is left until the pressure in the system drops to a constant pressure (hydrogen absorption by powder is completed). (B) When the pressure in the system drops to a constant pressure (about 20 atm), the valve V
b: Open, set the system to a vacuum atmosphere of 10 -2 Torr with a vacuum pump, set the bath temperature to 20 ° C, and set the valves Vb and Vc:
Close, valve Va: open and introduce hydrogen into the system excluding the vessel,
When the pressure reaches 30 atm, valve Va: closed, valve V
c: Open, pressure drop with respect to time in the system was measured in this state, and from the resulting pressure drop curve, the hydrogen storage amount at the time when the hydrogen storage amount of the powder became 80% and the time required until then were calculated. Then, (hydrogen storage amount at 80% storage) ÷ (80%
The time required for hydrogen storage) was calculated, and this value was used as the hydrogen absorption rate. Regarding the hydrogen release rate, the state after the above-mentioned hydrogen absorption rate measurement, that is, the valves Va and Vb:
Closed, valve Vc: Open and the pressure in the system is constant (typically 20
(Atmospheric pressure), the bath temperature is set to an appropriate temperature for releasing hydrogen of powder in the range of 100 to 300 ° C., for example, 120 ° C., then the valve Vb is opened and the valve Vc is closed to remove the inside of the system. After exhausting to 10 -2 torr and then, with the valve Vb closed and the valve Vc open, the pressure rise over time in the system was measured and the resulting pressure rise curve showed that the hydrogen release of the powder was 80%. The amount of hydrogen released at the point of time and the time required up to that time were obtained, and (the amount of hydrogen released at the time of 80% release) / (the time required for the release of 80% hydrogen) was calculated. . Table 3 shows the results.

【0020】[0020]

【表3】 [Table 3]

【0021】さらに、上記本発明合金1〜16および従
来合金について、初期活性化を評価する目的で、以下に
詳述する通り、これを粉末にして電池に活物質として組
み込み、前記電池が最大放電容量を示すに至るまで、こ
れに充放電を繰り返し施し、前記最大放電容量の95%
±1%に相当する放電容量を示すまでの充放電回数を測
定した。すなわち、まず、従来合金について、ジョーク
ラッシャを用いて粗粉砕して直径:2mm以下の粗粒と
し、引続いて上記本発明合金1〜161および前記粗粉
砕した従来合金を、ボールミルを用いて微粉砕して20
0メッシュ以下の粒度とし、これに結着剤としてのポリ
テトラフルオロエチレン(PTFE)と増粘剤としての
カルボキシルメチルセルロース(CMC)を加えてペー
スト状とした後、95%の気孔率を有する市販の多孔質
Ni焼結板に充填し、乾燥し、加圧して、平面寸法:3
0mm×40mm、厚さ:0.40〜0.43mmの形状(前
記活物質粉末充填量:約1.8g)とし、これの一辺に
リードとなるNi薄板を溶接により取り付けて負極を形
成し、一方正極は、活物質として重量比で84:16の
割合に配合したNi(OH)2 とCoOを用い、これに
結着剤としてのポリテトラフルオロエチレン(PTF
E)と増粘剤としてのカルボキシルメチルセルロース
(CMC)を加えてペースト状とし、これを上記多孔質
Ni焼結板に充填し、乾燥し、加圧して、平面寸法:3
0mm×40mm、厚さ:0.71〜0.73mmの形状と
し、同じくこれの一辺にNi薄板を取り付けることによ
り形成し、ついで、上記負極の両側に、それぞれポリプ
ロピレンポリエチレン共重合体のセパレータ板を介して
上記正極を配置し、さらに前記正極のそれぞれの外面か
ら活物質の脱落を防止する目的で塩化ビニール製の保護
板ではさんで一体化し、これを塩化ビニール製のセルに
装入し、前記セルに電解液として30%KOH水溶液を
装入することにより電池を製造した。ついで、上記電池
に、充電速度:0.15C、放電速度:0.15C、充
電電気量:負極容量の135%の条件で充放電を行な
い、前記充電と放電を充放電1回と数え、前記電池が最
大放電容量を示すに至るまで前記充放電を繰り返し行な
った。表3に、前記最大放電容量の95%の放電容量を
示すに要した充放電回数を示し、これによって初期活性
化を評価した。
Further, for the purpose of evaluating the initial activation of the alloys 1 to 16 of the present invention and the conventional alloy, as described in detail below, the alloy was powdered and incorporated as an active material into a battery. This is repeatedly charged and discharged until the capacity is reached, and 95% of the maximum discharge capacity is obtained.
The number of times of charge and discharge until a discharge capacity corresponding to ± 1% was shown was measured. That is, first, the conventional alloy is coarsely pulverized using a jaw crusher to obtain coarse particles having a diameter of 2 mm or less. Subsequently, the alloys 1 to 161 of the present invention and the coarsely pulverized conventional alloy are finely ground using a ball mill. Crushed 20
0 mesh or less, and after adding polytetrafluoroethylene (PTFE) as a binder and carboxymethylcellulose (CMC) as a thickener to form a paste, a commercially available product having a porosity of 95% Fill a porous Ni sintered plate, dry and pressurize, planar dimension: 3
A shape of 0 mm × 40 mm, thickness: 0.40 to 0.43 mm (the amount of the active material powder charged: about 1.8 g), and a Ni thin plate serving as a lead attached to one side of this by welding to form a negative electrode, On the other hand, for the positive electrode, Ni (OH) 2 and CoO mixed in a ratio of 84:16 by weight as active materials were used, and polytetrafluoroethylene (PTF) was used as a binder.
E) and carboxymethylcellulose (CMC) as a thickener were added to form a paste, which was filled in the porous Ni sintered plate, dried, and pressed to obtain a planar dimension of 3
A shape of 0 mm × 40 mm, thickness: 0.71 to 0.73 mm was formed by attaching a Ni thin plate to one side of the shape, and then a polypropylene-polyethylene copolymer separator plate was provided on both sides of the negative electrode. The positive electrode is arranged via a protective plate made of vinyl chloride for the purpose of preventing the active material from falling off from the outer surface of each of the positive electrodes, and integrated into a vinyl chloride cell. A battery was manufactured by charging a 30% aqueous KOH solution as an electrolytic solution into the cell. Then, the battery was charged and discharged under the conditions of a charge rate: 0.15 C, a discharge rate: 0.15 C, a charged amount of electricity: 135% of the negative electrode capacity, and the charge and discharge were counted as one charge and discharge. The charging and discharging were repeated until the battery reached the maximum discharge capacity. Table 3 shows the number of times of charging and discharging required to show a discharge capacity of 95% of the maximum discharge capacity, and the initial activation was evaluated based on the number of times.

【0022】[0022]

【発明の効果】表3に示される結果から、本発明合金1
〜16においては、表面および無数の亀裂内面に露出
し、これによって全体的に広い表面積で雰囲気中に露出
した状態にある水素化酸化処理生成物相のRe−Ti系
合金およびRe酸化物を通して、雰囲気中の水素が水素
原子に解離されて吸収され、この吸収水素がTi−Mn
系合金の素地相に拡散して水素吸蔵が行なわれるが、上
記の通りきわめて速い水素吸収能を有するRe−Ni系
合金およびRe酸化物が全体的に広い表面積で分布する
ので、水素吸収速度は相対的にきわめて速いものなり、
かつ初期活性化も著しく促進されるようになり、また水
素放出もこの逆の機構によるものであるため速い速度で
の水素放出が行なわれるのに対して、従来合金において
は、水素吸蔵は、水素化処理による積極的亀裂形成が行
なわれない分だけ相対的に小さく、この結果水素吸収お
よび放出速度は遅くならざるを得ず、かつ初期活性化も
遅いものとなることが明らかである。上述のように、こ
の発明の水素貯蔵合金においては、水素吸収および放出
速度がきわめて速く、かつ実用に際してはすぐれた初期
活性化を示すので、水素貯蔵合金が適用されている各種
機械装置の高出力化および高性能化、さらに省エネ化に
大いに寄与するものである。
According to the results shown in Table 3, the alloy of the present invention 1
In No. 16 to No. 16, through the Re-Ti-based alloy and Re oxide of the hydrogenated oxidation treatment product phase exposed to the surface and the myriad of crack inner surfaces and thereby exposed to the atmosphere with a large surface area as a whole, Hydrogen in the atmosphere is dissociated into hydrogen atoms and absorbed, and the absorbed hydrogen is
Hydrogen storage is performed by diffusing into the base phase of the base alloy, but as described above, the Re-Ni-based alloy and the Re oxide having an extremely fast hydrogen absorption capacity are distributed over a large surface area, so that the hydrogen absorption rate is Relatively fast,
In addition, the initial activation is remarkably promoted, and hydrogen is released at a high speed because of the reverse mechanism. On the other hand, in the conventional alloy, hydrogen storage is performed by hydrogen absorption. It is evident that the rate of hydrogen absorption and desorption has to be slower and the initial activation is slower as a result of the fact that the active crack formation by the activation treatment is not performed. As described above, the hydrogen storage alloy of the present invention has a very high rate of hydrogen absorption and desorption, and exhibits excellent initial activation in practical use. It greatly contributes to higher performance, higher performance and energy saving.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の水素貯蔵合金の代表組織を例示する
概略組織拡大模写図である。
FIG. 1 is a schematic enlarged enlarged view illustrating a representative structure of a hydrogen storage alloy of the present invention.

【図2】 本発明の水素貯蔵合金粉砕粉末の代表組織を
例示する概略組織拡大模写図である。
FIG. 2 is a schematic enlarged microstructure diagram illustrating a representative structure of the hydrogen storage alloy pulverized powder of the present invention.

【図3】 従来水素貯蔵合金の代表組織を例示する概略
組織拡大模写図である。
FIG. 3 is a schematic enlarged schematic view illustrating a typical structure of a conventional hydrogen storage alloy.

【図4】 本発明の水素貯蔵合金の圧力組成等温線を示
す図である。
FIG. 4 is a diagram showing a pressure composition isotherm of the hydrogen storage alloy of the present invention.

【図5】 水素貯蔵合金の水素吸収放出速度を測定する
のに用いた装置の概略説明図である。
FIG. 5 is a schematic explanatory view of an apparatus used for measuring a hydrogen absorption / release rate of a hydrogen storage alloy.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原子%で、 Ti:19〜30%、 Zr:0.5〜10%、 Hf:0.02〜0.4% 、Mn:30〜44%、 Cr:4〜13%、 V:7〜17%、 Ni:2〜9%、 Re:0.1〜3.5%、 酸素:1〜10% 不可避不純物:残、 なる組成を有し、かつTi−Mn系合金の素地相に水素
化酸化処理生成物相が分散分布し、前記水素化酸化処理
生成物相の主体が、Reの酸化物と、Re−Ni系合金
で構成された組織を有し、さらに水素化処理時に発生し
た無数の亀裂が存在すると共に、前記亀裂内面には前記
水素化酸化処理生成物相が露出した構造を有することを
特徴とする水素貯蔵合金。
1. Atomic%, Ti: 19 to 30%, Zr: 0.5 to 10%, Hf: 0.02 to 0.4%, Mn: 30 to 44%, Cr: 4 to 13%, V: 7% to 17%, Ni: 2% to 9%, Re: 0.1% to 3.5%, Oxygen: 1% to 10% Inevitable impurities: remaining, and a Ti-Mn alloy base material The hydrooxidation product phase is dispersed and distributed in the phase, and the main component of the hydrooxidation product phase has a structure composed of an oxide of Re and a Re-Ni-based alloy, A hydrogen storage alloy, characterized by having a myriad of cracks generated at the time, and having a structure in which the hydrogenated product phase is exposed on the inner surface of the crack.
JP9003359A 1997-01-10 1997-01-10 Hydrogen storage alloy excellent in initial activity Withdrawn JPH10195577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9003359A JPH10195577A (en) 1997-01-10 1997-01-10 Hydrogen storage alloy excellent in initial activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9003359A JPH10195577A (en) 1997-01-10 1997-01-10 Hydrogen storage alloy excellent in initial activity

Publications (1)

Publication Number Publication Date
JPH10195577A true JPH10195577A (en) 1998-07-28

Family

ID=11555163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9003359A Withdrawn JPH10195577A (en) 1997-01-10 1997-01-10 Hydrogen storage alloy excellent in initial activity

Country Status (1)

Country Link
JP (1) JPH10195577A (en)

Similar Documents

Publication Publication Date Title
JP3965209B2 (en) Low Co hydrogen storage alloy
JP3828922B2 (en) Low Co hydrogen storage alloy
EP0753590B1 (en) Hydrogen occluding alloy and electrode made of the alloy
JP6934097B1 (en) Hydrogen storage alloy
JP2005133193A (en) LOW Co HYDROGEN STORAGE ALLOY
JPH10195575A (en) Hydrogen storage alloy excellent in initial activity
JPH10195577A (en) Hydrogen storage alloy excellent in initial activity
JPH10195574A (en) Hydrogen storage alloy excellent in initial activity
JPH10195576A (en) Hydrogen storage alloy excellent in initial activity
JPH10195583A (en) Hydrogen storage alloy excellent in initial activity
JPH10195584A (en) Hydrogen storage alloy excellent in initial activity
JPH10195580A (en) Hydrogen storage alloy excellent in initial activity
JPH10195578A (en) Hydrogen storage alloy excellent in initial activity
JPH10195573A (en) Hydrogen storage alloy excellent in initial activity
EP0761833B1 (en) Hydrogen occluding alloy and electrode made of the alloy
JPH10195582A (en) Hydrogen storage alloy excellent in initial activity
JPH10195579A (en) Hydrogen storage alloy excellent in initial activity
JPH09176777A (en) Hydrogen storage alloy
JPH10195581A (en) Hydrogen storage alloy excellent in initial activity
JPH0978167A (en) Hydrogen storage alloy
JPH1025528A (en) Hydrogen storage alloy
JPH09176775A (en) Hydrogen storage alloy
JPH10195569A (en) Hydrogen storage alloy excellent in initial activity
JPH0987784A (en) Hydrogen storage alloy
JPH09176776A (en) Hydrogen storage alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040406